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A. Popadić1, M. Praprotnik1,a, P. Koumoutsakos2,b, and J.H. Walther2,3,c

1 Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19,
1001 Ljubljana, Slovenia

2 Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, 8092 Zurich,
Switzerland

3 Department of Mechanical Engineering, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

Received 20 March 2015 / Received in final form 5 May 2015
Published online 22 June 2015

Abstract. We present continuum simulations of water flow past
fullerene molecules. The governing Navier-Stokes equations are com-
plemented with the Navier slip boundary condition with a slip length
that is extracted from related molecular dynamics simulations. We find
that several quantities of interest as computed by the present model are
in good agreement with results from atomistic and atomistic-continuum
simulations at a fraction of the cost. We simulate the flow past a sin-
gle fullerene and an array of fullerenes and demonstrate that such
nanoscale flows can be computed efficiently by continuum flow solvers,
allowing for investigations into spatiotemporal scales inaccessible to
atomistic simulations.

1 Introduction

Nanoscale flows exhibit long range hydrodynamic interactions at spatiotemporal
scales that are prohibitive to molecular dynamics (MD) simulations [1]. Coarse grained
and multiscale simulations can mitigate this cost at the expense of accuracy when
comparing their results with those from atomistic simulations. The validity of coarse
grained descriptions hinges on the choice of collective variables [2] while in hybrid
models the results hinge on the information transfer between atomistic and contin-
uum domains [3–5]. Here we present an alternative approach, where the effective
description of the atomistic phenomena is reduced to one variable, namely the slip
length of the water flow over a fullerene. This parameter is used to describe the criti-
cal interactions between the surface of the molecule and water and it is then provided
as a boundary condition to a continuum solver.
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Several past experiments and computer simulations suggest that the Navier-Stokes
equations

ρ(v · ∇)v = −∇p+ μ∇2v, and ∇ · v = 0, (1)

where ρ is the fluid density, v the fluid velocity, p the hydrodynamic pressure and μ
the fluid viscosity, are adequate models for describing phenomena at the nanometer
scale [6–12]. Bocquet and Charlaix [9] estimated the validity of the Navier-Stokes
equations to confinements larger than a viscous length scale, for water it being ca.
1 nm. Experiments by Li et al. [6] showed that for hydrophobic sub-nanometer con-
finements water maintains its bulk viscosity. In addition, Thomas and McGaughey
observed in MD simulations that the structure of water in CNTs of diameters greater
than 1.4 nm is bulk-like [8]. From this we expect that the continuum description is
valid when the characteristic length is larger than O(1 nm). A recent study also re-
ports that in highly confined nanosize channels an extension of the Navier-Stokes
equations to include the rotational degrees of freedom is needed for a correct descrip-
tion of fluid dynamics [13]. However, even though the Navier-Stokes equations can be
suitable models for water flows at the nanoscale, experiments and simulations sug-
gest that the well known, empirical no-slip condition is not an appropriate boundary
condition to complement continuum descriptions [9,14–20]. Instead, slippage effects
have been shown to best describe the solid-liquid interface. It is important to note
that in the nanoscale, with the high ratio of the interface area to the bulk volume
the physics at the interface, and their corresponding boundary conditions, become
increasingly important [9,19].

2 Theoretical background

2.1 Partial slip boundary condition

In continuum descriptions of the flow field the slippage effects can be accounted for
by applying the Navier boundary condition [21,22]. The Navier boundary condition
assumes a linear dependence of the fluid velocity at the wall to the wall shear stress:

σiknk = λvti − p′ni, (2)

where σik is the stress tensor, nk the k-th Cartesian component of the normal to the
wall n pointing into the fluid, λ the friction coefficient between the wall and the fluid,
vti the i-th Cartesian component of vt, the tangential to the wall component of fluid
velocity v, and p′ the total pressure exerted on the wall by the fluid. Requiring the
balance of the stress tensor at the wall to the stress tensor of bulk liquid [23]

σik = μ

(
∂vi

∂xk
+
∂vk

∂xi

)
− pδik, (3)

where δik is the Kronecker delta function, we obtain the velocity boundary condition

λvt − p′n = μ [2(n · ∇)v + n× (∇× v)]− pn. (4)

We further split this boundary condition into a tangential and normal components,
where the normal component reads

p′ = p− 2μ∂vn
∂n
, (5)
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Fig. 1. Schematic of the Navier boundary condition. The shaded region represents the solid
and the region above it the liquid.

where ∂/∂n represents the gradient in the direction of the normal to the wall and vn
the normal component of the fluid velocity. The tangential component on the other
hand reads

vt =
μ

λ
[2(n · ∇)vt + n× (∇× vt) + n× (∇× vn)] . (6)

By using the following relation

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a) (7)

in Eq. (6) and the Stokes theorem on the normal to the wall (n) and the normal
component of the velocity (vn) the boundary condition becomes

vt =
μ

λ
[(n · ∇)vt − (vt · ∇)n] . (8)

The first term on the right is the gradient of the tangential component of velocity in
the direction normal to the wall and the second term is the curvature of the wall in
the flow direction. The boundary condition can thus be written in a more compact
form [12]

vt = ls

[
∂vt

∂n
− vt
κ

]
, (9)

where κ is the radius of the curvature of the wall in the flow direction with the
curvature being negative for concave boundaries (Fig. 1). In Eq. (9) we introduce
the slip length ls = μ/λ, which for noncurved boundaries (κ → ∞) gives the depth
at which the linear extrapolation into the wall of the fluid velocity vanishes. The
boundary condition Eq. (9) differs slightly from the more intuitive and frequently
used boundary condition

vt = ls
∂vt

∂n
(10)

in the presence of an additional interface curvature dependent term. The importance
of the curvature term was emphasized by Einzel et al. [24] The omission of the interface
curvature dependent term would result in the dependence of slip length from interface
curvature and it could also result in a negative slip length. In the case of the boundary
condition in Eq. (9), however, the slip length is always positive since the slip length is
defined as the ratio of viscosity and the interface friction coefficient, of which both are
positive. The slip length might still, however, vary with the interface curvature as a
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(a) (b)

Fig. 2. Illustrations from simulations of flow past a C540 fullerene molecule: (a) multi-
scale simulations coupling an atomistic MD description with a continuum Lattice-Boltzmann
model [5]; (b) continuum Navier-Stokes model subject to the partial slip, Navier boundary
condition.

consequence of the interface friction coefficient dependence on the interface curvature
as is suggested by several past studies [7,25,26].
The slip length or the interface friction coefficient can be extracted from MD

simulations [9,21,25–31].

2.2 Continuum hydrodynamics

In a recent study by Walther et al. [5] a multiscale simulation of water flow past a C540
fullerene molecule was performed by coupling MD to the Lattice-Boltzmann method
cf. Fig. 2a. A steady state solver was used to describe the flow in the continuum
domain and the atomistic-continuum coupling relied on the Schwarz domain decom-
position algorithm. An important feature of this coupling was the transfer of gradient
information between the continuum and atomistic descriptions ensuring momentum
conservation. In the present work we tackle the same problem by employing a fully
continuum description coupling finite volume simulations of the Navier-Stokes equa-
tions with Navier boundary conditions applied on the interface between the fullerene
molecule and the fluid (Fig. 2b). Far field boundary conditions are set to mimic the
boundary conditions from the multiscale simulations of Walther et al. [5].
By matching the drag force measured in continuum flow simulations to the drag

force measured in the multiscale simulation we extract the slip length for the water
flow past the C540 fullerene molecule. The non-dimensional drag force reads as

F ∗ = F
1

ρv2∞R2
(11)

where F is the drag force on the fullerene molecule and F ∗ the drag force in the
non-dimensional form. v∞ is the upstream velocity and R = 1.03 nm the radius of
the fullerene molecule. Hereinafter the variables denoted with a star represent non-
dimensionalized variables, where length is scaled as x∗ = x/R, velocity as v∗ = v/v∞.

3 Results

We perform our simulations using the STAR-CD simulation package into which
we have implemented the Navier boundary condition [32]. We perform two sets of
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Fig. 3. Illustration of the flow past a sphere subject to Navier boundary conditions. (a)
Streamlines illustrated by the Line Integral Convolution (LIC) method for the flow past a
sphere in an otherwise undisturbed fluid (closeup view); (b) the corresponding mesh (closeup
view); (c) streamlines (LIC) of the flow past an array of spheres; (d) the corresponding mesh.
The array of spheres is realized by imposing periodic boundary conditions on side faces of
the bounding box (top and bottom in (c) and (d). The direction of the flow is from the left
to the right.

simulations: simulations past a single fullerene molecule and simulations past an ar-
ray of fullerene molecules.
In the first set of simulations we simulate water flow past the fullerene molecule in

an otherwise undisturbed fluid flow (Fig. 3a). We place a sphere of radius R∗ = 1.00
in the center of a spherical domain out of which we cut a 10◦ wedge in the azimuthal
direction. This domain contains four concentric submeshes with the density of the
mesh decreasing with the distance from the sphere. The density in the azimuthal and
polar directions is constant through all the submeshes with 180 cells in the azimuthal
direction and 2 cells in the polar direction in each submesh. In the radial direction
we vary the cell density. The first subdomain extends from r∗ = 1 to r∗ = 1.94 with
100 cells, the second from r∗=1.94 to r∗=3.88 with 100 cells, the third from r∗=3.88
to r∗ = 19.42 with 200 cells and the fourth from r∗ = 19.42 to r∗ = 194.17 with
200 cells (Fig. 3b). This amounts to 21600 cells in total. The constant free-stream
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Fig. 4. Drag force dependence on the slip length. The circles represent the data points of
the continuum simulations. The results in blue represent the drag force for a single fullerene
molecule with R∗H = 1.00 placed in an otherwise undisturbed fluid flow. The blue dotted
and the dashed lines represent the drag force from an analytical solution in Eq. (12) and
the Oseen-like correction to the analytical solution in Eq. (13) respectively. Results shown
in green and yellow represent the drag force on a fullerene molecule with R∗H = 1.00 and
R∗H = 1.18 respectively in an array of fullerene molecules forming a square lattice. The
green and yellow solid lines are fits of the three parametric function in Eq. (14) to the CFD
data points. The black horizontal line at F ∗ = 270 marks the drag force measured in the
multiscale simulation [5].

velocity v∞ imposed at r∗ = 194.17, and the density ρ and viscosity μ are set to
match the Reynolds number of the multiscale simulation Re = ρv∞R/μ = 0.067.
In the second set of simulations we set up our computational system to mimic the

one from the multiscale simulation (Fig. 3c). We place the sphere in the center of a
cubic box of edge L∗ = 15.53. The coordinate axes are oriented parallel to the box
edges, where the x axis points in the direction of the fluid flow. We again vary the
mesh density with the distance from the sphere with the total number of cells cca.
1.7 million (Fig. 3d). At the inlet and outlet faces of the bounding box we impose a
uniform fluid velocity boundary conditions and on the side faces we impose periodic
boundary conditions. By using the periodic boundary conditions we simulate a flow
past an array of fullerenes, which form a square lattice extending to infinity as is the
case in the multiscale simulations.
Walther et al. [5] estimated the slip length and the hydrodynamic radius R∗H

(the radius at which the Navier boundary condition is imposed) by fitting the drag
force and the velocity profile to the solutions for a viscous flow past a sphere in an
otherwise undisturbed fluid. The drag force obtained from the multiscale simulation is
F ∗ = 270±15 and the extracted hydrodynamic radius and slip length are R∗H = 1.18
and l∗s = 0.58. By applying this hydrodynamic radius and slip length in a CFD
simulation the obtained force is F ∗ = 342, which is in reasonable agreement with
the force measured in the multiscale simulation with a deviation of 25%. The 25%
deviation in force is due to how the slip length and the hydrodynamic radius are
obtained from the multiscale simulations. There, an analytic expression for the drag
force on a single sphere in an otherwise undisturbed flow is used while the flow
simulated is a flow past an array of fullerene molecules. Figure 4 shows the drag
force dependence on the slip length for the fluid flow past a sphere in an otherwise
undisturbed flow with R∗H = 1.00 and a flow past a 2D lattice of fullerene molecules
with R∗H = 1.00 and R

∗
H = 1.18. The results show that the presence of the surrounding

fullerene molecules increases the drag. An analytical solution of the drag force for a
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flow past a single fullerene molecule is also shown in the figure [33]

F ∗ =
6π

Re

1 + 2l∗s
1 + 3l∗s

(12)

and an Oseen-like correction [34]

F ∗ = π
(
6

Re
+

3

1 +
√
2Re

+ 0.2

)
1 + 2l∗s
1 + 3l∗s

· (13)

In the no-slip limit Eq. (12) gives F ∗ = 6π/Re = 290, which results in the Stokes’ law.
The Oseen correction sets the drag force to F ∗ = 298, which is in excellent agreement
to the drag force F ∗ = 297 from the continuum simulation. In the opposite limit to
the no-slip boundary condition, where the interface friction coefficient vanishes and
the slip length diverges, the perfect-slip boundary condition, Eq. (12) gives F ∗ =
4π/Re = 193 and the Oseen-like correction gives F ∗ = 198. The drag force force
measured in the CFD simulation is F ∗ = 196. The Oseen-like correction improves the
prediction of the drag force in the low slip regime. In the high slip regime, however,
it slightly overpredicts the drag coefficient.
Next we extract the slip length from the CFD simulations that match the drag

force predicted by the multiscale simulations. We maintain a constant hydrodynamic
radius of R∗H = 1.00. In the Fig. 4 we fit a three parametric function

f(x) = a
b+ x

c+ x
(14)

to the CFD data points. The three parameters in the fitting function determine the
minimum, the maximum and the point of transition, and in the case of Eq. (12) they
are a = 4π/Re, b = 1/2 and c = 1/3. The obtained parameters for the flow past the
array of fullerene molecules are aRe/(4π) = 1.1955, 2b = 1.0062, and 3c = 0.9213.
Using these parameters we find l∗s = 0.65 by solving the inverse function of Eq. (14),
f−1(x) = (ab− cx)/(x− a), for x = F ∗ = 270. Using l∗s = 0.65 in a CFD simulation
indeed results in a drag force conforming to the multiscale simulation. The parame-
ter a gives the minimal drag force, which is reached at the perfect-slip boundary
condition (l∗s → ∞). We also compare the fluid velocity profile around the fullerene
molecule from the slip corrected, continuum simulations and multiscale simulation
to confirm the accuracy of the continuum hydrodynamics approach. Figure 5 shows
the x component of the fluid velocity along the x axis and y axis for several CFD
simulations and the multiscale simulation. We observe that using R∗H = 1.00 and
l∗s = 0.65 or R∗H = 1.18 and l

∗
s → ∞ gives a velocity profile and drag force in better

agreement to the multiscale simulation than R∗H = 1.18 and l
∗
s = 0.58. We also ob-

serve that by increasing the hydrodynamic radius and the slip length simultaneously
gives similar results. With a greater hydrodynamic radius the extrapolated velocity
vanishes deeper into the wall and a greater slip length is needed.
Figure 6 shows the energy dissipation rate per unit volume due to viscosity [23]

ė∗ =
1

2Re

(
∂v∗i
∂x∗k
+
∂v∗k
∂x∗i

)2
· (15)

The figure shows that the viscous part of the stress tensor is nonzero in the vicinity
of the sphere. Thus, the viscous term in the momentum flux is also nonzero [3]

J∗ik = v
∗
i v
∗
k + p

∗δik − 1
Re

(
∂v∗i
∂x∗k
+
∂v∗k
∂x∗i

)
· (16)
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Fig. 5. Velocity profile of fluid flow around the fullerene molecule. x component of the fluid
velocity along the x axis (left) and y axis (right). The black X symbols and black circles
with errorbars represent the results from the multiscale simulation and the solid lines the
CFD results. Green line represents results for R∗H = 1.00 and l

∗
s = 0.65, red for R

∗
H = 1.18

and l∗s →∞, and blue for R∗H = 1.18 and l∗s = 0.58.

Fig. 6. Energy dissipation rate per unit volume due to viscosity for the flow past an array
of spheres.

This highlights the importance of matching two adjacent grid layers at the atomistic-
continuum interface as performed in the multiscale simulation [5]. This ensured the
matching of the velocity gradients in addition to velocity at the interface. Without
this the momentum flux would not be conserved due to the presence of the velocity
gradients in the viscous term. This was not an issue in previous multiscale simulations
of fluid flow past and through nanotubes [35,36]. There the atomistic-continuum
interface was further away form the nanotube where the viscous part of the stress
tensor is not significant and thus matching the velocity in a single grid layer did not
present a problem.



Discussion and Debate: Scale-Bridging Techniques in Molecular Simulation 2329

4 Summary and conclusions

In summary, we have shown that the slip corrected, continuum hydrodynamics accu-
rately describe the fluid flow past a single and an array of fullerene molecules. The
effective simulation of water flows past fullerenes hinges on the appropriate description
of the physical mechanisms at the interface of water with the fullerene molecule. The
standard no-slip boundary conditions breaks down and a more appropriate boundary
condition is needed. These boundary conditions can be obtained through atomistic
simulations which can then provide suitable boundary conditions for the continuum
solvers. Here we demonstrate that the simple Navier boundary condition with a linear
dependence of shear stress on the slip velocity can be very effective in this task. This
results suggest that we can simulate such systems using continuum simulations thus
accessing spatiotemporal scales that will be inaccessible for MD simulations. Such
slip corrected continuum simulations can then be a very important design tool for
engineering flows that involve nanoparticles.
Open issues related to the present modeling approach include the sensitivity of the

results on the slip length and the variation of the slip length on the surface properties
such as curvature [7,30,37,38], corrugation [39], and flexibility [40]. In addition,
the uncertainty of the slip length extracted from atomistic simulations is significant
[13,28] which may limit the accuracy of the present model. Uncertainty quantification
is expected to play a key role in identifying and reducing these uncertanties [41].
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conditions into the STAR-CD simulation package. A. P. and M. P. acknowledge financial
support through grants P1-0002, J1-4134, and BI-DK/11-12-002 from the Slovenian Research
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