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a b s t r a c t

Typical experimental setups for molecular systems must deal with a certain coupling to
the external environment, that is, the system is open and exchanges mass, momentum,
and energy with its surroundings. Instead, standard molecular simulations are mostly
performed using periodic boundary conditions with a constant number of molecules.
In this review, we summarize major development of simulation methodologies, which,
contrary to standard techniques, open up the boundaries of a molecular system and allow
for exchange of energy and matter with the environment, in and out of equilibrium. In
particular, we construct the review around the open boundary simulation approaches
based on the Adaptive Resolution Scheme (AdResS), which seamlessly couples different
levels of resolution in molecular simulations. Ideas and theoretical concepts used in its
development lie at the crossroad of different fields and disciplines and openmany different
directions for future developments in molecular simulation. We examine progress related
to theoretical as well as novel modeling approaches bridging length scales from quantum
to the continuum description and report on their application in variousmolecular systems.
The outlook of the review is dedicated to the perspective of how to further incorporate
rigorous theoretical approaches such as the Bergmann–Lebowitz and Emch–Sewellmodels
into the molecular simulation algorithms and stimulate further development of open
boundary simulation methods and their application.
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1. Introduction

In literature, the term ‘‘open systems’’ refers to systems exchanging energy and matter with an external environment.
However, in most of the cases, state-of-the-art and traditional literature considers only the exchange of energy between a
system and its environment [1–7]. Indeed, externally driven exchange of energy via an external device is common both in
experiments and construction of technological tools, but it is certainly neither the most common in nature nor the most
advanced procedure in technology. Besides, it is unlikely that naturally-occurring systems have closed boundaries and that
the exchange with an external environment can be reduced to a thermalization process/exchange of energy, only. Hence,
the development of modern technologies is not to be restricted to systems capable of exchanging only energy, but actually
spectacular progress has beenmade by allowing systems to also exchangematterwith the outside. There aremany examples,
spanning different fields of physics, different scales, different experimental and computational techniques. Chemical
reactions in a biochemical environment do not necessarily conserve the number of molecules [8,9], ion fluxes through
nanopores and transmembrane channels are natural cases of exchange of matter between different compartments [10]
and a key technology process is the adsorption of guest molecules in microporus materials [11]. Furthermore, liquid–vapor
condensation can be properly described as two different systems exchanging molecules [12], the addition of colloids in a
solvent is the most efficient experimental technique to study the phase diagram of polydisperse colloidal materials [13],
nucleation is an activated process with exchange (capture) of matter between the nucleation site and the environment [14]
and this is directly linked to the emerging concept of nanothermodynamics and its applications [15–17]. Also, squeezing and
shearing of nanoconfined fluids for biolubrication, nanotribology, and surface engineering are properly described in terms
of open systems which exchange particles with a reservoir at fixed chemical potential [18].

The few illustrative examples,mentioned above, concern condensedmatter cases at classical scales. However, the process
of exchange of matter is becoming also of major interest in quantum systems [19–22] and corresponding technologies.
Traditional research in quantum open systems with exchange of matter has interested the field of microelectronics for a
long time. The scattering of electrons in a resistor by phonons and the escape of the electron from the resistive material to
the conductive contact is a standard process in building electrical microcircuits [23] andMOSFET devices [24]. Furthermore,
electronic structure of open systems plays a key role in the computation of redox potentials in concentration cells, where the
electrodes can be modeled as electron reservoir [25], and in rational compound design, with the sampling of the chemical
space in a molecular Grand Canonical (GC) ensemble [26,27]. Moving forward, a field in great expansion and of potentially
groundbreaking technological implications is that of cold gases in optical traps. Condensate fluctuations of a Bose gas
confined in an optical trap can be viewed as a subsystem which exchanges particles with a larger environment [28–30].
Interestingly, for an optically confined quantum gas the effect of particle loss due to, for example, a collision process, where
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the released energy is much larger than the depth of the trap, is described via master equations regulating the change
of number of particles [31]. This led to the formulation of the so called continuous quantum Zeno effect. In general, the
quantum Zeno effect refers to the fact that repeated measurements on a quantum system inhibit coherent processes [32].
The extensionmentioned above (continuum) refers to the fact that a system in contact with an environment is subjected to a
continuousmeasurement from the environment, changing the number of particles [33]. The problemof inhibiting coherence,
in turn, is of great importance in the extremely fashionable field of quantum computers with harboring hopes for a new
scientific revolution [34].

The overview, given above, leads to the conclusion that progress in the development of rigorous theoretical frameworks
and corresponding accurate and efficient computational tools are a timely necessity. In this perspective, the intention of
this review is to provide an overview of the state of the art in theory and simulation of open boundary systems. The core
of the presentation will be the treatment of molecular systems with open boundaries in molecular simulation. This choice
is dictated by the rather broad field of applications of molecular simulation and the large number of practitioners in the
field. In particular, the review is constructed around the Adaptive Resolution Simulation method (AdResS) since it bridges
theoretical models and computational techniques, where contributions from different fields converge and, possibly, branch
out. As a result, particular attention will be dedicated to the actual and potential connection between rigorous theoretical
principles and technical/computational implementations.

The paper is organized as follows: Section 2 is dedicated to the pure theoretical treatment of systems with open
boundaries. The basic ideas regarding the required mathematical formalization are illustrated through some specifically
treated examples. Section 3 is dedicated to the molecular simulation of open systems. First, we provide a general and
qualitative overview of classicalmolecular simulationmethods for simulations in the GC ensemble. Subsequently, we pass to
the description of the coupling technique in the adaptive resolution fashion and analyze the various branching directions that
this approach is taking. Several features of the technique can be already directly linked to the formalization of Section 2 and
a corresponding discussion of such connections is presented. In Section 4, taking the classical case as a reference, we address
the natural question of a quantum mechanical treatment of molecular systems with open boundaries. For this purpose,
we provide a basic overview of methods and techniques available to treat the problem at quantum level. Because of the
higher complexity of quantummechanics compared to classical mechanics, the state-of-art in the quantum treatment is not
yet at the level of the classical case. Nevertheless, we underline that some direct extensions of classical techniques/ideas,
e.g. AdResS, to the quantum case can be already done. In Section 5, we address the natural question of a possible extension
of open boundary techniques to non-equilibrium situations. For illustration, we discuss two recent examples of satisfactory
application. Finally, in Section 6, we discuss the potential connections between the variousmathematical/theoretical models
and computational techniques, we have reported in this review, in the perspective of future developments.

2. Theoretical approaches and their mathematical formalization

An interesting point about pure theoretical/mathematical treatment of the problem of open boundary systems is that
most of the papers, in which this problem is treated, deal with non-equilibrium statistical mechanics. Thus, the possibility
of exchange of particles between a system and a reservoir is anyway seen as a sub-case of a system in non-equilibrium, as
for example a unidirectional current of particles. This point of view is understandable because typical problems of interest
are those where current fluxes are produced by a source and then injected into a system, as for example in electric devices,
see e.g. [23]. However, in this section we will see that the condition of flux balance (necessary for the equilibrium), although
trivial to formalize, is not trivial when it comes to the explicit specification of the action of operators or functions that allows
for such a balance. In fact, this is, in our view, the major challenge in modern research, above all for quantum systems, as
will be discussed in the final sections of this review.

In general, there are two main approaches to describe the interaction between a system and its reservoir: (a) impulsive
interaction, i.e., an instantaneous interaction, which produces a (stochastic) discrete transition in number of particles for the
system; (b) coarse-grained interaction,where the reservoir enters into the dynamics of the systemonly throughmacroscopic
quantities. The latter are, from a statistical point of view, time-independent but derived from the underlying microscopic
degrees of freedom (DOFs) of the reservoir. In the following, we present two examples ofmethodswhich are in categories (a)
and (b), respectively. The first one is the approach due to Bergmann and Lebowitz [35] and the second one is due to Emch and
Sewell [36]. In our view, these two approaches are prototypes that provide very general and clear examples of the problems
(and possible solutions) arising when treating systems, which exchange particles.

2.1. Bergmann–Lebowitz as the Grand Ensemble theoretical framework with stochastic reservoir

Bergmann and Lebowitz (BL) [35,37] (and later on Lebowitz and Shimony [38]) have discussed the statistical mechanics
of open boundary systems and, in particular, have proposed the extension of Liouville’s equation for systems that can
exchange matter with a reservoir. The essential feature of the model is the definition of the action of the reservoir. The
physical principle, which regulates such action, states that the interaction between the system and the reservoir is impulsive
(stochastic). It is characterized by a discrete transition of the system froma statewithM particles (XM ) to onewithN particles
(X ′N ). The key point is that themacroscopic state of the reservoir is not influenced by the system. Thus, itsmicroscopicDOFs do
not need to be considered and particles entering into the system from the reservoir have, in thermal equilibrium, velocities
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consistent with the temperature of the reservoir. An explicit back-reaction from the system to the reservoir, that changes
the macroscopic (thermodynamic) state of the reservoir, is therefore not considered.

The model is general and considers the case of a system in contact with several independent reservoirs. The total action
corresponds to the sum of the individual action of each reservoir. For simplicity, we will report the case of a single reservoir,
because such a case will be discussed also later on in numerical implementations. From the formal point of view, a transition
from a state XM to a state X ′N is governed by a contingent probability KNM (X ′N , XM )dX ′dt where the kernel KNM (X ′N , XM ) is a
stochastic function independent of time. KNM (X ′N , XM ) corresponds to the probability per unit time that the system at XM
has a transition to X ′N due to the interaction system-reservoir. The total interaction between the system and the reservoir
corresponds to:

∑
∞

N=0

∫
dX ′N [KMN (XM , X ′N )ρ(X

′

N ,N, t)−KNM (X ′N , XM )ρ(XM ,M, t)]. It follows that the general equation of time
evolution of the probability, ρ(XM ,M, t), is:

∂ρ(XM ,M, t)
∂t

= {ρ(XM ,M, t),H(XM )}

+

∞∑
N=0

∫
dX ′N [KMN (XM , X ′N )ρ(X

′

N ,N, t)− KNM (X ′N , XM )ρ(XM ,M, t)]. (1)

Then, under the condition of flux balance:
∞∑

N=0

∫
dX ′N [KMN (XM , X ′N )ρ(X

′

N ,N, t)− KNM (X ′N , XM )ρ(XM ,M, t)] = 0. (2)

It follows that the stationary solution for ρ(XM ,M) is the density of the GC ensemble: ρM (XM ,M) = 1
Q e−βHM (XM )+βµM where

β = 1/kBT andµ the chemical potential. It is important to notice that Bergmann and Lebowitz have shown that the condition
of flux balance is necessary and sufficient for having the GC distribution as the stationary solution. A different hypothesis
regarding the action of the reservoir, based on the coarse-graining of its underlying microscopic details, has been instead
considered in other work, as reported below.

2.2. Dynamic equation of system plus reservoir via the projector technique in Liouville space

The hypothesis of impulsive interaction between the system and the reservoir (‘‘stosszahlansatz’’), which is at the basis
of the BL model, did not require the explicit knowledge of the microscopic evolution of the reservoir. In such a case, the
treatment of a subsystem of a larger system implies the loss of microscopic information about the rest of the system. Instead,
Emch and Sewell (ES) considered the case of a subsystem (S) in a larger system (reservoir/R) [36]. Their aim was to derive
microscopic equations of motion for S from the microscopic equations for S+R. The relevant information for the dynamics of
S is provided by properly filtering the action of the microscopic DOFs of R through projector operators (Zwanzig projector
approach). The starting point is the quantum Liouville equation for the S+R system. Next, the equation is reduced to the
equation ofmotion of the reduced statistical operator, which describes all the observables of S and themacroscopic variables
of R (indicated withΣR). The derived equation is then reduced to the equation governing only S by making some hypothesis
about themicroscopic structure of R and its coupling to S. The final resulting equation is a self-contained dynamical equation
for S, where the variables of R appear as averages quantities. The essential hypothesis behind such a reduction is that the
reservoir action on S is done only via intensive properties. Here, it is assumed that although the extensive variables ΣR
could change by a finite amount due to the back-action of S, the intensive variables ΣR/N become constants of motion for
N →∞; V →∞ (thermodynamic limit). Thus, the evolution of S does not contain any time dependence ofΣR. The fact that
they explicitly treat the quantummechanical case gives to their equations a general character since the classical equivalent
can be derived from them. The qualitative description, given above, reports the essential physics involved in the model.
Below, we will provide the basic points of the technical/mathematical derivation of the equations.

Let us define the Hilbert space of states of the total system S+R, HS+R, as the direct product of the Hilbert space
of the system, HS , and of Hilbert space of the reservoir, HR: HS+R = HS ⊗ HR. The description of the total system
corresponds to the action of operators acting on H. The variables of interest are the complete set of observables of S and
a set of macroscopic observables of R. The macroscopic observables of R are indicated by the set, ΣR, which is formed
by intercommuting self-adjoint operators, {AR}, acting the subspace of HR corresponding to the pertinent microscopic
description R. Each set of simultaneous eigenvalues of such operators, {A(E)}, defines a subspace HE of HR; we will denote
as, DE the projector from HR to HE . It follows that each macroscopic observable can be written as: AR =

∑
EA(E)DE , with

DEDE′ = DEδEE′;D∗E = DE;
∑

EDE = IR (where IR is the identity operator on HR). Next, the authors introduce the conceptual
key point of their approach, they refer to it as: ‘‘projector technique in Liouville space’’. Liouville space, L (which, since long,
has had a broad application in physics [39]), is defined in such a way thatH is associated with the set of all Hilbert–Schmidt
operators, L, which map H on itself: L ≡ {A ∈ B(H) | Tr(A∗A) < ∞} ≡ L(H), and the scalar product is defined:
(A, B) ≡ Tr(A∗B) ∀ A, B, ∈ L. Having defined the Liouville space, then, equivalently to the Hilbert space, let us define the
Liouville space of the total system, LR+S , as the direct product of the Liouville space of the system, LS , and of the Liouville
space of the reservoir, LR: LS+R = LS ⊗ LR. We define the coarse-graining operator, PR, acting on LR as:

PRBR =
∑
E

⟨BR⟩EDE; ∀BR ∈ LR, (3)
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where ⟨BR⟩E = TrR
(BRDE )
TrRDE

. In particular, in the view of a statistical description of the system, the formalism above is of
particular relevance to the density operator ρ. In quantum mechanics, if the system is in a mixed state and the pure states
|ψi⟩ can be found with probabilitywi, then the corresponding density operator is: ρ =

∑
iwi|ψi⟩⟨ψi|. In general, the density

operator is represented through the density matrix, that is, if we choose an orthonormal basis, {|φm⟩}, the elements of the
matrix are: ρmn =

∑
iwi⟨um|ψi⟩⟨ψi|un⟩ = ⟨um|ρ|un⟩. The ensemble average of an observable A is then defined though ρ as:

⟨A⟩ =
∑

iwi⟨ψi|A|ψi⟩ =
∑

mn⟨um|ρ|un⟩⟨un|A|um⟩ =
∑

mnρmnAnm = Tr(ρA). In the formalism of the projector operator,
defined before for every density operator ρR in LR, one has: PRρR =

∑
ETrR

(ρRDE )
TrRDE

. It follows that for any macroscopic
observables AR and any state ρR one has: ⟨AR⟩ρR =

∑
ETrR(ρRDE)A(E); in this sense TrR(ρRDE) is the probability that the

macroscopic observable AR takes the values A(E) when the system R is in the state ρR. At this point, we go back to the total
system, S+R, and define the projector operator acting on it according to the variable of interest, that is no restriction imposed
on S and only the setΣR: P = PR ⊗ JS , where JS is the identity operator on LS . It follows that for any BR in LR and any BS in
LS one has:P(BR⊗BS) =

∑
E⟨BR⟩EBE

S , with ⟨BR⟩E as defined before and BE
S = DE⊗BS , with TrR(BR⊗BS) = (TrRBR)BS . Now, we

have all the ingredients to define: Pρ =
∑

E
DE

TrRDE
⊗ TrR(DE ⊗ IS)ρ. We can now replace ρ with an equivalent quantity which

extracts from ρ the information of relevance to our description, that is the microscopic description of S and a macroscopic
description of R. The technique of Zwanzig [40], based on the Laplace transform, is then used to pass from the standard von
Neumann equation: d

dt ρ = −iLρ (with L the Liouvillian operator) to the equivalent (master) equation for Pρ:

d
dt

Pρ(t)+ iPLPρ(t)+
∫ t

0
dt ′PL(I − P)U(t − t ′)(I − P)LPρ(t ′) = 0, (4)

with I the identity operator on H and U(t) = exp[−i(I − P)L(I − P)t]. Eq. (4) is derived under the assumptions that R and
S are initially independent of each other, ρ(0) = ρR(0) ⊗ ρS(0) and that the initial state of R is given by the measurement
of the set of macroscopic variable which implies Pρ(0) = ρ(0). Next, the authors show that Pρ(t) = ρR(0) ⊗ ρS(t). Thus,
Eq. (4) can now be written as a self-contained equation for the open system S:

ρR(0)⊗
(

d
dt
+ iLSeff

)
ρS(t) = −

∫ t

0
dt ′,K (t − t ′)ρR(0)⊗ ρS(t ′). (5)

Finally, taking the trace with respect to R on both sides one obtains the master equation for ρS(t):(
d
dt
+ iLSeff

)
ρS(t) = −

∫ t

0
dt ′KS(t − t ′)ρS(t ′), (6)

where KS(t)ρS(t) = TrR{K(t)ρR(0) ⊗ ρS(t)}. The definitions of LSeff and K(t) are linked to another crucial point of particular
interest to us, that is the possibility of defining the exchange of particles between R and S. In fact, one can separate the Hamil-
tonian of the system in three parts: H = HR + HS + HI , i.e., the Hamiltonian of R, that of S, and a Hamiltonian of interaction
between R and S, respectively. Correspondingly, we can define the related Liouville’s operators LR, LS, LI . Interestingly, the
authors define HI =

∫
ΩR

dx
∫
ΩS

dyV (x, y)JR(x) ⊗ JS(y), where x, y are the configuration coordinates of R and S respectively,
ΩR,ΩS the volumes occupied, and JR(x), JS(y) are operators acting onHr ,HS , respectively. They represent intensive variables
such as particle number, for example,which could be function of the creation and annihilation operators for particles in R and
in S. Their action is ‘‘coordinated’’ by V (x, y), which is a potential of (direct) interaction between R and S. Thus, Eq. (6) is a gen-
eral quantum-mechanical equation for a system S, which can exchange also matter with its environment. As a consequence
of the definition above, LSeff = LS+LSI , with LSI ρ = [VS, ρ] and VS =

∫
ΩS

dy⟨V (y)⟩0JS(y). The kernel is defined as follows,K(t) =
PUS(t)LI (t)(I−P)U ′(t)LIP , with US(t) = exp{−iLS t}, LI (t) = exp[i(LR+LS)t]LI exp[−i(LR+LS)t], and U ′(t) = exp{−

∫ t
0 dt
′(I−

PLI (t ′))(I − P)}. The classical limit of Eq. (6) can be made by identifying ρS with the classical distribution function of S in
the phase space and by replacing the commutator with Poisson brackets. It must be reported that analogous equations
for ρ(0)R ⊗ ρs(t) via a projector operator technique were obtained also, for example, by Seke [41]. In Ref. [41], two different
projector techniqueswere used, namely the Robertsonmethod and Zubarevmethod [42–45]. However, asmost of the papers
dealing with open systems, differently from the approach of ES, the approach is limited to thermally open systems and the
exchange of particles is forbidden by the choice of ρs(t) as canonical density, which then is at the core of the derivation.

In conclusion, in our view, the treatment of ES offers a basic mathematical backbone for a theoretically rigorous approach
to open boundary systems without the limiting hypothesis of a generic impulsive interaction between S and R (as in the BL
model). On the other hand, the kernel term is rather complex and difficult to handle in practical calculations (differently,
for example, from BL generalized Liouville equation of the previous section). Despite this obstacle, the ES model represents
a path that needs to be explored more deeply in current research, above all for quantum mechanical systems, as it will
be discussed in the section dedicated to the outlook and perspectives. In any case, regardless of the models (i.e., the BL or
ES), once the equations for the probability density of the system are written, other aspects must be properly addressed.
For example, a derivation of an analog of Liouville’s theorem for systems with varying number of particles N . Moreover,
one must address the question whether modifications to definitions, valid at fixed N , are required when N is varying. An
example, reported in the next subsection, is that of the equilibrium time correlation functions with varying N .
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2.3. Additional conceptual complications that arise when the particle number is not constant

Liouville’s theorem states that a dynamical system of N particles in equilibrium conserves its distribution ρ(q, p), in
the phase space, (q, p), along the trajectory. Such theorem justifies the statistical equivalence of points in the phase space,
or, in mathematical language, the theorem reads: the Lebesgue measure is preserved under the dynamics. When N is constant
everything iswell established and the formulation is reported in any textbook of dynamics or statisticalmechanics. However,
for systems (in equilibrium), which exchange particleswith external sources, the question has not been explicitly considered
in standard literature. Recently, one of us has analyzed the problem and reached the conclusion that Liouville’s theorem in
a system with varying N can certainly be formulated for each, N = N̄ , canonical hyperplane [46]. The arguments and the
corresponding derivation are summarized below. Let us start by analyzing the concept of conservation of Lebesgue measure
which expresses Liouville’s theorem when N is fixed:

ρ(q0, p0, 0)dq0dp0 = ρ(qτ , pτ , τ )dqτdpτ . (7)

q0 = q(0) (that is q(t) at t = 0) and same for p0. Similarly, it applies to q(t) and p(t) with t = τ . We are in a situation of
statistical equilibrium and thus ρ(q0, p0, 0) = ρ(qτ , pτ , τ ). It follows that the compact formulation is:

dq0dp0 = dqτdpτ ; ∀τ . (8)

The derivation of Eq. (8) (see e.g. [47]) is based on the relation between q0p0 and qτ , pτ through a coordinate transformation
regulated by a Jacobian:

J(qτ , pτ , q0, p0) = det(Q ). (9)

Here, Q is a 6N × 6N matrix whose elements are:

Qij =
∂xiτ
∂xj0

, (10)

with x0 = (q1(0).....qN (0), p1(0).....pN (0)) and equivalently xτ = (q1(τ ).....qN (τ ), p1(τ ).....pN (τ )). The indices i, j label the
6N coordinates of x0 and xτ (i.e. xi = x1....x6N and equivalently for xj; (x1, x2, x3) = (qx1, q

y
1, q

z
1) and (x3N+1, x3N+2, x3N+3) =

(px1, p
y
1, p

z
1) for example).

The key point is that if N is variable det(Q ) cannot be formally calculated. This problem occurs because during the
evolution in time the sets x0 and xτ do not necessarily have the same dimension. The question now is reduced to whether
there exists a generalized principle, which extends the concept of Eq. (8) to the case of varying N . In Ref. [46], the BL model
and its assumption of flux balance were considered:

dρ(XM ,M, t)
dt

= 0, (11)

corresponding to:

∂ρ(XM ,M, t)
∂t

= −{ρ(XM ,M, t),H(XM )}. (12)

Eq. (12) is formally equivalent to the standard Liouville’s equationwith fixednumber of particlesM with the crucial exception
that now ρ(XM ,M, t) andH(XM ) are defined instantaneously only (w.r.t.M). The conclusion, that can be drawn from Eq. (12),
is that a generalized Liouville’s theorem for a system, which exchanges particles with a reservoir, can be written in the
following form: For systems in contact with a reservoir of particles, under the condition of statistical flux balance, the Lebesgue
measure is conserved for each individual M . The underlying conjecture is that a global Lebesgue measure does not exist, but it
can be defined only for single subsets of the phase space each at fixed M . Our argument is that M is a discrete variable and
its variations imply a discontinuous change of the phase space dimensionality; in our view this aspect represents a major
obstacle. However, the proposal of Ref. [46] may be considered only as the simplest solution, of a local definition, where
‘‘local’’ indicates that the definition of a Lebesgue measure can be done at a givenM:

dNq0d
Np0 = dMqτdMpτ ; ∀τ where M = N. (13)

We notice that Peters in an unpublished paper [48] has suggested the concept of canonical hyperplanes. This essentially
means that the equality applies whenever, after a time τ along a trajectory, the system returns to the same number
of molecules M (from which the observation has started). In practice, it implies a process of sorting out instantaneous
configurations with the same number of molecules M and for each subset apply the standard Liouville theorem. Together
with Liouville’s theorem, the concept of Liouville’s operator and its involvement in the calculation of physical quantities of
primary interest need to be revised when the number of particles is varying. Below, we report the case of equilibrium time
correlation functions.
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2.4. Equilibrium time correlation functions in an open boundary system

In Ref. [46], the so-called Kossakowski–Lindblad equation for the time evolution of the density matrix ρ(t) was
considered [49,50]:

˙ρ(t) = L(ρ) = −i[H, ρ] +
1
2

∑
j

([Ljρ, L+j ] + [Lj, ρL
+

j ]), (14)

where H is the Hamiltonian, Lj, L+j the operators expressing the interaction of the system with a reservoir; they are called
Lindblad operators.

∑
j([Ljρ, L

+

j ] + [Lj, ρL
+

j ]) makes Eq. (14) a rate equation (discontinuous jumps in the state of the system
caused by the action of the reservoir). In fact, [Ljρ, L+j ] and [Lj, ρL

+

j ] can be interpreted as transition rates between two events.
If the condition of flux balance:

∑
j([Ljρ, L

+

j ] + [Lj, ρL
+

j ]) = 0 is satisfied, as in case of a thermal bath (i.e., heat reservoir,
being the context, in which usually Eq. (14) is used in literature), then the stationary solution for ρ(t) is the density matrix of
the canonical ensemble. In principle, the equation of ES discussed before falls in the category of Eq. (14), and, with particle
exchange under the condition of flux balance, the stationary solution would be the density matrix of the GC ensemble. Such
ideas will be discussed in a later section, explicitly dedicated to quantum systems. Instead, the classical analog of Eq. (14)
is obtained by considering ρ as the probability distribution defined as ρ(XN ,N, t), where XN is a point in the phase space
and N the total number of particles, and then substituting the commutator [∗, ∗] with the Poisson bracket {∗, ∗}. Hence,
the classical equivalent of Eq. (14) corresponds to the standard Liouville equation with the addition of the corresponding
classical term related to the Lindblad operators. In such a view, the dynamic equation of the BL model discussed before falls
under the category of (classical analog of) Eq. (14):

∂ρ(XM ,M, t)
∂t

= −{ρ(XM ,M, t),H(XM )} + f (XM , t)− Q̂ρ(XM ,M, t), (15)

where f (XM , t) =
∑
∞

N=0

∫
dX ′N [KMN (XM , X ′N )ρ(X

′

N , t)] and Q̂ (∗) =
∑
∞

N=0

∫
dX ′N [KNM (X ′N , XM ), ∗]. This corresponds, in the

BL model, i.e., the classical equivalent of Lindbald operator, to the stochastic term, which regulates the jump in state of the
systemdue to the interactionwith the reservoir. The definition of a (classical) Lindbald operator (which implies a definition of
reservoir and of interaction with the system) has direct consequences in the calculation and physical interpretation of some
properties. Here, we report the case of equilibrium time correlation functions. The standard definition of the equilibrium
time correlation function at fixed N (e.g. in an NVT ensemble) between two physical observables A and B is [47]:

CAB(t) =
1
QN

∫
dpdqe−

HN (p,q)
kT a(p, q)b(pt (p, q), qt (p, q)). (16)

Here, a(p, q) and b(p, q) are functions in phase space corresponding to A and B, QN is the Canonical partition function and
HN (p, q) the Hamiltonian of a system with N molecules, pt (p, q), qt (p, q) correspond to the evolution in time, at time t , of
the momenta and positions with p, q initial condition. CAB(t) is determined by calculating a(p, q) and b(pt (p, q), qt (p, q))
along the trajectories of the system and then taking the average. In such a case, the dynamics generated is well defined,
since the Hamiltonian of N molecules is well defined at any time t:

iL =
N∑
j=1

[
∂H
∂pj

∂

∂qj −
∂H
∂qj

∂

∂pj

]
= {∗,H} . (17)

However, what happens in case of the GC (µ V, T) ensemble?
Let us start by extending Eq. (17):

CAB(t) =
1

QGC

∑
N

∫
dpNdqNe

−
[HN (pN ,qN )−µN]

kT a(pN , qN )b(pt (pN , qN ), qt (pN , qN )), (18)

whereQGC is the GC Partition function,µ the chemical potential andN the number of particles. The key question concerns the
interpretation of b(pt (pN , qN ), qt (pN , qN )). In fact, at a given time t the system may have a number of particles N ′ different
from the initial state. In theKossakowski–Lindblad classical equation, under the condition of flux balance (so thatwehave the
GC ensemble), b(pt (pN , qN ), qt (pN , qN )) are determined by the action of the propagator with an extended Liouville operator:
ei(LN+L

Lindblad)tb(p, q) = b(pt (pN , qN ), qt (pN , qN )) with Lext = LN + LLindblad (as we have seen in the case of BL model). For
time correlation functions, based on single-molecule properties, such as, molecular velocity–velocity time autocorrelation
functions or molecular dipole–dipole autocorrelation function, this leads to an ambiguity in the calculation. Differently from
the case at fixed N , where ‘‘single molecules’’ are clearly defined, for open boundary systems one has to consider three cases:

(i) Molecules that remain in the system at all times for the time window considered.
(ii) Molecules, which are initially in the system but then they leave it (within the time window considered).
(iii) Molecules, which are initially not present in the system but enter from the reservoir (within the time window

considered).
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At this point, the definition of the action of the reservoir and thus, explicitly or implicitly, the exact definition of LLindblad
becomes crucial. Let us consider, as an example, the BL model of reservoir. For (i), the Lindblad operator applied to a single
molecule i is such that ei(L

Lindblad)tbi(pi, qi) = bi(pi, qi). In this case, the Lindblad operator (by the definition of its action
through KMN and KNM in the BL model) does not act directly on molecule i. This means that in terms of physics, the action of
the reservoir does not directly modify the microscopic state of molecule i. It follows that in the definition of CAB(t) only the
Liouville’s operator LN is involved. The latter is well defined through the extended Liouville’s equation and corresponding
Liouville’s theorem. For (ii) instead, the action ei(L

Lindblad)tbi(pi, qi) (i.e. according to the action of KMN and KNM in the BLmodel),
has the effect of the action of an annihilation operator which destroys the identity of molecule i when adsorbed by the
reservoir. It follows that this action removes its contribution to the correlation function by destroying bi(pi, qi) corresponding
to the specific molecule (i.e. the molecule does not exist anymore and should be no more counted in the averaging process
over all molecules; this is substantially different from considering the correlation to be zero but still counting it in the
averaging process). The case (iii) is clear, in fact aj(pj, qj) of the molecule j, not present in the system before, is not defined
and thus is not counted. Themain conclusion, of relevance for example in numerical simulations treated later on, is that once
the action of the reservoir is specified, then it follows an unambiguous ‘‘numerical’’ procedure for the calculation of CAB(t).
From the physical point of view, for an open boundary system with a stochastic reservoir, which ‘‘destroys’’ the molecular
identity, a correlation function, linked to a physical process, depends on the locality in space and time of the process. This is
because of the finite size and the residence time of molecules in the system. However, there is also the possibility of having
a subsystem of a large system and consider the embedding larger part as a particle reservoir. Since the microscopic details
of the reservoir in such case are known, the Lindblad operator may be explicitly defined through themicroscopic interaction
in the system-reservoir term of the Hamiltonian. In such a case, locality in time due to the residence time of a molecule in
the system may not play a role. Both interpretations have a physical sense but such a physical sense becomes clear only
after we have defined the action of the reservoir. So far, we have talked about particle reservoir without explicitly stating
whether the reservoir was infinite or finite. Thus, in the treatment before, we have not made an explicit differentiation
between the Grand Ensemble and the GC Ensemble. The latter is the sub-case of the former, in the case of reservoir with
an infinite number of particles. Indeed, the case of a reservoir with finite number of particle is of key importance for many
systems and will be treated in the next section. As a matter of fact, so far, when introducing a reservoir, we have explicitly
or implicitly assumed that the reservoir is large enough, so that we can safely treat this latter only considering its large scale
properties.We have also assumed that the open system embedded in the reservoir is large enough, so that the standard laws
of statistical mechanics and thermodynamics apply to it. However, a real system is characterized by reservoirs with limited
number of particles. Furthermore, the studied systems are often too small to be considered with standard thermodynamics
and statistical mechanics. In the next subsection, we treat such two cases.

2.5. Thermodynamics of small open boundary systems

Thermodynamics on small scale at theoretical level was introduced by the work of Hill [51,52]. He later on introduced
the term ‘‘nanothermodynamics’’, a label for systems that cannot be treated under the hypothesis of thermodynamic
limit [15,53,54]. The essence of the problem is that far from the thermodynamic limit quantities as enthalpy, Gibbs free
energy and the like, are no more additive. Of particular interest, in our review, is the case of small systems embedded in
a large reservoir and systems embedded in a finite reservoir. The work of Schnell and coworkers [55–57] provides a clear
presentation of the problem of a small system in a large reservoir and put forward some solutions. The starting point is the
basic theory ofHill, that is to considerN replicas of a small open systemembedded in a reservoir of volumeVr , at temperature
T and either at constant chemical potential for the ith componentµi or at a given number of particlesNi,r . Next, the ensemble
formed by theN replicas (i.e. the total system) can be thought to be large enough so that one can assume the standard laws
of thermodynamics to hold for the total system. The Gibbs equation for the N replicas ensemble can be written as:

dEt = TdSt − pNdV +
∑
i=1,n

µidNi,t +

(
∂Et
∂N

)
St ,V ,Ni,t

dN , (19)

where the label t refers to the total system, E, S, p, V ,N refers to the internal energy, entropy, pressure, volume, and number
of particles, respectively. The quantity X ≡

(
∂Et
∂N

)
St ,V ,Ni,t

represents essentially the novel aspect in the thermodynamics
formalism, this is interpreted as the (reversible) work needed to add one replica to the total system, at constant St , V ,Ni,t ,
so that St and Ni,t are distributed over one more replica. The integration at constant T , V , µi and X of Eq. (19) leads to the
equation:

Et = TSt +
∑
i=1,n

µiNi,t + XN . (20)

The relation between the variables of the total system and those of the small system is: Et = N Ē; St = NS; Ni,t = N N̄i.
Here, the bar denotes the average of a single replica in the GC ensemble, while the entropy S is determined via the probability
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distribution in N and E and is the same for each replica. Next, we introduce the variables of the small system in Eq. (20) and
obtain:

Ē = TS +
∑
i=1,n

µiN̄i − p̂V , (21)

with X = −p̂V , if p = p̂ then the system can be described by standard thermodynamics. However, when this situation
does not occur then the system has to be considered in the class of nanothermodynamics. In such a case the Gibbs–Duhem
equation reads as:

SdT +
∑
i=1,n

N̄idµi − d(p̂V )+ pdV = 0. (22)

The key point is that p̂V can be defined through its relation with the GC partition function Ξ , i.e.: p̂V = kBT ln(Ξ ). The
question at this point is, how to derive Ξ for the small system. The authors start from the evidence that for a small system
the surface energy becomes important and eventually dominant compared to the interaction energy between particles in the
small system. They imagine a subsystemwith a generic geometry characterized by a surface, by edges and by corners. Next,
they define ameasure of the size of the box as V = Ld where d is the dimensionality. It follows that the surface area of the box
is proportional to Ld−1 and can be written as O ≡ csLd−1, the length of the edges is proportional to Ld−2 and thus it is written
as Le ≡ ceLd−2 and finally the number of corners defined as cc . For a sphere, for example, cs = (36π )1/3; ce = 0; cc = 0; for
a cube we have cs = 6; ce = 12; cc = 8. Then, an effective surface energy for the kth component of the fluid is introduced:
Es
k(µi, T ), an equivalent energy for the edges: Ee

k(µi, T ), and the corners: Ec
k (µi, T ). The one-particle canonical distribution

function for the kth component is then: Q1,k =
V
Λd

k
+

O
Λ

d−1
k

exp(βEs
k) +

Le
Λ

d−2
k

exp(βEe
k) + cc exp(βEc

k ), with Λk is the usual
thermal de Broglie wavelength for the component k. It follows that the N1.......Nn-particle canonical distribution function is:
QN1......Nn = Πk=1,nQk,Nk = Πk=1,n

1
Nk!

Q NK
1,k , and thus the GC partition function:

Ξ = Πk=1,n

∞∑
NK=0

exp(βµkNK )Qk,Nk . (23)

Eq. (23) allows us to calculate the size effects due to small size of the system embedded in the reservoir. The major problem
with this approach is that it allows only for an estimate of the size effect. In fact, there are two strong approximations
involved, on which this approach is based: (a) the neglecting of the interactions between particles in the system; (b) the
definition of Es

k(µi, T ), Ee
k(µi, T ), Ec

k (µi, T ). Rigorous definitions of the boundary energy with a microscopic justification
are not known and the authors do not explicitly discuss this aspect. Thus, the model remains in this sense empirical.
However, something more specific can actually be said: in essence the boundary energy (that is: Eb(µ, T ) = Es(µ, T ) +
Ee(µ, T )+ Ec(µ, T ) in the formalism used) is the effective energy, which is neglected, when deriving the GC distribution of
a system from the canonical distribution of a larger system (where the remaining part is large enough to be considered
as a reservoir). This derivation is done in many textbooks of statistical mechanics (see e.g. [58]). Here, we report the
part of interest to our discussion. The canonical partition function of a large system is partitioned as: ZN (V , T ) =∑N

N1=0
1

h3N1N1!h3N2N2!

∫
Ω1

dX1e−βH(X1)
∫
Ω2

dX2e−βH(X2), where the number of particles of the total system is partitioned (in all
possible combinations) between the system 1 and the system 2: N = N1 + N2; the volume V = Ω1 + Ω2 and the total
Hamiltonian is approximated by H(X1, X2) = H(X1) + H(X2), with X1 and X2 the set of variables in phase space for system
1 and system 2. The term U(X1, X2), which is the direct interaction between system 1 and system 2, is neglected because of
the hypothesis usually done that system 1 and system 2 are large enough, so that the energy due to the interactions among
only the particle of 1 and only the particle of 2 are dominant. From the equation above the GC partition function can be
easily derived. However, for small systems, that is when (for example) 1 is very small, the hypothesis of U(X1, X2) being
negligible is no more valid. An estimate of the boundary energy may be thought as the average energy of the ideal boundary
between 1 and 2 in the total system: Eb(µ, T ) = 1

ZN (V ,T )

∫
V U(X1, X2)e−β(H(X1)+H(X2)+U(X1,X2)). The only established rigorous

result regarding the surface energy of a large canonical ensemble partitioned in subsystems is the definition of U in the
Peierls–Bogoliubov inequality (see e.g. [59,60])

Z(N,Ω) ≥ e−βUΠD
i=1Z(Ni,Ωi). (24)

Here, D is the number of domains, in which the total system is ideally divided, and U is the average interdomain energy
in an ensemble, where each domain is independent from the others. Ω is the volume of the total system and Ωi is the
subvolume of the i−th domain. For our specific case, consider i = 1, 2, where 1 labels the system and 2 the reservoir.
However, Eq. (24) refers to a single partitioning of 1 and 2, and U = 1

ZN (V ,T )

∫
Ω
U(X1, X2)e−β(H(X1)+H(X2)+U(X1,X2)) (i.e. N1 and

N2 fixed). This implies that it cannot be applied straightforwardly to our case. Nevertheless, it may suggest a rigorous path
for the calculation of Eb(µ, T ). (It must be reported that recent results proposed a two-sided Bogoliubov inequality that
bounds from above and below the interaction energy of two subsystems [61].) Thus, the approach of Schnell and coworkers
is certainly of practical importance. However, in perspective, it should be considered only as a starting point for the treatment
of open boundary systems that do not fall under the category of standard thermodynamics. We have suggested that the path
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indicated by the Peierls–Bogoliubov inequality can complement the treatment by sharpening a microscopic definition of
the corrective/boundary energy. Moreover, the case, where the reservoir is finite, is treated only for an ideal gas, because
such a simplification allows for the possibility of a straightforward analytic treatment. Hence, such an approach cannot be
sufficient for most of the realistic systems of condensed matter. Instead, regarding the possibility of treating a reservoir
with finite number of particles (i.e. the general case of the Grand ensemble), the thermodynamic theory of fluctuations, as
presented by Mishin [62], provides a powerful framework.

2.6. Reservoirs with finite number of particles

The starting point of Mishin is the probability density of what he calls internal parameters X1, . . . , XM (i.e. extensive
quantities such as volume, energy number of particles):

W (X1, . . . , Xm) = Wm exp
[
S(X1, . . ., Xm)− S(X0

1 , . . ., X
0
m)

k

]
×

[
Sr (X̂1 − X1, . . . , X̂m − Xm)− Sr (X̂1 − X0

1 , . . . , X̂m − X0
m)

k

]
, (25)

where Wm is a normalization factor, S(X1, . . . , Xm) the entropy of the system, X0
1 , . . . , X

0
m the equilibrium values of the

quantities considered, k is proportional to the temperature, and Sr (X̂1−X1, . . . , X̂m−Xm) is the entropy of the reservoir. The
entropy of the reservoir is expanded in Taylor series around X0

1 , . . . , X
0
m up to the second order: Sr (X̂1 − X1, . . . , X̂m − Xm)−

Sr (X̂1−X0
1 , . . . , X̂m−X0

m) = −
∑

i=1,mF
0
i (Xi−X0

i )+
1
2

∑m
i,j=1

(
∂2Sr
∂X r

i ∂X
r
j

)
0
(Xi−X0

i )(Xj−X0
j ). Next, he shows that

(
∂2Sr
∂X r

i ∂X
r
j

)
0
scales

as 1/Nr and thus for a large reservoir the second order can be neglected. This hypothesis is named ‘‘reservoir approximation’’.
In this approximation, he then derives a ‘‘generalized canonical distribution’’ starting from the definition of the probability
P of a single micro-state. Under the hypothesis of working on a quasi-equilibrium time scale (such that the system can be
treated as in equilibrium and considered isolated with fixed value of X1, . . . , Xm) S(X1, . . . , Xm) is the equilibrium entropy. It
follows:W (X1, . . . .Xm) = P lnΩmax, where S(X1, . . . , Xm) = k lnΩmax (beingΩ the number of microstates). Next, one has:

P = W (X1, . . . , Xm) exp
[
−

S(X1, . . ., Xm)
k

]
, (26)

which, under the first order approximation forW (X1, . . . , Xm), gives:

P = Wm exp
[
S(X0

1 , . . ., X
0
m)−

∑m
i=1 F

0
i (Xi − X0

i )
k

]
. (27)

Eq. (27) can be rewritten as:

P = A exp

[
−

1
k

m∑
i=1

F 0
i Xi

]
, (28)

with A = Wm exp
[
−

S(X0
1 ,...,X

0
m)−

∑m
i=1F

0
i X

0
i

k

]
being a constant. Eq. (28) is then called the generalized canonical distribution. If,

for example, one of its extensive parameter is the energy E, then one can write Eq. (28) as: P = A exp
(
−

E+
∑

2,mTF0i Xi
kBT

)
,

where T is the temperature. The standard distribution functions are obtained by allowing one or two of the extensive
quantities to fluctuate; if E can fluctuate and V and N are fixed, then one has the standard canonical (NVT ensemble),
if energy and volume are allowed to fluctuate and N is fixed then one has X1 = E; X2 = V and F2 = p/T and thus:
P = A

(
−

E+pV
kBT

)
, that is the NpT ensemble. Finally, if X2 = N and F2 = −µ/T and V is fixed, then we have the GC ensemble:

P = A
(
−

E−µN
kBT

)
. At this point, if the reservoir is not large enough, so that the term at the second order in the expansion of

Sr (X̂1−X1, . . . , X̂m−Xm)− Sr (X̂1−X0
1 , . . . , X̂m−X0

m) cannot be neglected, then we would have the expression of P with this
additional term: Sr (X̂1−X1, . . . , X̂m−Xm)−Sr (X̂1−X0

1 , . . . , X̂m−X0
m) = −

∑
i=1,mF

0
i (Xi−X0

i )−
1
2k
∑m

i,j=1Λ
r
ij(Xi−X0

i )(Xj−X0
j ),

whereΛr
ij = −

1
k

(
∂2Sr
∂X r

i ∂X
r
j

)
0
. It follows that:

P = A exp

[
−

1
k

m∑
i=1

F 0
i Xi −

1
2
Λr

ij(Xi − X0
i )(Xj − X0

j )

]
. (29)

For the case with fixed V and fluctuating E and N , from Eq. (29), one finally has:

P = A exp
[
E − µN
kBT

−
1
2
Λr

22(N − N0)2
]
, (30)
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where the elements of reservoir matrix Λij are such that: λ11,Λ12,Λ21 = 0 ;Λ22 = ρ0cvT (∂µ/∂ρ)T + µ0. Here, the
subscript 0 indicates the average/equilibrium value, cv is the heat capacity at constant volume ρ the density. The fact that all
elements of the matrix are zero, exceptΛ22, is due to the fact that we treat the reservoir as a finite source of particles but an
infinite source of heat. Thus,Λ11 = 0, while for simplicity it is assumed that the chemical potential µ is independent of the
temperature. Since Λ12 = Λ21, we have that the off-diagonal terms are also zero. Eq. (30) can be reduced to an expression
similar to that of the usual GC ensemble:

P = A exp
[
E − µ̂N
kBT

]
, (31)

where µ̂ = µ0+Λ
r
22kBTN0−

1
2Λ

r
22kBTN . Thus, instead of a fixed chemical potential we have an effective chemical potential

depending in a linear way from the instantaneous number of particles N . If Nr → ∞ then Λr
22 → 0 and one recovers the

standard GC distribution. In practical applications, the effect of the finite reservoir can be applied in a Monte Carlo (MC)
scheme by considering an adjustable chemical potential on-the-fly, see, e.g., Refs. [63–65]. The theoretical landscape about
open boundary systems outlined in this section, can be now used as a reference for computational implementations and
applications or as a basis for the development of novel algorithms for future applications. In the next section, we will focus
on the implementation of the open boundary system idea in molecular simulation. We will point, as often as possible, on
the consistency and inconsistency with the theoretical work and suggest, when possible, potential connections for mutual
improvements.

3. Molecular simulation of open systems

In this section, our attention will be devoted to molecular systems in thermodynamical equilibrium. Molecular simu-
lations of open systems with fluctuating number of particles are then, naturally, closely related to simulations in the GC
statistical ensemble. The latter are typically carried out using the MC approach (see Appendix B) because the associated
insertion and deletion of particles can be relatively easily incorporated in the stochastic MCmoves [66]. This is more difficult
to accomplish in the case ofMolecular Dynamics (MD) (see Appendix A) and consequently the number of numericalmethods
for carrying out MD simulations in the GC ensemble is much lower. However, it is precisely the insertion and deletion of
particle that givesmotivation for the development of GCMDmethods. Namely, the probability of particle insertion is related
to a random density fluctuation that generates a cavity, where we can insert a particle. As the probability for such an event is
rather low in dense systems, the success rate of insertion also becomes low, which makes GC MC simulations prohibitively
expensive for many such molecular systems. A similar problem of particle insertion one encounters also in computations of
chemical potential [67] as well as open boundary molecular simulations, discussed in Section 3.2.2 later on, and in methods
that couple atomistic and continuum hydrodynamics (see Section 3.2.3). There, we also report our solution to circumvent it.
Since examples of MC simulations in GC ensemble can be found in many textbooks, e.g., Refs. [47,66,68], we will not delve
into them here. Rather, we briefly report some examples ofMDmethods for simulations in the GC ensemble published in the
literature. Pettitt et al. [69–73] have developed MD methods for GC simulations based on extended phase space approach,
where a classical system is coupled to a chemical potential reservoir with an additional variable, resembling extended phase
space approaches for performingMD in canonical ensemble of at constant pressure [47]. The additional variable governs the
dynamics of the variation of number of particles in the system. The integer part of the continuous variable stands for the
number of full particles while the fractional part represents a fractional particle whose coupling to the physical system is
scaled. MD methods based on similar ideas of extended Hamiltonian formalism are also reported in Refs. [74–78]. Another
branch of this type of methods is represented by hybrid MD–MC methods using MC variations of the continuous coupling
variable [12,79,80]. All the mentioned methods have been, thus far, successfully applied to rather simple molecular systems
such as ideal gas, Lennard–Jones fluid at different phase points, and liquid water. Their application tomore complex systems
is hindered by the fact that only one fractional particle can be inserted per timestep leading to slow equilibration and a
tendency to get stuck in metastable states for a long time [77]. A solution for the problem of efficient insertion of particles
into dense liquids,which opens doors for openMD simulations of complex fluids, e.g., star-polymersmelt [81,82], is provided
by adaptive resolution simulation, discussed next.

3.1. Adaptive resolution simulation

Single-scale (all-atom)MDandMCmethods, discussed above, are extremely valuable simulation tools as they can provide
detailed insight into the structural and dynamical properties of complex soft and biological matter systems [83]. Thus,
they allow us to understand the microscopic origin of macroscopic properties. Unfortunately, performing such simulations
still represents a computational challenge, even for the cutting edge computers, because of the inability to cover all time
and length scales associated with physical phenomena of interest. Accessing wide range of spatiotemporal scales thus
inevitably demands some simplifications (coarse-graining) of the molecular model with a large number of DOFs. Typically,
in biomolecular simulations this high computational cost is associated with simulation of the solvent. Water, the most
abundant solvent in nature, is of essential importance for proper functioning and stability of (bio)macromolecules. However,
it often comprises most of the particles in the simulated system and hence the majority of the computational effort is
spent computing interactions between solvent molecules far away from the macromolecule, in distant domains that are
not relevant for the problem under consideration. This realization led to the development of several multiscale simulation
methods, which reduce the number of DOFs for distal water and at the same time keep the high (atomistic) resolutionwhere
it is necessary.
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Fig. 1. The basic idea of adaptive resolution: a cartoon of a solvated generic macromolecule. The proximal solvent within a certain radius from the
macromolecule is represented using a fine-grained resolution. The distal solvent molecules are represented by a coarse-grained model as single beads.
Source: Reprinted from Ref. [89].

In general, multiscale simulationmethods can be classified into two groups: hierarchical (sequential or homogenization)
and concurrent (domain decomposition) methods [84,85]. In the first type of methods, the whole computational domain is
treated on one level of resolution at a time. The information obtained at a finer resolution is used to parametrize a lower-
resolution model. Back mapping methods then enable us to go back and forth between the two resolutions by reintroducing
the chemical details on demand [86–88]. On the other hand, in multiscale methods of the second type, multiple levels of
resolution are applied in simulation box concurrently. A typical example, presented in Fig. 1, is a solvated macromolecule
where the interesting physics occurs within a few solvation shells around the macromolecule, while the distal solvent plays
a role of a buffer and may be therefore treated on a coarser level. The link between different levels of resolution can be done
either by a fixed-resolution approach where different resolution domains interact with each other but do not exchange
molecules, e.g., QM/MM approach (see Section 4.2), or by the adaptive resolution approach where molecules change their
resolution according to their location in the simulation box.

In the following,wewill focus on the concurrentmultiscalemethods.Wewill first provide a reviewof the basic theoretical
principles of adaptive resolutions scheme (AdResS) [85,90–92]. AdResS allows for a true equilibrium between high and low
resolution domains of a systemwithin anMD simulation. Themethod can link two ormore resolution regions that span from
quantum all the way to continuum length scales of soft matter systems. Next, we will review also its Hamiltonian version,
i.e., H-AdResS, and address their similarities and differences, followed by a comparison with other existing concurrent
multiscale molecular methods. But first, we will shed some light on the connection between adaptive resolution methods
and alchemical free energy perturbation methods [93]. The similarity may not be that surprising as the change of resolution
has some resemblance to alchemical transformation between the fine- and coarse-grained models [90].

3.1.1. Alchemical free energy perturbation methods: thermodynamic perturbation and integration
Concurrent multiscale simulations, where two different models are in thermodynamic coexistence within the same

simulation box, are closely related to free-energy perturbation methods, where one transforms a system with N particles
from one thermodynamic state A to another state B [47,68,93–95]. The corresponding Hamiltonians are HA(pN , rN ) =∑N

i=1p
2
i /2mi+UA(rN ) and HB(pN , rN ) =

∑N
i=1p

2
i /2mi+UB(rN ). The free energy difference between the two systems can be

then computed using the free energy perturbation formula as [94]

∆FAB
= −kBT ln

⟨
exp

[
−

HB(pN , rN )− HA(pN , rN )
kBT

]⟩
A

= −kBT ln
⟨
exp

[
−

UB(rN )− UA(rN )
kBT

]⟩
A
, (32)

where ⟨· · · ⟩A denotes averaging over the ensemble of configurations representative of the thermodynamic state A.
The above approach becomes inaccurate if the states A and B do not have overlap in configuration space. Then |UB

−UA
| ≫

kBT and exp(−(UB
− UA)/kBT ) becomes very small. Consequently, we do not sample adequately the configuration space of

B when performing the averaging ⟨· · · ⟩A. To circumvent this problem, the transformation between the states A and B is
replaced by a series of intermediate states along a pathway that connects the states A and B. The pathway is parameterized
with a coupling parameter λ ∈ [0, 1]. As the coupling parameter λ changes from 0 to 1, the Hamiltonian varies from HA to
HB. Hamiltonians of the intermediate states are Hλ(pN , rN ) =

∑N
i=1p

2
i /2mi + Uλ(rN ) with

Uλ(rN ) = (1− λ)UA(rN )+ λUB(rN ) = λUB(rN )+ (1− λ)UA(rN ). (33)
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The free energy difference∆FAB is the sum of free-energy differences from all the intermediate states along the pathway

∆FAB
= −kBT

M−1∑
k=1

ln
⟨
exp

[
−

Hλk+1 (pN , rN )− Hλk (pN , rN )
kBT

]⟩
k

= −kBT
M−1∑
k=1

ln
⟨
exp

[
−

Uλk+1 (rN )− Uλk (rN )
kBT

]⟩
k
, (34)

where index k runs over the initial and final states A and B, respectively, and allM − 2 intermediate states with λ1 = 0 and
λM = 1, so that k = 1 and k = M correspond to the states A and B, respectively.

In practical applications, when we alchemically transform amolecular species into another one, we can distinguish three
different groups of particles in the system: a group of particles that do not change during the simulation run, a group that
contains the particles of the initial state A, and a group of particles corresponding to the final state B. The hybrid Hamiltonian
of the system can be written as [96]

Hλ = H0
+ (1− λ)Ha

+ λHb, (35)

whereH0 is the part of the Hamiltonian corresponding to the particles that remain unchanged during the simulation,Ha and
Hb the parts corresponding to atoms characterizing the initial and final states A and B, respectively.

Another method for free energy difference computation is the thermodynamic integration [47,68,93]. The free energy
difference∆FAB is calculated as

∆FAB
=

∫ 1

0

∂F
∂λ

dλ =
∫ 1

0

⟨
∂Hλ(pN , rN )

∂λ

⟩
λ

dλ =
∫ 1

0

⟨
∂Uλ(rN )
∂λ

⟩
λ

dλ =
∫ 1

0

⟨
UB
− UA⟩

λ
dλ, (36)

where ⟨· · · ⟩λ denotes averaging over the ensemble of configurations representative of the intermediate state characterized
with a fixed value of the coupling parameter λ.

In practice,M molecular simulations atM discrete values of the coupling parameter λ ∈ [0, 1] have to be conducted. For
each value of λ, the average

(
∂Uλ(rN )
∂λ

)
λ
is computed, yielding [93]

∆FAB
=

M∑
k=1

⟨
∂Uλ(rN )
∂λ

⟩
λk

∆λk, (37)

where∆λk = λk+1 − λk.

3.1.2. Adaptive resolution scheme (AdResS)
Let us now consider the situation depicted in Fig. 1 and couple the fine- and coarse-grained solvent models. The two

molecular models should be in thermodynamic equilibrium within the same simulation box. Furthermore, we would like
the solvent molecules to freely move across different resolution domains and change their resolution on the fly accordingly.
To this end, let us exploit the analogywith alchemical transformations presented in the previous subsection.We can imagine
that when molecules cross the resolution domains they are being alchemically transformed from one species to another.

The switching of the resolution can then be described by making the coupling parameter λ position dependent so that
the different values of λ would determine the level of resolution according to the position in the simulation box [90]. For
simplicity, let us only consider two-body interactions, but our consideration can be generalized to many-body cases as well.
We can then set λαβ = λαβ (Rα,Rβ ) ∈ [0, 1], whereRα andRβ are the center-of-mass (CoM) positions of two givenmolecules
α and β , respectively. Inspired by Eq. (33), the coupling of the coarse-grainedmodel A and fine-grainedmodel B can be done
as

Uλ =
1
2

∑
α

∑
β ̸=α

Uλαβ =
1
2

∑
α

∑
β

[
λαβUB

αβ + (1− λαβ )UA
αβ

]
. (38)

Next, we need to define the functional form of λαβ . As the simplified coarse-grained model A has less DOFs than the fine-
grained model B, we can make a natural choice and require that a coarse-grained molecule can interact with any other
molecule (even in the high resolution domain) only through coarse-grained effective potential. A simple choice that satisfies
this condition is λαβ = λαβ (Rα,Rβ ) = w(Rα)w(Rβ ) = wαwβ , where wα = w(Rα), wβ = w(Rβ ), and Rα = |Rα − R| and
Rβ = |Rβ−R| are distances of solvent molecules α and β from the CoM of themacromolecule R, respectively. The weighting
function w is a smooth continuous function that interpolates between values 0 and 1, where the former defines the region
of model A and the latter the domain belonging to model B. The values 0 < w < 1 correspond to the transition region
sandwiched in between the former two. The purpose of the transition region is that the introduction of the fine-grainedDOFs,
when a given molecule enters from the coarse-grained side, is continuous and not instantaneous leading to overlaps with
the atoms of the neighboring molecules. Thus, the transition region enables the molecule to gradually find an energetically
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Fig. 2. Theweighting functionw(r) ∈ [0, 1] defined by Eq. (39). The valuesw = 1 andw = 0 correspond to the fine-grained region containingmolecules of
the model B and coarse-grained region of the model A, respectively inside of the simulation box a. The vertical lines denote the boundaries of the transition
region.
Source: Reprinted from Ref. [97].

permissible orientation with respect to its neighboring molecules. A simple choice for w, corresponding to the spherical
geometry in Fig. 1, is [97]

w(r) =

⎧⎪⎨⎪⎩
1; 0 ≤ r < r0

cos2
[ π
2d

(r − r0)
]
; r0 ≤ r < r0 + d

0; r0 + d ≤ r
(39)

where r0 is the radius of the fine-grained region B around the CoM of the macromolecule and d the width of the transition
region. Theweighting functionw is depicted in Fig. 2. Using λαβ defined in this way, we can expressUαβ in Eq. (38), dropping
the superscript λ, as [98]

Uαβ = λαβUB
αβ + (1− λαβ )UA

αβ = wαwβU
B
αβ + (1− wαwβ )UA

αβ . (40)

The corresponding conservative force acting on the molecule α is [99]

Fαβ = −
∂Uαβ
∂Rα

= wαwβFBαβ + (1− wαwβ )FAαβ +
∂wα

∂Rα
wβ
[
UA
αβ − UB

αβ

]
, (41)

where FAαβ = −
∂UA
αβ

∂Rα
and FBαβ = −

∂UB
αβ

∂Rα
.

The respective force acting on the molecule β is

Fβα = −
∂Uαβ
∂Rβ

= wαwβFBβα + (1− wαwβ )FAβα +
∂wβ

∂Rβ
wα
[
UA
αβ − UB

αβ

]
. (42)

Using FAβα = −F
A
αβ and FBβα = −F

B
αβ we obtain

− Fβα = wαwβFBαβ + (1− wαwβ )FAαβ −
∂wβ

∂Rβ
wα
[
UA
αβ − UB

αβ

]
. (43)

Should the force given by Eq. (41) satisfy Newton’s Third Law, i.e., Fαβ = −Fβα , from above equations it follows that
this force, despite being conservative, can satisfy Newton’s Third Law only for a trivial case of w = const., corresponding to
constant resolution simulations. Otherwise, we are left with the third term, i.e., a drift force

Fdrαβ =
∂wα

∂Rα
wβ
[
UA
αβ − UB

αβ

]
, (44)

which violates Newton’s Third Law [98–102]. This drift force involves derivatives of the weighting function w and hence
acts only in the transition region, where the switching of resolution takes place. Due to the drift force linear momentum
cannot be conserved using Eq. (40). This is to be expected as the translational invariance is broken due to the resolution
change. Another point to consider is that potential energies UA

αβ and UB
αβ are determined up to some constants. This does not

effect the dynamics in respectivemonoscale simulations as forces depend on gradients of the potentials. However, here they
enter as a linear term in the drift force determining its size. Despite this conceptual limitation, from a technical point of view
Eq. (40) can be used to develop a variant of AdResSwith a Hamiltonian formulation (H-AdResS) [103,104] (see Section 3.1.3).
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Instead, to satisfy Newton’s Third Law and strictly conserve the total linear momentum of the system, which is crucial for
hydrodynamics, we couple the two molecular models A and B with the force coupling scheme, omitting the drift force Fdrαβ :

Fαβ = λαβFBαβ + (1− λαβ )FAαβ = wαwβF
B
αβ + (1− wαwβ )FAαβ . (45)

Eq. (45) is at the heart of AdResS [85,90]. Note that dynamics governed by the AdResS force given by Eq. (45) is linear
momentum conserving despite broken translational invariance, as AdResS is not a Hamiltonianmethod. But, it will be shown
in Section 3.2.1 that for the calculation of statistical and dynamical properties of interest a global Hamiltonian is actually not
needed. For the molecular system presented in Fig. 1, the intermolecular force

FBαβ =
∑
iα,jβ

FBiαjβ (46)

is the sum of all pair atom interactions between explicit atoms of the molecule α and explicit atoms of the molecule β

FBiαjβ = −
∂UB

∂riαjβ
. (47)

The vector riαjβ = riα − rjβ is the relative position vector of atoms iα and jβ . The effective coarse-grained force between
molecules α and β is

FAαβ = −
∂UA

∂Rαβ
, (48)

where Rαβ = Rα − Rβ is the relative position vector of the CoMs of the molecules α and β , respectively.
The intermolecular potential of the coarser model A, UA, can be derived in several ways. One way is to map the structure

of the coarser model A as closely as possible to the reference fine-grained model B. This is desirable because we want the
molecules to adapt, when they enter the high resolution domain from the low resolution region (through the transition
one), as quickly as possible to the new environment. (However, as we will see in a bit, this restriction can be substantially
relaxed.) To this end, we reduce the potential of the fine-grained model B into a reduced effective potential UA using
any of the standard bottom-up structure-based coarse-graining methods [105,106], e.g., Iterative Boltzmann inversion
[107–110], inverse MC [111,112], force-matching scheme (the multiscale coarse-graining method) [113–116], Extended
ensemble approach [117,118], relative entropy [119–121] etc.

Note that in the free-energy perturbation approaches introduced previously, the models A and B have the same number
of DOFs and the kinetic energy part of Hamiltonian is the same in bothmodels. This is also true for H-AdResS presented later
on. Here, as already mentioned, if the model A represents a coarse-grained version of the model B, in general, number of
DOFs is lower in the model A (of course, it can be also the same). Thus, each time a molecule leaves (or enters) the region
A it gradually gains (or loses) its e.g. vibrational and rotational DOFs explicitly present in the model B while retaining its
linear momentum. The switching on/off of these DOFs in the transition region is related to non-integer DOFs, which can be
described by fractional calculus [98,99,122–126]. Here, we will not dwell upon it but let us just mention that this has some
similarities with the alchemical transformation described by Eq. (35). The coarse-grained part of the Hamiltonian can be
considered asH0, while the respective parts of Hamiltonian associatedwith the switched off/onDOFs can be related to theHa

and Hb[99]. Furthermore, in the lower resolution domain A each molecule represents many orientations and conformations
of the corresponding molecule in the high resolution domain B. Hence, while switching between the representations in the
transition regime, one does not exactly reproduce the fine-grained coordinates and velocities. The reverse-mapping thus
destroys time-reversibility in the simulation. Because time reversibility is essential for energy conservation [127], AdResS
does not conserve energy. In particular, the force in Eq. (45) is in general not conservative in the transition region (i.e., in
general

∮
Fab ·dr ̸= 0) [99–101] and global potential energy along the lines of Eq. (38) and corresponding global Hamiltonian

(sum of kinetic and potential energies) are not defined. Hence, the conservation of the linearmomentum comes at the cost of
limiting ourselves to the MDmethodology leaving out the possibility of running MC simulations that require defined global
potential energy of the system. Moreover, AdResS cannot be run in the microcanonical ensemble and a local thermostat,
e.g., Langevin thermostat [128], is needed to supply or remove the free-energy associated with the switched on/off DOFs
at the resolution transition [85,91,92]. We will return to this point shortly. Nevertheless, for tackling problems out of
thermodynamic equilibrium, e.g., fluid flows, where statistical mechanics is not applicable, and other conserved properties,
e.g. linear momentum conservation in hydrodynamics, play a more important role, AdResS based on the force-interpolation
ansatz seems to be the method of choice.

For conducting AdResS simulations, we need thermodynamic coexistence of models A and B. In general, the necessary
condition for thermodynamical equilibrium between the coarse- and fine-grained models and the transition region, i.e., the
chemical potential, pressure, and temperature equivalence, cannot be assured solely by a derivation of the UA based on UB.
Moreover, we would like to be in a flexible position and couple two models where the coarser model A is not derived in a
bottom-up way from the fine-grained model B but can be obtained using a top-down coarse-graining approach, instead. Or,
we would also like to consider situations where we couple different molecular models at the same level of resolution and
number of DOFs but different force fields. In short, we would like to have a concurrent multiscale approach that allows us to



16 L. Delle Site, M. Praprotnik / Physics Reports 693 (2017) 1–56

Fig. 3. (left) The excess chemical potential through the transition region. (right) Normalized density profiles for water molecules (red) and sodium (green)
and chloride (blue) ions. The results are shown for the full-blown atomistic simulation and AdResS simulations where the thermodynamics forces act on all
molecular species or only onwatermolecules for comparison. The bottom plot shows the TD forces applied to all threemolecule types. The thermodynamic
forces clearly make the density profiles flat.
Source: Reprinted from Refs. [129,130].

couple rather loosely connected molecular representations, i.e., it maintains two different representations with, in general,
different chemical potentials (µA ̸= µB) in thermodynamic equilibrium.

To treat these scenarios, we extend the original scheme, Eq. (45), by subtracting a thermodynamic force FTD. The total
force on molecule α is

FAdResSα =

∑
β ̸=α

[
wαwβFBαβ + (1− wαwβ )FAαβ

]
− FTDα , (49)

where FTDα = FTD(Rα) is the thermodynamic force defined as a negative gradient of the excess chemical potential µexc due to
the intermolecular interactions [129]. The aimof FTD is to compensate the chemical potential difference across the simulation
box and obtain a flat density profile across the whole system. As mentioned, AdResS is a non-conservative scheme and
hence the potential energy is not defined. Therefore, to calculate numerically the excess chemical potential we proceed
as follows. We divide the simulation box into regions of force-fields A and B and the transition region in between. The
region A is characterized by the value of the switching function w0 = 0. The region B is characterized by the value of the
switching functionwN+1 = 1. In the transition region the value ofw in the actual simulations varies continuously. Here, we
approximate this by discretizingw into N stepsw1,w2, . . . ,wN−1,wN . For any fixed value ofw,1 the energy function is well
defined (FAdResSα becomes conservative with a well defined global potential). The excess chemical potential is then defined as:
µexc(ri) = µexc

wi
, where theµexc

wi
is the chemical potential of themolecules in a bulk system of the specific representation ofwi.

To calculate numerically each µexc(wi) one can use standard particle insertion methods, e.g., Widom insertion method [67].
Repeating this procedure with all values of wi leads to a position dependent excess chemical potential µexc(r).

An example ofµexc(wi) for a liquid of tetrahedral molecules [129] is presented in Fig. 3 (left). The system is set up in such
a way that the equation of state is the same in both the fine- and coarse-grained regimes at the temperature and density of
the simulation. Because of thatµexc is the same forw = 1 and forw = 0 but different for 0 < w < 1. This leads to a nonzero
FTD in the transition region by computing a gradient of the µexc curve.

As the above procedure of computing FTD involves several computations of chemical potential, FTD can be more
conveniently cast as the force on a molecule balancing the pressure gradient2 −∇p(r)

FTDα =
Mα

ρ0
∇p, (50)

whereMα and ρ0 are the mass of molecule α and the reference bulk density, respectively [133]. Numerically, this translates
into an iterative procedure [133]

FTDα i+1 = FTDα i −
Mα

ρ2
0κT
∇ρi(r), (51)

1 This is the value that we obtain by using the insertion methods in a hybrid system exclusively composed of hybrid molecules with a fixed level of
resolution 0 ≤ w = w(r) = const. ≤ 1 corresponding to a fixed bulk value µw(r) .

2 Note that we switch from the molecular (particle-based) to field description in the derivation of FTD (which acts on the centers of mass of molecules).
For example, center of mass density field is defined as ρ(r) = Mα

∑
αδ(r− Rα) and similarly one defines also the pressure and chemical potential density

fields, see, e.g., Refs. [131,132]. Therefore, although FTDα is not pairwise, it conserves local linear momentum on this coarser level of description. Besides,
FTDα = 0 in the region of interest, i.e., in the fine-grained region B.
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Fig. 4. Adaptive resolution simulations of: (above, left) supramolecular polarizable water with the flat boundary; (above, right) an atomistic protein in
supramolecular water with the spherical boundary; (below) a DNA molecule in salt solution with the cylindrical boundary between regions A and B.
Abbreviations AT, HY, CG stand for fully atomistic, hybrid, and coarse-grained regions, respectively.
Source: Reprinted from Refs. [130,141,143].

where κT is isothermal compressibility, respectively. The iteration is performed until the system obtains the target uniform
density. In practice, we actually use the formula [91]

FTDα i+1 = FTDα i − Ci∇ρi(r), (52)

where C is a numerical prefactor that is determined empirically. This is similar to other methods for enforcing uniform
density profile [134,135]. The value of the prefactor is adjusted along the process to prevent overcorrection. To speedup the
iteration procedure we also run simultaneously at each step several simulations with different prefactors and chose the best
one for the next iteration. Furthermore, when different types of particles are present in the system, the iteration procedure
is applied for all types, as depicted in Fig. 3 (right) for a system of salt solution (1M NaCl) [130,136]. On the other hand, if
the A model is chosen to be equal to the B model (this corresponds to a homogeneous monoscale system) then FTDα = 0 and
Eq. (49) simplifies to FAdResSα =

∑
β ̸=αF

B
αβ = FBα = FAα .

AdResS defined by Eq. (49) offers ample options: we can achieve model coexistence between models A and B that are
either of the same resolution but use different force fields (e.g., GROMOS [137] or AMBER [138]), coarse- and fine-grained
models, which can be structurally and/or thermodynamically mapped on each other or not [133,139], supramolecular
couplings [140–145], where one coarse-grained bead corresponds to many fine-grained molecules, e.g., the MARTINI
model [146–148], or even coupling atomistic water with even more simplified coarse-grained models like ideal gas [149]
or bridging to the hydrodynamics scale as for example in coupling of MD with multiparticle collision dynamics [150] or
smoothed dissipative particle dynamics [151]. We can also couple classical and quantum mechanics using Path Integral
formalism as described later on in Section 4. The method can accommodate various geometric boundaries between the
resolution regions. In examples presented in Fig. 4, we demonstrate domain decomposition with flat, cylindrical, and
spherical boundaries. The geometrical boundary between resolution regions can thus be set to reflect the shape of the
simulated molecule, i.e., the cylindrical for a DNAmolecule and spherical for a protein. The center of the fine-grained region
can either be a fixed point (usually the center of the simulation box) or a mobile point, as for example, in a simulation of
a macromolecule where it coincides with the macromolecule’s CoM. A setup, where the center of the fine-grained region
follows the macromolecule’s random translation, ensures that the macromolecule is always expressed in high resolution
and surrounded by a layer of high-resolution solvent [141,152,153]. Moreover, the boundaries between different domains
can be also flexible, changing shape according to a given situation during the course of simulation [154,155]. Furthermore,
one can also consider situations where a macromolecule spreads over several resolution domains described with different
levels of detail [91].

Coming back to the role of the local thermostat in AdResS simulations, apart from supplying or removing the free
energy (latent heat) associated with the switching of resolution, it allows us also to manipulate the transport coefficients
of the coarser model [128,156]. Formally, to derive the equations of motion for the coarse-grained DOFs, guaranteeing the
dynamics defined by the fine-grainedmodel, we have to resort to theMori–Zwanzig formalism [157,158]. This results in the
generalized Langevin equation [159]. Unfortunately, the latter is usually numerically unsolvable andwehave tomake several
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approximations [160]. For instance, neglecting memory effects [160–163], we can employ the linear momentum preserving
dissipative particle dynamics (DPD) thermostat [156,164] to match the transport coefficients, e.g., viscosity and diffusion
constant, of fine- and coarse-grainedmodels. This is, for instance, important in Open BoundaryMolecular Dynamics (OBMD)
simulations [81,82], presented in Section 3.2.2. In short, theMori–Zwanzig formalismunderMarkovian approximation yields
dynamics with DPD-like equations of motion for coarse-grained DOFs.

The DPD thermostat is introduced through the force Fthermo
α as [156,164]:

Fthermo
α = FDα + FRα, (53)

where FD, and FR are damping and random forces, respectively [165,166]. The damping force is defined as

FDαβ = −ζw
D(Rαβ )

←→
P αβ (Rαβ )vαβ , (54)

where vαβ = vα − vβ , and the random force as

FRαβ = σwR(Rαβ )
←→
P αβ (Rαβ )θαβ . (55)

Here ζ and σ are the friction constant and the noise strength, respectively. The projection operator
←→
P is symmetric in the

molecule indices (
←→
P αβ =

←→
P βα). Contrary, the noise vector θαβ

⟨θαβ (t)⊗ θγ κ (t ′)⟩ = 2
←→
I (δαγ δβκ − δακδβγ )δ(t − t ′) , (56)

is antisymmetric (θαβ = −θβα) in the molecule indices according to the fluctuation–dissipation theorem. The projection
along the interatomic axis between molecule α and β ,

←→
P αβ (Rαβ ) = R̂αβ ⊗ R̂αβ , where R̂αβ denotes a unit vector of the

intermolecular axis Rαβ = Rα − Rβ , then yields the standard DPD thermostat [164]. On the other hand,
←→
P αβ (Rαβ ) =

←→
I − R̂αβ ⊗ R̂αβ gives the Transverse DPD thermostat [156].
Finally, the dynamics for a CoMvelocityV α and coordinateRα of a givenmoleculeα in AdResSMDsimulations is governed

by
dRα
dt
= V α, (57)

Mα

dV α

dt
= FAdResSα + Fthermo

α , (58)

whereMα is themass of themolecule α. Numerically, these equations of motion are then solved as explained in Appendix A.
At present, the AdResS scheme is implemented in two open source molecular dynamics packages: Extensible Simulation

Package for Research on Soft matter systems (ESPResSo++) [167] and the GROningen MAchine for Chemical Simulations
(GROMACS) [168].

3.1.3. Hamiltonian AdResS (H-AdResS) and related particle-based multiscale methods
AdResS, presented in the previous section, is constructed to satisfy Newton’s Third Law and hence exactly preserves

linear momentum. At the same time it provides the correct statistical and dynamical properties in both the atomistic and
(trivially) the coarse-grained region. It must be noticed that the transition region is by definition an artificial domain whose
only task is that of allowing a smooth transformation of molecules from a higher to a lower resolution and vice versa. Since
the total AdResS force, given by Eq. (49), is non-conservative this prevents to define the global Hamiltonian of the system.
Furthermore, as the number of DOFs changes on-the-fly, the method has to be used together with the local thermostat. On
the other hand, a global Hamiltonian scheme would offer some technical benefits such as performing adaptive resolution
MC simulations. However, from a conceptual point of view, if not properly used, this could lead to a misunderstanding of
the meaning of physical properties considered (see discussion in Section 3.2.1). There have been some attempts in literature
to devise an energy conserving adaptive resolution scheme [169–172]. As already discussed, this comes about with some
methodological and conceptual difficulties [99–101]. Nevertheless, a method that comes closest to reach this goal is a
variation of AdResS, i.e., H-AdResS [103,104,131,173–175].

Let us begin a brief presentation of H-AdResS by defining the total potential energy function, in analogy with Eqs. (38)
and (40), as [103]

U = U int
+

∑
α

[
λαUB

α + (1− λα)UA
α

]
, (59)

where

UA
α =

1
2

∑
β ̸=α

UA(|Rαβ |), (60)

UB
α =

1
2

∑
β ̸=α

∑
iα,jβ

UB(|riαjβ |). (61)



L. Delle Site, M. Praprotnik / Physics Reports 693 (2017) 1–56 19

Here, U int is the intramolecular potential energy, which is not subject to the interpolation, and UA
α and UB

α are the sums of
all non-bonded intermolecular potentials corresponding to the low-resolution A and high-resolution Bmodels, respectively,
acting on a given molecule α. Note that now the coupling parameter λα = λ(Rα) has only one subscript α and does depend
only on the CoM of the molecule α and not on pairs of molecules, as in AdResS. We can hence write λ(r) = w(r), i.e., the
coupling parameter λ has the same functional form as the AdResS weighting function w given by Eq. (39). Such choice of
coupling parameter is a consequence of the fact that in H-AdResS fine-grained DOFs are retained everywhere (also in the
coarse-grained domain A, so that coarse-grained molecules close to the transition region interact also at the fine-grained
level, which is not the case in AdResS with λαβ = wαwβ ), i.e., the number of DOFs in the system is kept constant and only
intermolecular interactions are changed while crossing the resolution domains. This is a necessary ingredient to keep the
scheme time-reversible because molecules keep their orientations when going back and forth from the domains A and B
[91]. (Moreover, it avoids the use of local thermostat to furnish or remove the latent heat associated with the turned off/on
DOFs in the transition region between domains A and B [85].) This further implies that the form of kinetic energy is the same
everywhere and we can therefore write the total Hamiltonian as [103]

H = T + U =
∑
α

Tα + U int
+

∑
α

[
λαUB

α + (1− λα)UA
α

]
, (62)

where Tα =
∑

iα
p2iα
2miα

is the total kinetic energy of molecule α, summed up over all its atoms (combined subscript iα denotes
ith atom of molecule α).

The corresponding force derived from Eq. (62) for ith atom of molecule α is [103]

Fiα = Fintiα +
∑
β,β ̸=α

[
λα + λβ

2
FBiαβ +

(
1−

λα + λβ

2
FAiαβ

)]
+
∂λα

∂riα
[UA
α − UB

α]

= Fintiα +
∑
β,β ̸=α

[
λα + λβ

2
FBiαβ +

(
1−

λα + λβ

2
FAiαβ

)]
+ Fdriα , (63)

where Fintiα is the force acting on atom iα due to other atoms in the same molecule, FAiαβ and FBiαβ are coarse-grained and
fine-grained forces, respectively, acting on atom iα due to interaction with molecule β , and Fdriα is the drift force. The above
force given by Eq. (63) is, not surprisingly, very similar to the force given by Eq. (41) and Fdriα to the drift force given by Eq. (44).
As explained in the previous subsection about AdResS, the drift force Fdriα violates Newton’s Third Law and hence so does the
total force Fiα . Because the drift forces pushes molecules in the domain with a lower chemical potential, the density profile
obtained by the energy-conserving and linear-momentum non-conserving dynamics governed by Eqs. (62) and (63) is not
uniform across the simulation box. One encounters similar density fluctuations [149] in the transition region as in AdResS,
Eq. (45), without application of the thermodynamics force. Therefore, the microscopic global mixed resolution Hamiltonian,
Eq. (62), does not describe a homogeneous system with uniform density profile that one would like to model.

To enforce a uniform density across the system, a new term is introduced in the mixed-resolution Hamiltonian above,
Eq. (62), resulting in a modified global Hamiltonian [103]

Ĥ = H −
∑
α

∆H(λα). (64)

The additional term changes the drift force to [103]

F̂
dr
α =

∂λα

∂Rα

[
UA
α − UB

α +
d∆H(λ)

dλ
|λ=λα

]
. (65)

To remove, on average, the drift force, i.e., ⟨F̂
dr
⟩ = 0, using Eq. (36), the additional term must satisfy [103]

d∆H(λ)
dλ

|λ=λα = −⟨U
A
α − UB

α⟩ Rα . (66)

This leads to the uniform hydrostatic pressure profile (∇p = ρ⟨F̂
dr
⟩ = 0) across the simulation box while in domains A and

B the density still may differ due to different equations of state of both models [103]. Thus, to get the uniform density profile
across the simulation box [174], eventually, one has to resort to the same old thermodynamic force FTDα = FTD(Rα) obtained
in the iterative way, as explained in the previous subsection, by Eq. (52).

The last remark should not come as a surprise, as the ‘‘thermodynamic’’ correction term
∑

α∆H(λα) is state point
dependent and does not directly couple to the microscopic DOFs [175]. Hence, the modified global Hamiltonian Ĥ is not
microscopic and furthermore, it is state dependent, as it carries an a priori calculated free energy in the correction term.
Following basic principles of statistical mechanics, free energy should be a quantity calculated from the Hamiltonian of
the system, which expresses the physics of the system, and not the other way round. In any case, provided that this
does not present any conceptual issues, the derived H-AdResS, at least in technical terms, opens doors to the technical
possibility of equilibrium simulations in different statistical mechanics ensembles [131] as well as to adaptive resolution
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MC techniques [104]. The method is energy (Ĥ) conserving, in the sense that the defined energy remains constant during
the simulation, and despite broken translational invariance and associated linear momentum non-conservation it has been
shown that the method is thermodynamically translational invariant [132,175].

To conclude this discussion of adaptive resolution schemes, let us report, at this point, some related concurrent particle-
based multiscale approaches that have been developed in the past few years. Abrams carried out the first concurrent
dual-resolution MC simulation [169]. The method was applied to a system of liquid methane at a single thermodynamics
state point, where half of simulation box was filled with atomistic molecules of liquid methane whereas the other half
was occupied with corresponding spherically symmetric united atoms, interacting via an effective coarse-grained pairwise
intermolecular potential. Christen et al. developedMultigraining, a method to combine fine- and coarse grained resolutions.
Similarly to AdResS or H-AdResS, a coupling parameter λ is introduced to couple the fine- and coarse-grained potentials
in the total potential energy [176]. However, the crucial difference between the methods is that λ in Multigraining is not
position-dependent, as in AdResS or H-AdResS, preventing the possibility of performing adaptive resolution simulations.
Instead,Multigraining is an efficientmethod for fast equilibration ofmolecular liquids, e.g., liquid octane a hexadecane [176],
or replica-exchange simulations, where λ is used to distinguish between the different replicas. Ensing et al. presented
a concurrent multiscale MD algorithm, representing an attempt to devise an energy-conserving adaptive resolution MD
method [171]. To this end, they introduced a ‘‘bookkeeping’’ energy, whose corresponding force should exactly cancel the
drift introduced by the interpolated potential, similarly to Eq. (65) in H-AdResS. This leads to a conceptual contradiction,
as the resulting total force has a non-conservative AdResS-like form [101]. Nevertheless, combining this method with a
rotational dynamics of rigid atomistic fragments in the low resolution domain allowed for the first MD simulation of a
solvated macromolecule (a polyethylene chain in liquid hexane), where different parts of the macromolecule could be
represented at the same timewith different levels of details, changing resolution adaptively, on-the-fly [172]. This is different
to some other approaches that combine atomistic and coarse-grained resolutions within a macromolecule, e.g., a synthetic
polymer next to a metallic surface [177] or a globular protein [178]. There, some relevant region of the macromolecule is
treated with the atomistic level of detail whereas the rest of the macromolecule is represented with the coarse-grained
model. However, the atomistically represented part of the macromolecule remains atomistic during the entire course of
simulation. The same holds also for the coarse-grained part. A very interesting adaptive resolution simulation approach
was introduced by Heyden et al. [170,179,180]. The system is partitioned into an active zone, i.e., the region of interest,
the environmental zone (low resolution domain), and a buffer zone, separating the active from the environmental zone.
In the first version of the method, called Adaptive partitioning (AP) method [170], the potential energy function is defined
as a linear combination of all possible combinations of multiresolution energies that are obtained by treating the region
of interest and a subset of groups of atoms in the buffer zone at a high level of theory (e.g., quantum mechanical) and the
rest at a low level of theory (e.g., molecular mechanical). The method was applied to simulation of solvated Li+ ion and a
supercritical fluid of argon atoms. The improved version, called Adaptive partitioning of the Lagrangian (APL) method [179],
extends the APmethod to Lagrangian functions, i.e., themixed-resolution Lagrangian is defined as a linear combination of all
possible combinations of Lagrangian functions that are obtained by treating the active zone and a subset of atom groups in
the buffer zone at a high level of resolution and the remainder at a low level of resolution. This further allows one to define a
mixed-resolution Hamiltonian. Even though the APL method certainly represents an innovative and promising approach to
adaptive resolution simulation, it poses a major challenge for algorithmic implementation in MD or MC computer packages.
Hence, its only application to date is to a system of supercritical methane [180]. A promising approach based on extended
Lagrangian formalism that allows for a smooth transition in the time domain between two different interaction potentials
during anMD simulation has been recently introduced in Ref. [181]. For example, a classical force field (MM)MD simulation
can be dynamically switched on demand into a hybrid QM/MM-like simulation once one changes the MM treatment of the
particular subdomain of the system into a QM subsystem and vice versa. Another group of methods couples atomistic with
coarse-grained force fields keeping the resolution of each particle fixed during the simulation. Some of these fixed resolution
approaches make use of virtual sites [182–185]. The virtual sites are defined for groups of fine-grained atoms based on
particular coarse-grained mapping, e.g., MARTINI force field. Thus, the coarse-grained molecules only interact with these
virtual sites and not with the fine-grained atoms. Then, using the virtual sites one defines the mixed interactions between
atomistic and coarse-grained molecules in a straightforward way, such that they are treated either the same way as the
pure intermolecular interactions between coarse-grained molecules or they are slightly reparametrized. The interactions
between molecules of the same resolution are described by respective pure force-fields without further alternations.
Similar fixed resolution approaches are reported in Refs. [186–190]. This kind of methods has been applied to variety of
biomolecular systems. Another interesting approach, named Relative Resolution (RelRes), has been introduced in Ref. [191].
In RelRes, molecules interact with each other via fine-grained interactions at small relative separations whereas coarse-
grained potentials are used for intermolecular interactions at large relative separations. This approach can be understood
as an extension of force truncation [191]. Riniker et al. [192] mixed atomistic and supramolecular coarse-grained water
in the MD simulation of liquid water. They parameterized the mixed fine- and coarse-grained interactions to reproduce
thermodynamic and dielectric properties of liquid water at ambient conditions for various mole fractions of coarse-grained
in atomistic water. Finally, let us also mention adaptively restrained particle simulations (ARPS), introduced by Artemova
et al. [193]. ARPS allows us to speed up particle simulations by adaptively switching on and off positional DOFs, while
allowingmomenta to evolve. This is achieved by introduction of a Hamiltonianwith amodified inverse inertiamatrix, which
is used to specify how and when the positional DOFs are switched on/off during the simulation.
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3.2. Open boundary molecular simulations

As already discussed in the Introduction, many physical systems are open, i.e., mass, momentum, and energy are
exchanged with the surroundings. However, standard MD simulations as well as adaptive resolution simulation approaches
presented in the previous subsection are typically performed using periodic boundary conditions with a constant number
of particles. In other words, the studied systems are closed without the possibility of using arbitrary external boundary
conditions, which would allow us to incorporate into our model the transfer of mass, momentum, and energy across the
boundaries of the studied molecular system. In the following, we present a few simulation approaches, based on AdResS,
to go beyond this limitation and make it possible the molecular simulations of open systems, either in thermodynamic
equilibrium in the GC ensemble or under arbitrary non-equilibrium conditions.

3.2.1. AdResS within the framework of the Grand Canonical ensemble
The main criticism to the standard AdResS method is that, because it is based on interpolation of forces, it does not allow

to define a global Hamiltonian. Hence, the averages done in the high resolution region, while numerically sound, should not
be justified from a statistical mechanics point of view [103,171,179]. It must be clarified first, that a global Hamiltonian in
an adaptive scheme (such as that of Section 3.1.3), while being technically useful for plugging in the standard algorithms of
MD and MC in a straightforward way, leads to a conceptual misunderstanding if employed as a justification for definition
of a global canonical ensemble [131,194,195]. The basic principle of an adaptive resolution simulation states that the aim of
such simulations is to have, in the high-resolution region of the adaptive setup, the same properties as a full highly-resolved
system. This implies that average properties done in the high resolution region should be computed over a subsystemwhose
number of molecules is variable. Moreover, since the atomistic (or high resolution) DOFs in the low-resolution remainder of
the adaptive setup are either completely integrated out (as in AdResS) or treated only to define the intramolecular energy
(as in H-AdResS), the statistical average of a quantity (where the atomistic DOFs are required) computed globally (and thus
requiring a global Hamiltonian that defines a global canonical ensemble) may not necessarily have a physical meaning by
definition. For example, let us consider a system of liquid water (using a flexible atomistic water model) in the H-AdResS
setup, where atomistic intramolecular DOFs are defined everywhere (also in the low resolution domain). This means that
one can define dipole moments of individual water molecules throughout the entire simulation box. Now, using a global
Hamiltonian defined by Eq. (64) and computing a statistical average value of the dipolemoment (in the corresponding global
canonical ensemble) would yield some average value. However, this average would not match the corresponding average
value from the full-blown atomistic simulation, as the orientations of watermolecules in the low resolution domain are false
due to lack of atomistic (electrostatic) intermolecular interactions. Thus, the search for a statistical mechanics justification of
the properties, calculated in the high-resolution subdomain, should follow a different path than that of a global Hamiltonian.

Indeed, the search for formal justification in terms of statistical ensemble for quantities, calculated in the high-resolution
(atomistic) region, has been subject of intensive investigations in the last years. The definition of the thermodynamic
force, on the basis of the empirical principle that different regions at different resolution should have the same chemical
potential (in order to be in thermodynamic equilibrium), represented the first step towards amore rigorous definition of the
thermodynamics and statistical mechanics of the atomistic region. An important step forward was done in Ref. [133]. There,
the thermodynamic force is derived following the principle that two open systems, exchanging energy and matter, to be in
equilibriummust satisfy (at equal volume) the equivalence of the grand potential.Moreover, the transition/hybrid region can
be considered as a technical/artificial thin filter, which does not perturb the physics of the atomistic region. Furthermore, it
allows for theproper exchange of energy andmatter and for transformation ofmolecules froma coarse-grained reservoir. The
formal expression results in: pAT + ρ0

∫
∆
FTD(r)dr = pCG, where pAT is the chosen pressure of the atomistic system (region),

pCG is the pressure of the coarse-grained model, ρ0 is the chosen molecular density of the atomistic system (region). From
this point on, the question is, whether the idea of balance of grand potential and having the coarse-grained plus hybrid region
as a reservoir of energy and matter can be formalized more precisely in terms of the atomistic region as a GC ensemble. In
fact, if the atomistic region can be considered in the GC ensemble, then all the averages done in such a region are rigorously
defined in terms of statistical mechanics, as clearly underlined also in Ref. [175].

This idea was explored in Refs. [196,197]. It was found that the thermodynamic force in terms of gradient of the number
density ρ expresses a mathematically necessary and numerically sufficient condition to have a GC distribution in the
atomistic region, independently of the coarse-grainedmodel. The latter can be any liquid of spherical particles with the only
(technical) constrain that it is at the same density as the liquid in the atomistic region. Moreover, the sum of the work of the
thermodynamic force in the transition region, plus the energy provided by the thermostat, ωTD

+ ωQ (corresponding to the
latent heat of the previous sections) equals the difference of chemical potential between the atomistic and coarse-grained
regions, µCG − µat . A quantitative proof, that the concept introduced above was very solid, was done by calculating the
excess chemical potential of various liquids andmixtures, following the procedure outlined above [198]. Table 1, reports the
satisfactory results found. Due to the fact that the coarse-grained region could be represented by any generic liquid of spheres
and that the attention of our physical analysis was focused on the atomistic region only (as a GC-like ensemble), we renamed
this approach ‘‘GC-AdResS’’. However, even in the detailedmathematical analysis of Ref. [197], the definition of Hamiltonian
of interest is not straightforward. To define the Hamiltonian of the atomistic region, one has to use the following technical
operation: part of the atomistic region is included in the transition region, so that the interaction between a smaller atomistic
region (now the region of interest) and the rest of the system is restricted to awell defined standard atomistic interaction only
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Table 1
The excess chemical potential for different mole fractions of solute (x) calculated following the GC-AdResS procedure and the thermodynamic integration
(TI) technique of full atomistic simulations. The comparison with the standard technique used in MD (TI) and (when available) with experiments shows
a very satisfactory agreement.
Source: Reprinted from Ref. [198].
Liquid component x GC-AdResS TI Experiment

Water – −22.8± 0.2 −22.1± 0.3 −23.5
Methane – −4.6± 0.1 −5.2± 0.1 –
Ethane – −8.2± 0.3 −8.8± 0.1 –
Propane – −8.5± 0.1 −9.5± 0.2 –
Methanol – −20.1± 0.1 −20.6± 0.4 −20.5
DMSO – −32.2± 0.3 −34.7± 0.7 −32.2
Methanol in methanol/water mixture 0.01 −18.1± 0.2 −19.7± 0.2 –
Methane in methane/water mixture 0.006 9.1± 0.1 8.5± 0.2 –
Urea in urea/water mixture 0.02 −56.1± 0.6 −58.2± 0.5 −57.8± 2.5
Ethane in ethane/water mixture 0.006 7.2± 0.2 7.4± 0.3 –
TBA in water/TBA mixture 0.001 −19.5± 0.3 −20.8± 0.6 −19.0
DMSO in DMSO/water mixture 0.01 −31.4± 0.5 −33.2± 0.3 –
TBA in TBA/DMSO mixture 0.02 −24.8± 0.4 −24.0± 0.5 –

(due to the cutoff of the atomistic interaction). Because of this, it can be written analytically. This procedure is conceptually
acceptable and numerically valid but not optimal, because it implies the loss of some computational gain. Moreover, it does
not provide a direct check of themain hypothesis, on which the GC ensemble is built in statistical mechanics, i.e., the surface
energy must be negligible w.r.t. the volume energy of the atomistic region (see e.g. the derivation of K. Huang [58]). This
aspect was treated in a following work [199] and a solution was found by explicitly identifying the interaction energy of
the molecules of the atomistic region with the reservoir (transition region). In the following, we will consider the atomistic
region as the system of interest and the rest as reservoir. To this end, we identify themodels A and B of Section 3.1.2 with the
coarse-grained (CG) and atomistic (AT) regions, respectively, while the transition region is identified with the hybrid (HY)
region, the CG+HY region is defined as the reservoir (RES). For molecule α, at position Rα in the AT region of AdResS, one has
wα = w(Rα) = 1. The corresponding force can be partitioned in two parts, i.e., (a) the force generated by the interaction of
molecule α with molecules of the AT region:

Fαβ = FATαβ ,∀β ∈ AT (67)

and (b) the force generated by the interaction with the molecules in the reservoir:

Fαβ = wβFATαβ + [1− wβ ]F
CG
αβ ,∀β ∈ HY + CG. (68)

From Eq. (67) one can express the force acting on molecule α in terms of the gradient of the atomistic potential:

Fα =
∑
β ̸=α

FATαβ = −
∑
β ̸=α

∇αUAT , (69)

where ∇α is the gradient w.r.t. molecule α. Eq. (68) corresponds to the action of the molecules in the reservoir on molecule
α, that is an external force (w.r.t. the AT region). Eq. (68) can be rewritten as:

Fα =
∑

β∈HY+CG

[wβFATαβ + [1− wβ ]F
CG
αβ ] = −

∑
β∈HY+CG

[wβ∇αUAT
+ [1− wβ ]∇αUCG

]. (70)

Eq. (70) implies that the net force onmolecule α can be considered as a (non-local) gradient field instantaneously generated
by the external field due the other molecules (of the reservoir). It follows that the energy of molecule α at time t > 0
associated with the coupling force can be defined as:

Wα
AT−RES(t) =

∑
β∈HY+CG

[wβUAT
αβ + [1− wβ ]U

CG
αβ ], (71)

where the U ·αβ is the interaction energy between molecule α at position Rα and the other molecules sitting at a certain Rβ .
The total AT − RES energy of the molecules in the atomistic region at time t is then defined as:

WAT−RES(t) =
∑
α∈AT

Wα
AT−RES(t) . (72)

The quantity of Eq. (72) is nothing else than the surface energy of [58] and must be compared to the amount of
energy, WAT−AT , corresponding to the interaction between molecules of the AT region only (volume energy in Ref. [58]):
WAT−AT (t) =

∑
α<βU

AT
αβ;α, β ∈ AT . From the formal and computational point of view, if:

|WAT−AT (t)| − |WAT−RES(t)|
|WAT−AT (t)|

≈ 1; ∀t (73)
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Fig. 5. Main figure: Interaction energy of the atomistic region only as a function of time, WAT−AT (t) compared to the interaction energy between the
atomistic region and reservoir,WAT−RES (t). The energy of the atomistic region is at least one order of magnitude than the atomistic-reservoir energy. Inset:
The ratio |WAT−AT (t)|−|WAT−RES (t)|

|WAT−AT (t)|
as a function of time. It is evident that the surface effect is, at most, of 10%. However, in other tests done with larger systems

of typical interest in AdResS, the effect goes even below 1.0%.
Source: Reprinted from Ref. [199].

then the surface effects are negligible w.r.t. the volume effects and thus it seems reasonable to approximate the total energy
of the atomistic region by the Hamiltonian of the AT region only,

HAT ≈ HAT−AT . (74)

Fig. 5 shows that, for liquid water, even for relatively small atomistic regions, sizable hybrid regions and relatively small
coarse-grained region (i.e. a worst-case-scenario from the technical point of view) condition (73) holds.

In general, the importance of condition (73) is that it provides a practical criterion to check whether or not one is in the
conditions for treating the atomistic region in a GC fashion, i.e., if the method, in this sense, is truly rigorous. This shows
that a global Hamiltonian is not needed in order to justify the statistical averages done in the atomistic region. Moreover, the
design of the reservoir can be arbitrarily done and simplified to a very basic level, as long as the conditions of the BLmodel are
satisfied. For example, in the particular case of numerical studies of liquid water reported here, the coarse-grained region is
composed of a liquid of simple soft spheres. Thus, it does not have any structural similarities (i.e. radial distribution function)
with the actual liquid of the atomistic region. The possibility of such simplifications paves the way for a simple and efficient
design of an interface with, e.g., hydrodynamic approaches (see Section 3.2.2), and thus, as a matter of fact, GC studies with
infinite reservoirs.

Finally, as reported in Section 2.1 and in Refs. [199,46], the calculation of equilibrium time correlation functions in the
GC ensemble requires the formalism of Bergman and Lebowitz. In Ref. [199], it has been shown a plausible correspondence
between the BL model and GC-AdResS. A fully rigorous procedure would require the writing of the BL kernel KNM (X ′N , XM ),
reported in Section 2.1, explicitly in terms of the forces of AdResS. However, this would be a formidable task at this stage.
Instead, in a simpler, yet satisfactory way for the justification of the numerical approach, the correspondence was done
by (a) identifying the Hamiltonian of the BL model with the Hamiltonian of the atomistic region, HAT−AT , (b) by then
showing that the thermodynamic force in GC-AdResS enforces the BL condition

∑
∞

N=0

∫
dX ′N [KMN (XM , X ′N )ρ(X

′

N ,N, t) −
KNM (X ′N , XM )ρ(XM ,M, t)] = 0, and finally (c) the definition of the chemical potential required by the BL model is achieved
through the work of the thermodynamic force plus that of the thermostat. Furthermore, we checked that the conditions of
thermodynamic invariance of the reservoir in time and of symmetric exchange of particles required by the BL model were
satisfied in GC-AdResS. It is reasonable then to consider the BL model as the conceptual mathematical and physical basis
for GC-AdResS so that it can be considered an open boundary GC simulation model. The consequence is the operational
definition of time correlation function of the AT region in GC-AdResS, as reported in Section 2.4. Following such a definition,
numerical tests were then carried on for various time correlation functions and the results were rather satisfactory (see,
e.g., Fig. 6). It must be reported that, to avoid artificial effects in the dynamics of the atomistic region, the thermostat acts
only in the reservoir (i.e. transition region plus the coarse-grained region). The question remaining for the readers of this
work is, where to go from here. The task of writing, in a rigorous way, the BL kernel explicitly, in terms of MD computable
quantities, would be a rather desirable result. At this stage, we can only speculate that if a solution to this problem is found,
any open boundary approach, based on MD, would necessarily converge to such a solution leading to a general algorithm
of universal character. The work reported here, can be envisaged only as a starting point, although already sufficient for
numerical applications.

3.2.2. Open Boundary Molecular Dynamics (OBMD)
An open boundary methodology that truly opens up the simulation domain and allows for molecules exchange is the

OBMD method [81,82], which is a combination of two methods, i.e., open MD [200,201] and AdResS. Open MD enables us
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Fig. 6. (Left column) Three equilibrium time correlation functions for liquid water using the SPC/E model at room conditions. The functions are calculated
using GC-AdResS and, in an equivalent subsystem, a fully atomistic simulation. The functions are defined as: velocity–velocity autocorrelation function,
CVV (t), (molecular) dipole–dipole autocorrelation function, Cµµ(t), reactive flux correlation function, k(t) (semilogarithmic plot). The agreement between
GC-AdResS and the fully atomistic simulation is highly satisfactory. Reprinted from Ref. [199]. (Right column) Systematic convergence of CVV (t), Cµµ(t) and
k(t) (semilogarithmic plot) calculated using GC-AdResS to the fully atomistic results calculated over the whole system (NVE simulation). Here, the principle
of equivalence of ensembles in the thermodynamic limit (GC and microcanonical in this case) is checked by systematically increasing the AT region in a
large GC-AdResS simulation. The obtained results are compared with a full atomistic simulation of a large system in the microcanonical (NVE) ensemble.
This result, together with that of the previous figure, shows the consistency of the operational definition of time correlation function given by the BL model
within the GC-AdResS numerical setup.
Source: Reprinted from Ref. [199].

to insert heat and momentum through the boundary of computational domain by external forces acting on the adjacent
buffer domains. To allow the mass exchange buffers act also as molecules reservoirs, where molecules are deleted and
inserted facilitated by AdResS, as explained shortly. A representative OBMD(≡ open MD+AdResS) system is depicted in
Fig. 7, showing an OBMD setup of star-polymer melt. There, relatively large star-polymers molecules freely flow inwards
or outwards of the simulation box according to the externally imposed thermo-mechanical state. The central MD domain
(region of interest) is sandwiched between two buffer domains [82]. The latter two allow the former to exchange mass,
momentum, and energy through two of its boundaries with the buffers along the horizontal x-direction. Thus, the OBMD
system is opened, i.e., not periodic, in this direction. The star polymers freely move between the MD and buffer domains.
Additionally, in the buffers, the resolution change from the fine- (next to the MD domain) to the coarse-grained resolution
(at the outer boundaries of the simulation box) takes place. In the coarse-grained parts of the buffers, a given star polymer,
consisting of 73 monomers, is represented with only one very soft coarse-grained bead. Here, we face the same problem as
in computation of chemical potential [67,202], namely the difficulty of inserting the newmolecules into a dense liquid. Thus,
the idea behind the resolution change in the buffers is that AdResS allows the insertion of molecules of arbitrary size into
the system. The coarse-grained domains of the buffers act as a mass reservoir where large molecules can be easily inserted
due to soft effective interactions among coarse-grained beads [203–205] (see below). Then, as the molecules move toward
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Fig. 7. OBMD setup of a star-polymer melt. The MD domain is embedded with two buffer domains, which serve as mass and momentum reservoirs (see
text). For technical and other details the reader is referred to Refs. [81,82].
Source: Reprinted from Ref. [82].

the MD domain, they gain the fine-grained details employing AdResS in the buffers. Molecules are deleted once they leave
the outer boundary of a given buffer and new molecules are inserted to achieve the mass balance, i.e., to have a desired
average density in the buffer. The mass balance is controlled by a feedback algorithm, ∆NB = (∆t/τr )(⟨NB⟩ − NB), where
⟨NB⟩ and NB are the average and the current number of molecules in the buffer, while τr is the characteristic relaxation time
of the buffer, typically of the order τr ∼ O(100) MD timesteps. A molecule is deleted if ∆NB < 0 or when the molecule
leaves the simulation box at the outer boundary of the buffer. New molecules are inserted if ∆NB > 0. The insertion at the
coarse-grained domain of the buffers is carried out by an iterative algorithmUSHER, which is a Newton–Raphson-like search
method on the potential energy surface [203,204].

To impose boundary conditions to the computational domain, OBMD resorts to external force Fext acting on a given buffer
Bwith the interface of surface A to the MD domain. Fexttot is computed from themomentum and energy flux balance [200,206]

Jp · nA∆t = Fexttot∆t +
∑
α′

∆(Mα′V α′ ) (75)

Je · nA∆t =
∑
α∈B

Fextα · V α∆t +
∑
α′

∆ϵα′ , (76)

where Jp and Je are the momentum flux tensor and heat flux vector, respectively, that one would like to impose across
each MD boundary over timestep ∆t , and Fexttot =

∑
α∈BF

ext
α . Here, n is the unit vector normal to the buffer interface (along

the x-direction in Fig. 7) and index α′ runs over molecules that have entered or exited the buffer in the last timestep ∆t .
Hence, for the momentum change we have that ∆(Mα′V α′ ) = ±Mα′V α′ if the molecule α′ enters (+) or leaves (−). The
corresponding energy change is ∆ϵα′ = ±ϵα′ . Thus, these terms of Eqs. (75) and (76) measure the momentum and energy
release due to molecule exchange with the surrounding. Eqs. (75) and (76) ensure that the total linear momentum and
energy are conserved [81]. In the following, we will devote our attention on the linear momentum balance only. For further
discussion on the energy transfer, please read Refs. [200,201].

Next, we have to redistribute the total external force Fexttot = A
(
Jp · n−

∑
α′∆(Mα′V α′ )

A∆t

)
=

∑
α∈BF

ext
α , which exactly

conserves the linear momentum of the whole molecular system (buffers + MD domain), at each particular time among the
molecules in the buffer B (α ∈ B) with Fextα = 0 outside B (α ̸∈ B). Thus,

Fextα = G(Rα)Fexttot , (77)

whereG(Rα) is aweighting function, i.e.,
∑

α∈BG(Rα) = 1, with, in general, tensorial form (to distribute normal and tangential
forces) [81].

Now, we are all set to write down equations of motion for a given molecule α in the OBMD system (MD domain+two
buffers). Exploiting Eqs. (49), (53), (77) and (58) the dynamics is governed by

dRα
dt
= V α, (78)

Mα

dV α

dt
= FAdResSα + Fthermo

α + Fextα . (79)

Since the change of molecular resolution takes place in the buffers and not in our region of interest, i.e., the MD domain,
we set FTDα = 0 in Eq. (49). We are allowed to do this because the density fluctuations due to coupling of fine- and
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Fig. 8. (Left) Normalized density profile across the simulation box. In the MD domain (region of interest), the density profile is homogeneous and density
reaches the bulk value. There is a noticeable density undulation present at the interface between the coarse-grained (CG) and transition (HY) regions in the
buffer because there is no thermodynamic force applied (see text). (Right) Equation of state obtained from closed (with periodic boundary conditions in
all three directions applied) and OBMD simulations in thermodynamic equilibrium. p(ρ) curve in closed systems is obtained by varying system’s density
and computing the corresponding pressure from relaxed equilibrium state. In open system, p(ρ) is calculated by changing externally imposed pressure and
monitoring the density to which the system relaxes. All equations of state match well within the error bars.
Source: Adapted and reprinted from Refs. [81,82].

Fig. 9. Relative mass fluctuation of the MD domain of the OBMD setup from Fig. 7. GC theoretical prediction Std[M]/M = [kBT/(Mc2T )]
1/2 and the

ideal gas limit using the isothermal sound velocity c idT = (kBT/Mm)1/2 are also shown. The right ordinate axis shows the values of the isothermal sound
velocity cT = (∂p/∂ρ)T using equation of state from Fig. 8 (right) and compared with ω/keff computed from the oscillation frequency ω of the total mass
autocorrelation function in the MD domain.
Source: Reprinted from Ref. [82].

coarse-grained models using AdResS are small in comparison with the overall density change in the buffers, see Fig. 8 (left).
Thus, FAdResSα includes only pairwise intermolecular interactions as does the Fthermo

α of the DPD thermostat, both preserving
linear momentum. The nonphysical density wave reflections that might occur can be reduced employing non-reflecting
boundaries [207].

As already stated, OBMD allows us to impose the external pressure tensor and the heat flux across the boundaries
of the computational domain, see Fig. 8 (right). The external pressure and temperature determine the external chemical
potential via the Gibbs–Duhem route. These are the independent parameters of the Grand-Canonical ensemble. Therefore,
OBMD allows us to perform Grand-Canonical MD simulations with a fluctuating number of molecules. The fluctuations
in the number of molecules inside the MD domain are consistent with the prediction from the GC ensemble, as shown in
Fig. 9. Extended ensembles under non-equilibrium stationary states and time-dependent forcing can also be simulated using
OBMD [81,82]. OBMD can be also used as an interface to connect MD with continuum hydrodynamics in hybrid particle-
continuummethods [208]. This will be discussed in more detail in Section 3.2.3 later on.

To wrap up this subsection on OBMD, let us briefly mention also some related recent methods. A simplified OBMD-
like scheme, named particle exchange AdResS (PE-AdResS), has been introduced in Ref. [209]. In that setup, to mimic an
open boundary, AdResS is combined with a Metropolis particle exchange criterion to perform an identity swap at eight
corners of the simulation domain. The corners act as coarse-grained (for easier particle identity exchange, similarly as
in OBMD) reservoirs. Individual solvent components are allowed to fluctuate through the swap of identity of particles
based on standard Metropolis criterion, which happens whenever depletion is observed. However, this is only a semi-GC
method because the total number of particles in the simulation domain remains constant during the course of simulation,
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Fig. 10. (c) Domain decomposition of triple-scale liquid water system: coupling of atomistic and continuum hydrodynamics. The MD domain contains
atomistic water surrounded by continuum fluid dynamics (CFD) domains in the horizontal direction. Periodic boundary conditions are used in the
orthogonal directions. The momentum flux is exchanged across the interface H. (b) Particle buffers B contain a multiscale description, which includes
all-atom (ex), coarse-grained (cg) and hybrid (hyb) models. (a) Particle buffers B contain only cg description, while the change of molecular resolution takes
place inside the MD domain.
Source: Reprinted from Ref. [225].

i.e., particle do not enter or leave the simulation domain, only their identities are swapped. Themethodwas applied to study
an experimentally observed coil-globule-coil transition of poly(N-isopropylacrylamide) (PNIPAm) in aqueous methanol
mixture.

Yet another promising idea has been introduced in Ref. [149], where atomistic liquid models have been coupled to the
ideal gas byusing bothAdResS andH-AdResS. Theunderlying idea is that employing the ideal gas as the coarse-grainedmodel
in the low resolution domain makes intermolecular interactions redundant bringing high computational-efficiency gains.
However, the number of molecules in this approach fluctuates only in the high resolution domain by exchanging molecules
with the low resolution domain where one imposes the periodic boundary conditions at the boundaries of simulation box
in all three directions. On the other hand, the total number of molecules in the system remains constant [210,211]. This
is essentially the same as focusing on some subdomain in a closed full-blown atomistic simulation, corresponding to the
adaptive resolution simulation where the same atomistic model from the fine-grained domain is used as a coarse-grained
model in the low resolution domain (see discussion below Eq. (52)). The variance of fluctuating quantities, e.g., number of
molecules in the subdomain of interest, will not be fully in agreement with the GC ensemble (as, on the contrary, they are
in OBMD, see Fig. 9) but there will be some finite size effects due to periodic boundary conditions at the boundaries of the
simulation box [211]. Of course, in the approach presented in Ref. [149], using the cheapest coarse-grainedmodel in the low
resolution domain, i.e., the ideal gas, one can afford to make the low resolution domain very large, mitigating the finite size
effects.

3.2.3. Coupling to continuum hydrodynamics
OBMD, described in previous Section 3.2.2, enables us to couple particle-based open MD system with continuum

hydrodynamics to describe the external fluid flow. A hybrid method that aims to couple atomistic and continuum descrip-
tions of liquids needs to satisfy the following requirement: physical quantities, e.g., density, momentum, energy, and the
corresponding fluxes must be continuous across the interface between the two resolutions where atomistic and continuum
domains provide each other with boundary conditions. To impose boundary conditions from the atomistic to continuum
domain is non-problematic as it involves temporal and spatial averaging. Imposing the continuum boundary conditions on
the particle domain presents the major challenge in development of the hybrid methods. For this purpose, there have been
two kinds of schemes presented in the literature:methods that use the state-variable coupling [212–217] andmethods based
on flux-exchange [206,218,219]. In the following, we will briefly describe, how this is done using OBMD, where Eulerian
hydrodynamics and MD are interfaced, and refer the interested reader to reviews on this topic [208,201,220,81].

OBMD allows us to couple an open molecular domain with continuum fluid dynamics domains via the flux-exchange
(hybridMD) coupling [200,206,218,221–224], resulting in a triple-scale setup [219,225] depicted in Fig. 10. In this triple-scale
approach, the particle-based OBMD domain is simulated by MD simulation. The dynamics of molecules is thus governed by
Newton’s equations of motion, as explained in Section 3.2.2. On the other hand, continuum description enables the study of
macroscopic fluid flows. The fluid is described by Navier–Stokes equation:

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p+∇ ·Π + f, (80)
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which is derived from the law of conservation of momentum, i.e., macroscopic Newton-like equation of motion. Here, u, p,
ρ, and f represent fluid’s velocity field, pressure, density, and external force acting on it, respectively. Stress tensor is given
by:

Π = −η[∇u]S − ξ∇ · u I, (81)

with dynamic viscosity η and bulk viscosity ξ . The traceless symmetric tensor is defined as AS
αβ = (Aαβ + Aβα) −

(2/3)Aγ γ [219].
One can recast the Navier–Stokes equation, Eq. (80), in a form of conservation equation as [218]

∂φ/∂t = −∇ · Jφ . (82)

Here, φ(r, t) denotes a conserved fluid variable and Jφ(r, t) the associated local flux. The relevant conservation laws aremass
(φ = ρ, Jφ = ρu),momentum (φ = ρu, Jφ = Jp = p I+ρuu+Π ) (see Eq. (75)), and energy (φ = ρϵ, Jφ = Je = ρϵu+Jp ·u+q)
(see Eq. (76)) ones. In the last conservation law, ϵ denotes energy and q conduction heat flux. Some variables are connected
by constitutive relation: equation of state (p = p(ρ)), caloric equation of state (ϵ = ϵ(ρ, T )), stress tensor (Eq. (81)), and
conduction heat flux (q = −kc∇T ).

Eq. (82) can be numerically solved in different ways [226] but we have resorted to finite volume method, where the
continuum region is divided into small cells of volume VC [218,219]. The conservation laws are then integrated over each of
the cells:∫

VC

∂φ/∂t dV = −
∫
VC

∇ · Jφ dV = −
∮
S
Jφ · dS (83)

dΦC

dt
= −

∑
f=faces

Af J
φ

f · nf . (84)

Here,ΦC =
∫
VC
φ(r, t)dr3 and Af denotes the area of each face that surrounds the volume VC . J

φ

f is calculated as the average
of the flux Jφ in the two adjacent cells to the face f . The discretized Navier–Stokes equations given by Eq. (84) are then
integrated in time using an explicit Euler scheme [224].

TheMD and continuumdomains share an interfaceH , as shown in Fig. 10. The otherwise independentMD and continuum
domains exchange information after every fixed time interval∆tc [219]. Flux balance implies the conservation of mass and
momentum across H , i.e., both domains should receive equally large but oppositely signed mass and momentum transfer
across H over each ∆tc (here, as in Section 3.2.2, for simplicity, we focus only on mass and momentum transfer and leave
the explicit energy transfer out of consideration). The momentum flux across the H interface is then used to update the flow
variables at the continuum boundary cells, according to Eq. (84). In turn, the same (but oppositely signed) flux needs to be
imposed into the particle system across H . This is done using the OBMD protocol described previously (more details can be
found in Refs. [81,219,225]). The presented methodology focuses on coupling with nonfluctuating hydrodynamics but it can
be also used for the fluctuating case [218,224].

Before turning our attention to bridging to the quantum scale in the next section, let us briefly mention few other
recent hybrid approaches interfacing MD and continuum hydrodynamics, which are either based on or adapt a similar
coupling strategy as AdResS. In the approach of Petsev at al. [151], AdResS is used to couple MD to smoothed dissipative
particle dynamics (SDPD) [227]. SDPD is a particle-based, Lagrangian, continuum solver used to numerically, in an MD-like
fashion, solveNavier–Stokes equations. SDPD is a fluctuating extension of smoothedparticle hydrodynamics (SPH) [228,229],
incorporating thermal fluctuations. The hybrid MD/SPDP approach was applied to Lennard-Jones fluid [151]. On the other
hand, Alekseeva et al. [150] applied AdResS to linkMDwithmultiparticle collision dynamics (MPC) [230].MPC is amesoscale
simulation method for fluid flows, where the fluid is modeled by particles with continuous positions and velocities and
stochastic interparticle interactions. The fluid is discretized into cells with no restriction on the number of particles in
each cell [230]. MPC, which locally conserves mass, momentum, and energy, models hydrodynamics on large length and
times scales. The robustness of the hybrid MD/MPC model was again demonstrated on a Lennard-Jones fluid [150]. Another
interesting hybrid approach has been presented in Ref. [231], where the hybrid MD/continuum hydrodynamics system of
liquid water was considered as two completely miscible liquids using two-phase modeling, i.e., one phase corresponding to
the MD and the other to fluctuating continuum hydrodynamics. Coupling between the two models is achieved by allowing
exchange of mass and momentum between the two phases and introducing a parameter that quantifies the distribution of
mass and momentum between the phases. This parameter, which varies between 0 and 1, is introduced in a similar fashion
as the weighting function in AdResS, Eq. (39), where the value 0 corresponds to MD description whereas 1 describes the
continuum phase.

4. Quantummolecular systems with open boundaries: some examples of simulation techniques

The description of quantum systems, as expected, cannot be done via a mere extension of classical theories. Actually, as
shown with the model of Emch and Sewell in Section 2.2, it may be easier to consider the classical description as a simpler
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subcase of the quantum case. The operator and wavefunction formalism and the peculiarity of the statistics of quantum
particles (compared to the classical case) make the treatment of quantum open boundary systems rather challenging. Until
today only specific situations and under specific approximations, are treated. In this section, we will discuss representative
examples of applications of the concept of exchange of heat and matter between a system and a reservoir for systems
described at different levels of quantum accuracy. Wewill start from the semi-classical (or semi-quantum) approach of path
integral/ring polymer representation of atoms in molecular simulation, where the quantum effect of spatial delocalization
of atoms is considered. We will pay particular attention to the embedding of the AdResS method within the path integral
framework. This allows for the calculation of both static and dynamic properties. Next, we will discuss the extension to
an open boundary setup of the so called Quantum Mechanics/Molecular Mechanics (QM/MM) approaches. Here, electrons
come into the game. Still in fields related to molecular simulation, we will then show two examples, already cited in the
introduction, of techniques which, within the framework of Density Functional Theory (DFT), interface molecular systems
with a reservoir of electrons and nuclei. These are the computation of redox potentials which involves electrodes modeled
as electrons reservoir [25] and the rational compound design where the sampling of the chemical space is achieved by the
GC approach to electrons and nuclei [26,27]. High accuracy in the determination of the electronic properties are assured by
wavefunction-based methods. In our context of open boundary systems, we will report about a Hartree–Fock approach for
variable number of electrons and this concludes our review of quantum approaches.

4.1. Open boundary systems and path integral approach in molecular simulation

The path integral (PI) formalism of Feynman is a powerful method to describe the quantum character of spatial
delocalization of atoms in space at a basic level [232]. In particular, the basic quantum features of systems at low temperature
are captured by the PI description [233]; even for systems composed of light atoms at room temperature, e.g., liquid water,
due to the presence of hydrogen atoms, the PI treatment is oftenmandatory [234]. For this reason, quantumeffects, due to the
spatial delocalization of atoms, are treated in molecular simulation via the path integral technique [47]. The introduction of
the PI formalism in molecular simulation/dynamics of molecular systems is a well known approach. Thus, here we describe
only the relevant aspects of its formal derivation. More details can be found in Appendix C, while a clear and complete
treatment of the subject can be found in, e.g., Refs. [47,235]. The relevant part of the idea for molecular simulation is the
transformation of a classical Hamiltonian ofNdistinguishable particles (atoms) in a quantizedHamiltonian,which is formally
equivalent to an effective Hamiltonian of classical polymer rings each of which represents one atom. If one starts from a
classical Hamiltonian of atomswith phase space coordinates (p, r), massmj (mass of the jth atoms) and interaction potential
V (r1, . . . , rN ):

H =
N∑
j=1

p2
j

2mj
+ U(r1, . . . , rN ), (85)

then the PI formalism allows to transform Eq. (85) into:

HP =

P∑
i=1

⎧⎨⎩
N∑
j=1

1
2
mjω

2
P (r

(i)
j − r(i+1)j )2 +

1
P
U(ri1, . . . , r

i
N )

⎫⎬⎭ , (86)

where the classical kinetic term for an atom is transformed into an effective polymer ring. Its P beads are linked via a first-
neighbor harmonic interaction and the classical interatomic potential is now distributed over the beads in such a way that
each bead of a polymer ring interacts with the corresponding bead of another polymer ring (i.e. of another atom). In simple
terms, the quantized Hamiltonian corresponds to an isomorphism between a quantum system and a classical system of
ring polymers. Here, ωP =

√
P

βh̄ (β = 1/kBT ) and U(ri1, . . . , r
i
N ) is the potential that acts between same bead index i of two

different particles (see Fig. 11 for a pictorial illustration). The effect of spatial delocalization of an atom is mimicked by the
spatial fluctuation of the polymer ring and by the distribution of the interactions over different sites. The implication is
that by sampling configurations in space via molecular simulation of a system composed of ‘‘effective’’ classical polymers
one would obtain a basic quantum statistical description of the ‘‘real’’ system. Eq. (86) suggests that a natural approach to
sample such configurations for the calculation of static properties can be done via a standard MC technique. However, via a
further formalmanipulation, it is also possible to employMD for both static and dynamic properties. The technical aspects of
this procedure are reported in detail in Appendix D. Next, we will focus on the description of both cases: (a) the PI approach
in the GC MC technique and the PI approach within the MD technique for open boundary systems (in the AdResS fashion).

4.1.1. Path integral Monte Carlo in the grand canonical ensemble
The quantum–classical isomorphism of Eq. (86) reduces the GC MC sampling of a quantum system in real space to a

standard GC MC of a classical system of ring polymers. Hence, the application of this technique is (essentially) very similar
to that already seen for classical systems in contact with a particle reservoir, in Section 3. In this perspective, the paper of
Wang, Johnson and Broughton [236] is considered the reference work for GC MC in real-space path integral simulations. In
the following, we will report an account of their method.
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Fig. 11. Pictorial illustration of the quantization of classical atoms due to the path integral formalism via themapping to a system of classical ring polymers.

The GC partition function is written as:

Ξ (µ, V , T ) =
∑
N

eβµNQ (N, V , T ), (87)

whereµ is the chemical potential andQ (N, V , T ) the canonical partition function,which in the PI formalism (see Appendix C)

is written as: Q = 1
N!

(
2πmPkT

h2

)3NP/2 ∫
exp

[
−β
∑P

i=1

{∑N
j=1

1
2mω

2
P (r

(i)
j − r(i+1)j )2 + 1

P U(ri1, . . . , r
i
N )
}]

dr1 . . . drN (for simplic-
itymj = m; ∀j). It follows that:

Ξ (µ, V , T ) =
∑
N

eβµN
1
N!

(
2πmPkT

h2

)3NP/2

×

∫
exp

⎡⎣−β P∑
i=1

⎧⎨⎩
N∑
j=1

1
2
mω2

P (r
(i)
j − r(i+1)j )2 +

1
P
U(ri1, . . . , r

i
N )

⎫⎬⎭
⎤⎦ dr1 . . . drN . (88)

The probability density is defined as:

P(N) =
1
Ξ

VNeβµN

N!

(
2πmPkT

h2

)3NP/2

× exp

⎡⎣−β P∑
i=1

⎧⎨⎩
N∑
j=1

1
2
mω2

P (r
(i)
j − r(i+1)j )2 +

1
P
U(ri1, . . . , r

i
N )

⎫⎬⎭
⎤⎦

N

. (89)

The displacements of the molecules are driven by the trial move accepted with probability: Pdisp
= min(1, exp(−β∆HP )),

where ∆HP = is the change in total energy. The crucial move, compared to the MC moves for systems with fixed N , is
the creation and deletion of molecules. To this aim, let us consider a system with N molecules in a certain state SN , next a
new configuration SN+1|Γ is generated by inserting a molecule in a certain configuration Γ . It follows that the probability of
observing the new configuration is: G(N → N + 1|Γ ) = N! × P(N)× P(N → N + 1|Γ )× Pacc(N → N + 1|Γ ). Here, the
factor N! corresponds to the counting of all possible permutations of the molecules, P(N) is the probability that the system
is in SN , P(N → N + 1|Γ ) is the probability of choosing a specific conformation Γ out of all possible conformations of the
ring polymers and finallyPacc(N → N+1|Γ ) is the probability of acceptance. The reversemove is driven by the probability:
G(N + 1|Γ → N) = (N + 1)! × P(N + 1|Γ ) × P(N + 1|Γ → N) × Pacc(N + 1|Γ → N). The acceptance criterion for a
(reversible) particle creation is:

Pcreate
= min

(
1,

Pacc(N → N + 1|Γ )
Pacc(N + 1|Γ → N)

)
. (90)

Detailed balance is accomplished equalizing the probability of the forward move and that of reverse move: G(N →
N + 1|Γ ) = G(N + 1|Γ → N), from which it follows:

Pacc(N → N + 1|Γ )
Pacc(N + 1|Γ → N)

=
(N + 1)! × P(N + 1|Γ )× P(N + 1|Γ → N)

N! × P(N)× P(N → N + 1|Γ )
. (91)
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Given the definition of P(N) in Eq. (89), the ratio: P(N+1|Γ )
P(N) essentially isolates the inserted particle in configuration Γ , as a

consequence we have:

Pacc(N → N + 1|Γ )
Pacc(N + 1|Γ → N)

= Veβµ exp

⎡⎣−β
⎛⎝ P∑

i=1

⎧⎨⎩1
2
mω2

P (r
(i)
γ − r(i+1)γ )2 +

N∑
j=1

1
P
U(rijγ )

⎫⎬⎭
⎞⎠⎤⎦

×

(
2πmPkT

h2

)3NP/2P(N + 1|Γ → N)
P(N → N + 1|Γ )

, (92)

where r(i)γ indicates the ith bead of the inserted molecule γ (with conformation Γ ), rijγ is the bead–bead distance between
the bead i of molecule γ with the bead i of the molecule j, and

∑N
j=1

1
P U(rijγ ) is the total interaction energy of molecule γ

with the other N molecules in state SN . In this approach, the sampling of conformations of the inserted molecule is done as
ideally picking it up from a gas of ring polymer fluid, that is the probability of choosing conformationΓ ,P(N → N+1|Γ ) =

P(Γ ) =
exp

[
−β

(∑P
i=1

1
2mω

2
P (r

(i)
γ −r

(i+1)
γ )2

)]
∫
dΓ exp

[
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(∑P
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1
2mω

2
P (r

(i)
γ −r

(i+1)
γ )2

)] . Moreover, one has a probability 1
N+1 of choosing the molecule with conformation

Γ from a state with N + 1 molecules in which at least one must have conformation Γ , that is P(N + 1|Γ → N) = 1
N+1 .

From the considerations above it follows that:

Pacc(N → N + 1|Γ )
Pacc(N + 1|Γ → N)

=
V
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eβµ exp
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Taking into account that the partition function of a single quantum particle is nothing else but the partition function of a
free particle and assuming that we deal with a structureless particle, it follows that the partition function of an isolated path
(ring polymer with P beads) is:

∫
dΓ exp

[
−β

(∑P
i=1

1
2mω

2
P (r

(i)
γ − r(i+1)γ )2

)]
=

(2πmkT )3/2

(2πmPkT )3P/2
. Thus, we obtain:

Pacc(N → N + 1|Γ )
Pacc(N + 1|Γ → N)

=

V exp
(
−β

[∑N
j=1

1
P U(rijγ )

])
N + 1

(
2πmkT

h2

)3/2

eβµ. (94)

Considering further thatΛ =
(

2πmkT
h2

)−1/2
is the thermal wavelength, we finally obtain:

Pcreate
= min

(
1,

V exp[β(µ−
∑N

j=1
1
P U(rijγ ))]

(N + 1)Λ3

)
. (95)

Regarding Pdelete , that is the probability of removing a particle, one can think in the following terms: from a configuration
with N particles a new configuration with N − 1 particles is generated by choosing a molecule in a random way and
removing it. The (microscopically) reversible step would have been made by inserting a molecule with the configuration
of the molecule deleted in a system with N − 1 particles. Given the condition of detailed balance applied to the insertion of
a molecule in a system with N − 1 particles, we can then write:

Pdelete
= min

⎛⎝1,
NΛ3

V
exp

⎡⎣β
⎛⎝N−1∑

j=1

1
P
U(rijγ )− µ

⎞⎠⎤⎦⎞⎠ , (96)

where Γ is the conformation of the deletedmolecule and the interaction energy corresponds to that of the deletedmolecule
with the remainingN−1molecules. This approach has been applied, as test case, to liquid parahydrogen and liquid neon and
the comparison of the simulation resultswith experimental data is highly satisfactory. Themethod, reported here, represents
a seminal work for the GC MC treatment of molecules in the path integral formalism, further work was later on done along
this direction where technical improvements to the basic algorithmwere introduced (see e.g. [237] and references therein).
Dynamical properties, instead, cannot be calculated with such methodology in a straightforward way. In this perspective,
in the next section, we will introduce the path integral methodology in the GC fashion performed through MD. Such an
approach can be realized via the (GC-)AdResS technique, as done for classical systems, adapted to the various PI techniques
of MD.

4.1.2. Path integral molecular dynamics in the adaptive resolution Grand Canonical fashion
The original idea of merging PIMD and AdResS was based on a simple extension of the AdResS principle. The dynamics of

polymer rings, from a technical point of view, is nothing else but the dynamics of classical DOFs. Hence, the standard AdResS
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Fig. 12. Pictorial representation of the GC-AdResS scheme. CG indicates the coarse-grained region, HY the hybrid region where path-integral and coarse-
grained forces are interpolated via a space-dependent, slowly varying, functionw(x) and the explicit resolution region, EX (or PI), is the path-integral region
(that is the region of interest). As an example, we report the case, where the ‘‘local’’ thermostat technique is employed so that the dynamical properties in
the EX region are not altered by the action of the thermostat.
Source: Figure adapted from Ref. [241].

could be applied (technically) in the same way [238–240]:

Fαβ = wαwβF PI
αβ + [1− wαwβ ]F

CG
αβ , (97)

where the only modification/extension is the presence of F PI
αβ , that is the force between beads of the rings representing the

atoms of molecule α andmolecule β , instead of FAT
αβ (see also Fig. 12 for a pictorial representation). However, the force-based

approach does not allow, from the conceptual point of view, a rigorous Hamiltonian coupling between the ring polymers
and the coarse-grained molecules. Since a rigorous Hamiltonian formalism is mandatory for the PIMD approach, the initial
formulation of the problem, from the conceptual point, as done in Refs. [238–240], was based on a mere empirical intuition.
Nevertheless, the results of the simulationwere numerically satisfactory. Later on, the formalization of AdResS in GC-AdResS,
reported in the previous section, provided, as for the classical case, a solid theoretical basis to the setup of PI-AdResS. The basic
principle is based on the same arguments employed for the classical GC-AdResS, that is the coupling force term between the
ring polymers and the hybrid/coarse-grained molecules of the hybrid/coarse-grained region is conceptually not relevant as
long as the reservoir (hybrid plus coarse-grained region) conserves the macroscopic quantity (temperature and density).
However, as for the classical case, one can actually explicitly calculate the energetic contribution corresponding to the
coupling force between the EX region and the reservoir (EX-Res) and show that this contribution is negligible compared
to the interaction energy of the molecules of the EX region only. The total energy of coupling at time t , by simple extension
to the polymer ring formalism of Eq. (72) in Section 3.2.1 is:

WEX−Res(t) =
∑
i∈EX

W i
EX−Res(t) . (98)

WEX−Res(t) must be compared for any t with the amount of energy, WEX−EX (t), that is the energy corresponding to the
interaction between molecules of the EX region only:WEX=EX (t) =

∑
i<jU

ij
EX ; i, j ∈ EX . If

|WEX−EX (t)| − |WEX−Res(t)|
|WEX−EX (t)|

≈ 1; ∀t (99)

then the total energy of the EX region up to a negligible correction corresponds to the energy associatedwith theHamiltonian
of the EX region only. This allows to write a well defined and accurate quantized Hamiltonian for PI-AdResS:

HM
P =

P∑
i=1

⎡⎣ M∑
j=1

mjω
2
P (r

(i)
j − r(i+1)j )2 +

1
P
U(ri1, . . . , r

i
M )

⎤⎦ ; {r1, . . . , rM} ∈ EX (100)

whereM is the instantaneous (variable) number of molecules in the EX region.
Fig. 13 shows that condition (99) holds in all simulations done so far, even in those where the technical conditions are not

optimal (i.e. the size of the EX regionmuch smaller that usually considered in AdResS simulations) [241,242]. The GC-AdResS
method was implemented in different PIMD schemes such as two versions of Ring Polymer Molecular Dynamics (RPMD)
named here H2 and H3 (see Appendix D.0.1 for details) and Centroid Molecular Dynamics (CMD) (see Appendix D.0.2 for
details). Calculations of static and dynamic properties for various systems were performed [241,242]. Here, as an illustrative
example of the robustness of the approach, we report representative results for liquidwater at room condition obtainedwith
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Fig. 13. Main figure:WEX−EX (t) compared toWEX−Res(t). Inset: The relative amount of the interaction between the EX region and the rest of the system along
the trajectory: |WEX−EX (t)|−|WEX−Res(t)|

|WEX−EX (t)|
; the contribution is, at most, of 10%. The example reported here refers to the calculation done with RMPD, however also

for the other approaches one obtains the same results.
Source: Figure adapted from Ref. [241].

the RPMD techniques named H2,H3 and with the CMD technique; see Fig. 14 (static properties), Figs. 15 and 16 (dynamic
properties). As a matter of fact, PI-GC-AdResS represents the first approach of PIMD in a GC (open boundary) fashion. It must
be reported that recently, the PI formalism has been also introduced in the H-AdResS version. In that example, the technical
novelty of a space-dependent particlemass [243]was introduced. This technical development allows to pass from a standard
polymer ring in the EX region to a collapsed ring (one interaction site) in the coarse-grained region. This scheme, as long as
the hypothesis of negligible derivative of the mass as a function of space holds, has been shown to be robust when applied
to a simplified test-case of liquid parahydrogen [194]. However, this approach has not been tested yet on more realistic
chemiophysical systems and the physical consequences of an artificial, non-physical definition of atomic space dependent
mass have not been explored in full, yet.

4.2. QM/MM with open boundaries

An interesting idea, that since its appearance in 1976 [244] has led to important breakthroughs (above all, but not only)
in biochemistry, is the molecular simulation technique named QM/MM [245–247]. The idea is that of interfacing a region of
the system treated at quantummechanical level (QM)with a (usually) larger region treated at the level of classical molecular
mechanics (MM). The QM region is characterized by properties that require a resolution at electronic level. The basic idea
is that the overall role of the environment, although often not dominant, is of high importance and thus it is mandatory to
take it into account. A fully quantum treatment of the systemwould be prohibitive. Under the hypothesis that the electronic
properties of the large environment around a certain region are not relevant, the treatment of its molecules can be done at
classical level, i.e., the environment plays the role of an effective particle-based thermodynamic bath. A typical example is
that of a chemical reaction in complex physicochemical systems such as solutions [248] where the reactants are localized in
space and the reaction mechanism involves only their electrons. However, the reactivity is strongly affected by the overall
(thermodynamic) action of the solvent on the reactants. The key aspect of the QM/MMmethod is the coupling between the
two regions. The original scheme considers the QM and theMM region fixed regarding the number of particle in each region
(i.e. there is no particle exchange). The progress in time in engineering the interface/coupling setup has brought QM/MM
methods of the last generation into the category of method which can treat open boundary systems with variable number
of molecules [170,249–254]. It must be clarified that the explicit intention of the developers is of mere technical character,
that is of minimizing the computational errors in the QM part due to the coupling to the MM part. In this sense, the adaptive
QM/MM, which can be grouped into the category of open boundary approach, shall not be considered a systematic attempt
to build a first-principle procedure for an open boundary quantum systemwith a reservoir of molecules composed of nuclei
and electrons. However, at least at technical level, these methods represent a pragmatic progress towards the treatment
of open boundary systems at quantum level for relevant physicochemical problems. Specific technical details about the
general QM/MM approach are given in Appendix E, while here we report only the basic information required to understand
the approach of open system (i.e. QM system with varying number of molecules) which emerges in adaptive QM/MM. The
primary interest of the developers of adaptive QM/MM is that of having active sites of a systems, e.g., reactive chemical units
of a molecule as binding sites for solvent molecules or other molecules. Around each active site, the interaction is treated
at quantum mechanical level by considering interacting molecules as quantum objects if they are within a certain distance
from the active site or as classical objects if they are outside a certain region. Moreover, molecules can diffuse and change
their identity from classical to quantum as the system evolves in time. In this sense, strictly speaking, the method has more
the character of multiscale approach rather than of a typical (physical) open boundary system. However, for our current
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Fig. 14. From left to right (top): Particle number density and particle number probability distribution. From left to right (bottom): (bead–bead) oxygen–
oxygen, oxygen–hydrogen and hydrogen–hydrogen partial radial distribution functions. Such functions are compared with the results obtained for an
equivalent subsystem (EX = 1.2 nm) in a full path integral (Full PI) simulation. These results were obtained by the RMPD technique H3 . However, we
obtain results with the same satisfactory agreement also using the other PI techniques implemented in AdResS.
Source: Figure adapted from Ref. [241].

interest, we can imagine to have a system with one ‘‘active’’ site around which a QM region is defined and is interfaced
with a reservoir of energy and particles, i.e. the MM region. The major problem in such schemes is that the fluctuations of
number of molecules in the QM region imply a drastic change of the total energy of the system. In order to minimize this
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Fig. 15. The rate function k(t) for q-SPC/FW water model calculated in quantum subregion of GC-AdResS and an equivalent subregion in RPMD (H3 and
H2) simulations. k(t) is the average rate of change of hydrogen-bond population in trajectories where the bond is broken at after a time t (from an initial
reference time). k(t) is derived from the correlation function: c(t) = ⟨h(0)h(t)⟩/⟨h⟩, where h(t) is the hydrogen bond population operator, with value 1, for
bonded pairs, and zero otherwise. Then k(t) = −dc/dt .
Source: Figure adapted from Ref. [241].

Fig. 16. Infrared spectrum for liquid water at 298 K calculated in explicit region of AdResS CMD and an equivalent subregion in the reference CMD
simulations.
Source: Figure adapted from Ref. [242].

problem a buffer or transition region, similar to that introduced by classical and path integral adaptive resolutionmethods, is
introduced (see Fig. 17 for a schematic representation). Differently from the classical or semiclassical/path integral concept
of adaptivity, in this case one must deal with electrons. A paradox then emerges, that is a molecule in the hybrid region
would have a fractional quantum character or, due to the delocalization of electrons, part of the electron cloud is in one
resolution and part in another. For a quantum mechanical treatment, one needs that either molecules are treated at full
quantum level, or as in the standard QM/MM scheme with rigid boundaries, as classical molecules whose role within the
QM Hamiltonian is that of providing external interactions. This problem is solved with a principle common to most of the
current adaptive QM/MM methods, that is at each timestep of the simulation, the buffer region is partitioned in different
subsets. Next, the (standard) QM/MM potential is defined for all the possible partitionings and, for each partitioning, the
molecules of the corresponding subset of the buffer are included in the QM region. Thus, for each of these ‘‘extended’’ QM
regions a standard QM/MM calculation is done. The total potential is then defined as a weighted average of these individual
potentials: U(r) =

∑M
i fi(r)Ui(r), where each Ui(r) corresponds to one of the M partitioning of the system in a group of QM

molecules and a group of MM molecules and fi(r) is the weighting function. The weighting function fi(r) is function of the
coordinates of the molecules and can be expressed in terms of single molecule switching functions. The switching function
is constructed to follow the general principle that the quantum energy of molecules far way from the active site counts less
that the energy of those which are closer. Next, the dynamical evolution, based on such potential energy, is performed and
it creates a new configuration on which the partitioning step is applied once again and the procedure for the calculation of
the potential energy follows as described before. Such an idea has been successfully implemented by several groups, with
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Fig. 17. Schematic representation of the adaptive QM/MM setup.Molecules in the QM region are always treated at quantummechanical level and thus their
electronic properties are calculated explicitly in terms of the wavefunction Ψ or of the electron density ρ(r). In the buffer region, molecules are treated at
both levels classically with an effective localized Coulomb charge q at the interaction sites, or quantum. The treatment of a molecules depends on, whether
it belongs to the QM or MM subset of a particular partitioning of the buffer zone. Finally, the average is made over all possible partitionings of the buffer
zone.

specific choices of the switching function, of the partitioning scheme [249–252] or based on a force interpolation rather than
an energy interpolation [253,254]. Despite numerical results are encouraging, from the technical point of view, due to the
partitioning procedure, the number of QM calculations required (compared to standard QM/MM studies) may represent an
expensive effort. Furthermore, at conceptual level the theoretical framework as open boundary approach is not yet solid.
As underlined before, the process of variation of number of molecules in the QM region is achieved via an artificial path,
in the sense that the introduction of molecules in the QM region does not follow or satisfy rigorous principles of statistical
mechanics. For example, it has not be shown that nuclei and electrons are introduced into the QM region according to a
chemical potential (for the nuclei and for the electrons) corresponding to the thermodynamic conditions expected, as instead
it should be for a GC-like setup of systemwith nuclei and electrons. Hence, the thermodynamic conditions, in which the QM
region effectively is, may not correspond to the conditions expected. In turn, this implies that one should always check, case
by case, that the adaptive QM/MM study reproduces some reference results (from experiment or larger QM/MM). In this
sense, the current technical setups of adaptive QM/MM methods cannot be taken a priori as predictive tool of GC systems,
however, they provide for sure a very solid technical first step towards a rigorous framework to treat the dynamical evolution
of electrons and nuclei in the GC fashion. In the next section, we consider techniques, where the GC setup is explicitly defined
through the introduction of nuclei and electrons according to the corresponding chemical potential. Compared to QM/MM
studies, in these methods only static properties are considered and thus there is no advantage of dynamical evolution of the
system, as offered by the QM/MM approach.

4.3. Density functional theory with a particle reservoir

The development of DFT [255,256] has brought a revolution in the study of condensed matter systems at quantum level.
The theory is based on the Hohenberg–Kohn (HK) theorem [257] which, in essence, provides a one-to-one correspondence
between the ground state properties of a system and its corresponding one-particle electron density. The groundbreaking
consequence is that the explicit (and often prohibitive) calculation of the 3N-dimensional wavefunction of a N-electron
system is no more required in order to know its ground state properties. It is actually enough the knowledge of a
3-dimensional quantity, i.e., the one-particle electron density. The formal principle was then made pragmatic by further
(technical) simplifications of the idea in terms of Kohn–Sham orbitals [258], that is the most used approach to do electronic
structure calculations. In its traditional form DFT was developed for systems with fixed number of electrons and nuclei.
However, an electronic GC theory, i.e., system with a reservoir of electrons, was established by the extension of the HK
energy functional to the so-called Mermin functional [259]. Furthermore, the attempt to go beyond the Born–Oppenheimer
approximations (i.e. the separation of electronic and nuclear Hamiltonian) brought to a formalization of a molecular GC
theory within DFT [260], referred in some work as the CNP theory [26]. In this section, we describe the essence of the
Mermin’s and CNP idea and discuss two important extensions/applications. The basic principles and formulas of DFT are
summarized in Appendix F. Here, we report only those aspects required for the discussion of DFT in terms of open system/GC
setup. The Mermin functional was developed in order to extend the Hohenberg–Kohn theorem beyond the ground state
to nonzero temperatures. In the HK theory the energy functional corresponding to the electronic Hamiltonian, Hel with
external potential v(r) (Hel = T̂ + V̂ee + v(r)) is : E[ρ] = F[ρ] +

∫
ρ(r)v(r)dr, with F[ρ] the universal HK functional

common to all electron systems. The minimum of E[ρ] w.r.t. ρ(r) yields the density of ground state ρ0(r). For a nonzero
temperature T and at a given chemical potential µ, Mermin derived the following energy functional (Grand Potential):
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Ω[ρ](µ, T ) = Fgc[ρ](µ, T )−µN+
∫
ρ(r)v(r)dr (see Appendix F). He has shown that itsminimumw.r.t. ρ yields the electron

density of equilibrium ρ0(r) at the given thermodynamic conditions, (T , µ), in the presence of the external potential v(r) and
ρ0(r) is the equilibrium density of an electronic GC ensemble. The limit to 0K can also be derived (i.e. electronic ground state
in the GC ensemble) and the electronic chemical potential, besides the thermodynamic analogy with classical statistical
mechanics, is interpreted as an indicator of the escaping tendency of electronic cloud or, more precisely, is approximately
equal to the (minus of the) electronegativity [256]. There are few conceptual drawbacks that have been subject of intense
discussions such as the justification of the concept of fractional number of electrons in DFT and the differentiability of
functionals w.r.t. the number of electrons. In fact, being an electron not localized in space, part of it may be out of the system
considered, thus ‘‘fractional electron numbermay arise as a time average in an open system’’ [261]. Despite these questions have
been treated intensely they still remain matter of concern. However, satisfactory answers/solutions have been proposed so
that the idea of electronic GC (KS)-DFT is solid enough to be applied to the study of various systems [261–263] (see also
Appendix F). Tavernelli, Vuilleumier and Sprik, provided an example of important application of the idea of electronic GC
approach, that is, the study of the redox process where the electrodes of a concentration cell is replaced by a reservoir of
electrons [25]. In such case, the problem of fractional electron number has been avoided by considering two different energy
surfaces each corresponding to a systemwith an integer number of electrons. In such away, the Grand Potential at a chemical
potential µ and temperature T is defined as: Ωel(R) = −kBT ln[zN0−1e−βE+(R) + zN0e−βE0(R)], with z = exp(βµ) and R the
nuclei configuration in space, N0 is the number of electrons of a neutral molecule to which corresponds a surface energy
E0(R), while the first cation has number of electrons equal to N0−1 and corresponding energy surface E+(r). The GC scheme
is then embedded into a molecular dynamics procedure by defining the force acting on the Ith atom as: FI = − ∂Ωel

∂RI
. The

electronic optimization is performed separately for the N0 and the N0 − 1 for a given nuclei configuration. So far, we have
seen the case where the GC framework of DFT considers only an electron’s reservoir. However, a step forward was done by
considering the case of molecular Grand Ensemble within the DFT theory. The seminal work of Capitani, Nalewajski and Parr
(CNP) [260] was originally developed to take into account non-Born–Oppenheimer (N-BO) Hamiltonians in DFT, however
the formalism paved the way to the idea of GC-like treatment of electrons and nuclei. In the N-BO approach, the electronic
and nuclear DOFs are no more separated so that the Hamiltonian of N electrons andM nuclei (in atomic units) is:

H = −
1
2

∑
i=1,N

∇
2
i −

∑
j

−
1

2Mj
∇

2
J −

∑
i=1,N

∑
j=1,M

ZJ
|ri − RJ |

+

N∑
i<s

1
|ri − rs|

+

M∑
j<l

ZjZl
|Rj − Rl|

, (101)

with Mj and Zj the mass of the charge of the jth nucleus. The corresponding ground state wavefunction, Ψ (r1......rN ,R1,

. . . ,RM ) , solution of the Schrödinger equation: HΨ = EΨ can then be used to define the one particle electron density:

ρ(r) = ρe(r1) = N
∫
ΨΨ +dr2.....drNdR1......dRM , (102)

and the one particle nuclear density for the nucleus of type a:

ρa(Ra) = ρa(Ra)1 = Ma

∫
ΨΨ +dr1.....drNd(M−1)aR, (103)

where d(M−1)aR indicates the integration over all the nuclear coordinates of each nucleus species, except Ra
1, and Ma is the

number of nuclei of species a. Next, in the spirit of electronic DFT a N-BO ground state density functional is defined as

E[ρe, {ρa
}] = min⟨Ψρe,{ρa}|H|Ψρe,{ρa}⟩. (104)

This functional searches over all the wavefunctions with the appropriate symmetry, which integrate to a specific ρe and {ρa
}

and then delivers the minimum associated energy. Next, in deriving the Euler equation for the ground state density, they
define an auxiliary variational functional Ω[ρe, {ρa

}] whose formalism leads to the (effective) treatment of electrons and
nuclei in the Grand Ensemble. The auxiliary functional is defined as

Ω[ρe, {ρ
a
}] = E[ρe, {ρa

}] − µ

[∫
ρe(r)dr− N

]
−

∑
α=a,s

λα

[∫
ρα(Rα)dRα −Mα

]
, (105)

where the index α covers all the nucleus species, andµ and λα are Lagrange multipliers. The solution of the set of associated
Euler equations

δΩ

δρe(r)
=

δE
δρe(r)

− µ = 0, (106)

and
δΩ

δρα(Rα)
=

δE
δρα(Rα)

− λα = 0, (107)

leads to the ground state densities: ρe(r)G.S.; ρα(Rα)G.S.. Importantly, µ and λα can be interpreted as chemical potentials of
the respective components and such identification is of key importance for the use of such ideas to construct a molecular GC
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ensemble (i.e. simulations at constant chemical potential and variable number of electrons and nuclei, see also Appendix F
andRef. [263]). The Euler equations (106), (107) allow toderive the definition of thermodynamic quantitieswhich involve the
variations of the number of electrons and nuclei, as it is reported in the example below. As an example, the basic framework
outlined above was taken as a basis to develop a molecular GC DFT approach for exploring the chemical space in search of
novel molecules with optimized properties. The method has been proposed by von Lilienfeld and Tuckerman [26] and is
developed within the general framework of the alchemical free energy perturbationmethod discussed in Section 3.1.1; they
employ a functional similar to (inspired by) that of CNP. However, they also conclude that at zero temperature andwhen the
nuclei are treated at classical level (i.e. strictly localized in space) and so the nuclear density becomes: Z(r) =

∑
INIδ(r−RI ),

(NI is the total number of protons in atom I) instead of a global multiplier λα corresponding to the nucleus species α as in
the CNP, it is necessary a local multiplier of the form λ(r). A modification of the CNP auxiliary functional is then proposed:

Ω[Ne; ρ, Z] = E[Ne; ρ, Z] − µe

(∫
ρ(r)dr− N

)
−

∫
drµn

(
Z(r)−

∑
I

NIδ(r− rI )

)
, (108)

where Ne, ρ, µe are the total number of electrons, the electron density and the electron chemical potential respectively, and
µn(r) is the position dependent Lagrange multiplier associated to the nuclear density. The associated Euler equations, as for
CNP, determine the exact ground state densities ρ(r) and Z(r), the stationarity ofΩ leads to the conditions:

µe =

[
δE[Ne; ρ, Z]
δρ(r)

]
Z(r)
=

[
δE[Ne; ρ, Z]

δNe

]
Z(r)
, (109)

and

µn(r) =
[
δE[Ne; ρ, Z]
δZ(r)

]
Ne

. (110)

The sampling of the chemical space is then achieved by linking different points A and B in chemical space via Kirk-
wood/adiabatic integration [264]

∆F =
∫ B

A
dλ
⟨
∂E(λ)
∂λ

⟩
λ

=

∫ NB
e

NA
e

dNe

⟨
δE[Ne; ρ, Z]
δρ(r)

⟩
Ne

+

∫
dr
∫ ZB(r)

ZA(r)

⟨
δE[Ne; ρ, Z]
δZ(r)

⟩
Z(r)
, (111)

which corresponds to

∆F =
∫ NB

e

NA
e

dNe⟨µe⟩Ne +

∑
I

∫ ZB(r)

ZA(r)
dZ(RI )⟨µn(RI )⟩Z(rI ). (112)

The ensemble averages implied by the symbol ⟨...⟩ are performed by successive electronic structure-based molecular
dynamics simulations with specific combinations of the electronic and nuclear chemical potential. In this way, one can
explore a path, λ(Ne, Z(rI )), in chemical space passing from one compound to another as if the system was in contact with a
reservoir of electrons and protons/nuclei. As we have seen, the GC approach to the electronic systems was developed almost
in parallel to the standard DFTwith fixedN while for other electronic structure theories GC approaches were developed only
more recently [265,266]. The main reason, in our view, is that DFT has a semi-classical character, having ρ(r) as a central
quantity, thus analogies with classical statistical mechanics and thermodynamics may be easier. Instead, methods, based on
the explicit treatment of the electronic wavefunction, require a full quantummechanical treatment in terms of creation and
annihilation operators in order to add and remove particles. In the next section, we discuss one representative example, that
is the treatment of open systems in the Hartree–Fock method [265].

4.4. Variational Grand Canonical procedure for open system Hartree–Fock wavefunctions

While in DFT the analogy with classical thermodynamics is, at least, intuitive the same cannot be said for open boundary
systems,where the electronicwavefunction is explicitly taken into account. Aswewill see, in such approaches, as anticipated
above, the change in number of particles must be performed through the explicit use of creation and annihilation operators.
Such a procedure implies the re-writing of the Hamiltonian in terms of such operators and this leads to a second-quantized
Hamiltonian treatment. In this context, here we report about a variational GC procedure for open system Hartree–Fock
wavefunctions. Let us define the nonrelativistic Hamiltonian of electrons for ordinary matter (i.e. in presence of nuclei) in
atomic units:

H =
∑
n

[
−
∇

2
n

2
+ v(rn)

]
+

1
2

∑
n̸=m

1
rnm
= T̂ +

1
2

∑
n̸=m

1
rnm

, (113)

where, as usual, v(rm) is the Coulomb potential, generated by the nuclei and acting on the electrons, and 1
2

∑
n̸=m

1
rnm

is

the electron–electron Coulomb repulsion. Let us further consider an orthonormal basis of M real single-particle orbitals
φ(i(r)); i = 1, . . . ,M as usually considered in the Hartree–Fock method (we assume that the reader has knowledge of the
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Hartree–Fock method since it is treated in all undergraduate programs of physics and chemistry). The operators, which
we consider, are the annihilation and creation operators, such that ĉ+js creates an electron of spin s (up or down) in the
orbital φj(r), while ĉjs annihilates an electron on of spin s (up or down) in the orbital φj(r). The operators have the following
anticommutation rules, being electrons fermionic particles of spin 1

2 : [ĉ
+

js , ĉj′s′ ]+ = δss′δjj′; [ĉjs, ĉj′s′ ]+ = [ĉ
+

js , ĉ
+

j′s′ ]+ = 0. The
Hamiltonian of Eq. (113) can now be written as:

Ĥ =
∑
ij,s

Tijĉ+is ĉjs +
1
2

∑
ijkl,s,s′

Vijklĉ+is ĉ
+

ks′ ĉls′ ĉjs, (114)

where Tij =
∫
φi(r)T̂φj(r)dr (one electron integral) and Vijkl =

∫
φi(r)φj(r)v(|r − r′|)φi(r′)φj(r′)drdr′. For simplicity, since

Tij and Vijkl do not explicitly refer to the spin, the explicit reference to the spin is thus removed for the formalism in the
treatment. Let us introduce the density matrix operator elements:

ρ̂ij =
∑
s=1,2

ĉ+is ĉjs; ρ̂+ij = ρ̂ji. (115)

It follows from Eqs. (114) and (115)

Ĥ =
∑
ij

tijρ̂ij +
1
2

∑
ijkl

ρ̂ijVijklρ̂kl, (116)

with tij = Tij − 1
2

∑
IVilkj where I = (ij) (and K = (kl)). At this point, the Gibbs free energy is introduced as:

G(β,µ) = −β ln Z(β,µ), (117)

where, as usual, β−1 = kBT , µ is the chemical potential, and Z(β,µ) is the GC partition function:

Z(β,µ) =
2M∑
N=0

eβµNTrN [e−βĤ ] = Tr[e−β(Ĥ−µN̂)
]. (118)

The trace is performed over all antisymmetric N-electron states with all possible numbers of electrons. The maximum
number, which can be accommodated on the basis set, is 2M . N̂ is the number operator, whose properties can be found
in Appendix G. Due to the electron–electron interaction the calculation of Z(β,µ) is in practice prohibitive, i.e., it requires
the sampling on all possible electronic configurations. At this point, Jacobi and Baer propose the innovative aspect of their
treatment, that is to shift the problem to noninteracting electrons embedded in a mean-field potential (one-body potential)
u. It follows that the noninteracting Hamiltonian can be written as

Ĥ0 =
∑
ij

tij + uijρ̂ij. (119)

If the matrix h = t + u has eigenvalues ϵ1, ϵ2.... then we have

Z0(β,µ) = Πl=1,M (1+ eβ(µ−ϵl))2, (120)

which can be shown to have the form:

Z0(β,µ) = det[1+ eβ(µ−h)]2. (121)

While we can now calculate in a simplified way the expression of Eq. (121), the question obviously concerns the realistic
character of such an approximation for the true system, i.e., interacting electrons onewants to study. The approach proposed
is based on a simple observation:⟨

Ĥ − Ĥ0

⟩
= 0→

1
2
VIK
⟨
ρ̂I ρ̂K

⟩
− uI

⟨
ρ̂I
⟩
= 0, (122)

where ⟨..⟩ denotes the average w.r.t. Ĥ0. Next, the Gibbs–Peierls–Bogoliubov inequality is used (see, e.g., [59,60] and
references therein):

G(β,µ) ≤ Γ (β,µ) ≡ G0(β,µ)+
⟨
Ĥ − Ĥ0

⟩
, (123)

where G0(β,µ) is the free energy of the noninteracting system and the quantity Γ (β,µ) is called the effective free energy.
By varying h (or better u) in Ĥ0 one canminimizeΓ (β,µ) and thus have the best variational approximation ofΓ (β,µ). Once
h (u) is determined, then for any observable one has⟨

Ô
⟩
exact
≈

⟨
Ô
⟩
, (124)



40 L. Delle Site, M. Praprotnik / Physics Reports 693 (2017) 1–56

Fig. 18. (a) The density decrease under shear in OBMD simulation. (b) Steady Couette flow of liquid water simulated by the triple-scale scheme coupling
atomistic and continuum hydrodynamics.
Source: Reprinted from Refs. [82,225].

that is

Tr[e−β(Ĥ−µN̂)Ô] ≈ Tr[e−β(Ĥ0−µN̂)Ô]u=uOPT , (125)

where [..]u=uOPT indicates that Ĥ0 is the noninteracting Hamiltonian with optimized mean-field potential uOPT . Eq. (125)
allows then for a GC treatment of an electron system described via the Hartree–Fock approach. It has been applied to the
study of several systems, for example, molecular hydrogen and water systems [265] and di-lithium systems [267].

5. Open molecular systems out of equilibrium

Recent advances in nanotechnology and nanomedicine have triggered much development in theoretical and simulation
approaches to study non-equilibrium systems. The hybrid approaches bridging to continuum hydrodynamics, described in
Section 3, are especially useful for simulations of the transport of nanoparticles through fluids, which is a typical example
from nanofluidics. Simulations can provide insight into such systemswhen they can access, both, the atomistic length scales
associatedwith size of the nanoparticles and themicro/macro scales characteristic of the carrier flow field [217]. Simulations
using MD can capture the atomistic details of the nanoparticle-liquid interface but due to their computational cost they
cannot be extended currently to the macroscale regime of the full flow field. In turn, continuum descriptions, using the
Navier–Stokes equations may capture the macro-scale behavior of the fluid flow but they fail to represent accurately the
flow field at the nanoparticle surface. The hybrid approaches, on the other hand, combine the powerful features of the
both descriptions, i.e., the ability to describe the macro-scale behavior of the flow as well as accurate boundary conditions
around nanoparticles [268,269]. Below, we shall give some examples that show the suitability of multiscale methods based
on AdResS (The linear momentum preservation and its importance for hydrodynamics are here critical!) to tackle such
non-equilibrium scenarios.

5.1. Non-equilibrium OBMD

As already mentioned, OBMD allows us to impose arbitrary time-dependent external pressure tensor. Here, we present
a shear flow of the star-polymer melt depicted in Fig. 7 to illustrate the applicability of the method for studying non-
equilibrium situations [81,82]. OBMD simulations reveal that shearing polymer melts at constant normal pressure produces
different rheology than shearing at a constant volume as shear stress induces significantly different redistribution of pressure
in comparison with the closed simulation [82]. This is one of examples, where the new open methodology is actually
not expected to agree with a closed simulation using periodic boundary conditions. Instead, it should more faithfully
reproduce the experimental setup. Moreover, straining the melt with increasing shear stress also induces melt expansion
and consequently density drop, i.e., shear dilatancy, as shown in Fig. 18(a). This phenomenon cannot be studied with the
closed simulation using Lees–Edwards boundary conditions [270], as the number of molecules and hence density remain
constant [82].

Employing the triple-scale scheme, presented in Section 3.2.3, bridging atomistic and continuumhydrodynamics, one can
simulate different types of steady and unsteady fluid flows such as Couette or oscillatory shear flows [219,225]. Fig. 18(b)
shows the density and velocity profiles, which agreewell with the continuumNavier–Stokes solution (dashed line), obtained
at the steady state of the Couette flow [225]. This demonstrates that the hydrodynamics is captured well by the hybrid
method.
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Fig. 19. Pictorial representation of the system investigated. An alanine-dipeptide molecule in solution under the action of an external electric field whose
action is localized in the first hydration shells of the molecule. The simulation setup is instead given in Fig. 20.

5.2. Conformational changes of largemolecules in solution under the effect of an external perturbation: Towards a non-equilibrium
approach in GC-AdResS

While the approach to non-equilibrium, reported in the previous section, dealswith collective effects, for other systems of
interest, in conditions of non-equilibrium, the focus may be localized in a particular region, e.g., even on a single molecule.
For example, a case recently treated is that of the conformational changes of alanine dipeptide in water under the effect
of a localized external electric field [271] (see also Fig. 19). This system represents a prototype case for understanding
the effects of the electromagnetic radiation on proteins and thus on human tissues. If one considers the solvation region
around the solvatedmolecule, where the electric field acts, as the system of interest and the rest of the system as a reservoir,
then the scenario is that typical of a GC setup. The system of interest has a varying number of particles and resembles
the idea of GC-AdResS. In the work of Ref. [271], the adaptive character of the approach refers to the fact that molecules
entering the region of interest are not subject to the thermostat, whereas molecules outside (i.e. in the reservoir) instead
are subject to the action of the reservoir. However, the simulation is carried out at full atomistic level. This is a first step
towards the partitioning of space in the AdResS fashion. The reason for defining a subsystem in such a full atomistic system
is twofold: (a) As underlined before, the external electric field is localized, thus the analysis is needed only in a subsystem of
the whole system. (b) The analysis of the response of the system to the perturbation of the electric field is done in terms of
dynamical response and the action of a thermostat on themolecules under observationmay introduce artificial contributions
to the dynamics. The setup of the simulation box is done according to Fig. 20 and the region of interest is what is referred
to as ‘‘dynamical region’’. The simulation methodology employed is the so-called Dynamical Non-Equilibrium Molecular
Dynamics (D-NEMD) developed by Ciccotti and coworkers [272–275]. Below, we report the essential features of D-NEMD.
For more details, we invite the reader to consult the references given above. Let us denote a macroscopic observable by
O(t), at time t . The configurational probability distribution is ρ(x, t), where x is the phase space variable. Then we have:
O(t) =

∫
dx Ô(x)ρ(x, t) = ⟨Ô(x), ρ(x, t)⟩ with Ô(x) a microscopic observable. It is assumed that the initial probability

distribution ρ(x, 0) is known. In particular, in our case, it is identical to the equilibriumdistribution of the systemwithout the
external perturbation (i.e. in our case the electric field). The dynamics of the system is governed by theHamiltonian equation,
i.e. ẋ = ∇xH(x, t), where H is a time-dependent Hamiltonian. It follows that the Liouville equation for the probability
distribution is:

∂ρ(x, t)
∂t

= −iL(t)ρ(x, t), (126)

where iL(t) = {·,H} is the Liouville operator. Eq. (126) can be solved in a formal way by ρ(x, t) = U†(t, 0)ρ(x, 0), where
U†(t, 0) = T exp{−i

∫ t
0 dt
′L(t ′)}, and T is the time ordering operator. We have also: dÔ(x(t))

dt = ∇xÔ · ẋ = ∇xÔ · ∇xH =
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Fig. 20. Pictorial representation of the simulation setup corresponding to Fig. 19. The region of interest with varying number of molecules is named
‘‘dynamical region’’. Molecules in this region are not subject to the action of the thermostat, molecules outside are instead subject to the thermostat. Due
to the large reservoir region, the ‘‘dynamical region’’ is properly thermalized.
Source: Reprinted from Ref. [271].

Fig. 21. Schematic representation of the conformational changes of the alanine-dipeptide as a result of the application of an external (in such specific case
oscillatory) electric field. The thickness of the arrows is an index of the strength of the flux probability from one conformation to another.
Source: Reprinted from Ref. [271].

iL(t)Ô(x(t)). This equation can be solved by Ô(x(t)) = U(t, 0) Ô(x(0)). Hence,

O(t) = ⟨Ô(x), ρ(x, t)⟩ = ⟨Ô(x),U†(t, 0) ρ(x, 0)⟩ = ⟨U(t, 0) Ô(x), ρ(x, 0)⟩

= ⟨Ô(x(t)), ρ(x, 0)⟩. (127)

We have assumed that the system starts from the equilibrium distribution (without the effects of the external perturbation).
Then, from Eq. (127) one concludes that the observable O(t), calculated under the action of the external field (i.e. in
situation of non-equilibrium), is the same as obtained from the ensemble average of the microscopic observable computed
along trajectories, starting from initial configurations sampled from an equilibrium distribution. In terms of the numerical
algorithm, the procedure consists of first, running an equilibriumMD simulation in order to generate a sample of equilibrium
configurations. Next, these configurations are employed as initial configurations for the full dynamics (with the external
perturbation acting) and each trajectory is integrated until time t . In simple words, one has a branching of trajectories of
non-equilibrium starting from points along the trajectory of equilibrium. The value of the macroscopic observable at time t
is obtained by averaging the observable calculated at each time t along each ‘‘branching’’ (non-equilibrium) trajectory. In the
application of Ref. [271], constant (instantaneous) and oscillating electric fields are applied and various response functions in
the ‘‘dynamical region’’ are analyzed. In this way, one can draw themap of conformational changes of the solvated molecule
under the effect of the external field (see e.g. Fig. 21). As anticipated, the next step will be that of defining the reservoir of
Fig. 20 as in GC-AdResS.

6. Outlook and perspectives

The studies and approaches, we have reported and discussed in this review, are potentially powerful tools for a decisive
step forward in the treatment of classical and quantum systems with open boundaries. Here, we attempt to list some
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suggestions of perspectives that come straightforwardly to mind. The projector-operator technique of Section 2.2 (the ES
equation), developed within a rigorous quantum formalism, represents a very general theoretical framework within which
numerical procedures, for molecular system with open boundaries, can find their formal legitimization. The corresponding
(equilibrium) stationary equation, i.e.

( d
dt + iLSeff

)
ρS(t) = 0, involves the Liouvillian operator Leff , in which the interaction

between system and reservoir is encoded. This latter is a general term and the system-reservoir coupling operators can be
written in terms of creation and annihilation of particles. Such a framework implies that open systems with electrons, for
example, can be described rigorously once the process of creation or annihilation is properly defined. In this review, we have
presented effective numerical procedures by which the generic formal operators of the theoretical framework above can be
implemented in practice (i.e. by properly varying the number of electrons as the system evolves according to its physics),
that is through the CNP approach of Section 4.3 and the GC approach of Hartree–Fock in Section 4.4. Moreover, regarding the
nuclei, the same equation of the electrons applies, except that, being usually treated as classical objects, the classical limit
of the equation can be used. The classical limit of the equation is nothing else than its passage from quantum operators
with their complex algebra to standard classical quantities. The BL model of Section 2.1 is nothing else than a classical
version of the quantum equation for open systems. We have shown that for classical atoms the BL model represents the
theoretical framework necessary for a rigorous definition of physical quantities calculated in simulation, e.g. equilibrium
time correlation functions in systems with open boundaries and variable number of molecules. The conclusion is that a
general conceptual framework for open boundary systems with molecules described (in the usual way) as classical nuclei
and electrons, already exists and is expressed by equation:

( d
dt + iLSeff

)
ρS(t) = 0, where the quantum part (electrons) can

be treated via existing methods, which vary the number of electrons and the classical part for the nuclei can be described
by the BL method and numerically implemented via, for example, GC-AdResS. Given the difference in time scale, the two
equations can be treated in a separate way and adiabatically coupled, as for example done in standard electronic structure
calculations. In conclusion, we consider the equation above as a rigorous formal framework for a truly GC treatment of
electrons and nuclei in molecular systems and we have linked it to available numerical procedures, which can be combined
following its recipe, thus offering a challenging but intriguing research plan. It is also true that its actual implementation
in molecular-simulation codes would not be trivial. In any case, the idea of rigorous projection of all variables onto the
essential electronicDOFs via a simplified system-reservoir coupling operator is certainly appealing. Although these represent
generic suggestions, they nevertheless represent the basis for a substantial research program for years to come. It must also
be underlined that in some cases where quantum mechanics is relevant, as for PIMD, the concept of adaptive molecular
resolution already offers the possibility of studying open systems at the same conceptual complexity of the classical models.
Besides the very general scheme of coupling discussed above, the theoretical section offers other interesting connections
to current simulation approaches. For example, for the study of open nanosystems; in fact the problem of the coupling
energy between the reservoir and the system can be treated by both the GC-AdResS and OBMDmethods since the effective
coupling energy can be directly calculated, thus they may be used in the future to access the calculation of properties in
small (open) systems as defined by Hill in Section 2.5. Interestingly, the idea of open boundaries makes also possible to
consider physical ensembles characterized by intensive quantity only (e.g. µ, p, T ). While this is not possible in standard
(macroscopic) thermodynamics, it becomes possible in nanothermodynamics. Technical implementations of the adaptive
resolution technique, which implicitly use this idea, have already been presented [276]. We can foresee the extension of the
current simulation approaches to subjects of highest priority such as the interdisciplinary stochastic thermodynamics [277].
There is also a flux of information in the opposite direction, that is the numerical methods inspire theoretical developments.
In fact, the GC-AdResS method has in the meanwhile inspired investigation at fundamental level of a relevant problem
of statistical mechanics, that is how one can properly partition a large system in non-interacting or weakly interacting
systems. This research led to an extension of the rigorous results of the Peierls-Bogoliubov inequality of Section 2.5 to a two
sided inequality that bounds from above and below the interacting energy of two subsystems of a large system [61,278],
thus lying the basis to go beyond Hill’s approach. Finally, the theory of fluctuations of Section 2.6 can be used to improve
current numerical techniques, e.g. GC-AdResS, when in presence of a small reservoir. The thermodynamic force, written as
a linear function of the gradient of the particle number density and currently assuring the equilibrium density in AdResS
simulations, following the principles of Section 2.6, should be extended beyond the linear term and assure the particle
number fluctuations as well. Thus, the model for a finite reservoir of Section 2.6 and the model for open nanosystems of
Section 2.5 will enlarge the window of scenarios treatable by adaptive molecular dynamics methods and will allow to avoid
finite size effects in molecular simulations. Finally, a truly numerical GC approach for the high resolution region can be
achieved by either coupling the particle-based approach with the continuous approach, as discussed in Section 3.2.3, or by
opening up the simulation boxwith the OBMDmethod of Section 3.2.2, where OBMDmimics effectively an infinite reservoir.
Methods to study systems with irreversible transport of heat and matter, as that reported in Section 5.1, and in general
systems out of equilibrium, will certainly gain in conceptual solidity if framed within the BL or ES models. In principle, from
the statistical and dynamical point of view, the ES model, as underlined before, represents a very advanced framework.

7. Conclusions

In this review, we sketched a map of theoretical models and computational methods, available in literature, devised to
study molecular systems with open boundaries. The focus is centered around the idea of coupling different resolutions in
an open boundary fashion, with a particular emphasis on the advancement of the AdResS approach. Such methods have
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meanwhile gone beyond the original purpose of multiscale approaches and are currently employed also for truly Grand
Ensemble simulations with ideal or real reservoirs. To complete this aim, the theoretical models, presented in Section 2,
are reported as powerful concepts that can complement and integrate the needs of molecular simulation, when dealing
with realistic systems. The example of the use of the BL model into the adaptive setup has been discussed in relation to
the numerical definition of equilibrium time correlation functions in systems with open boundaries and variable number
of molecules. Slightly more delicate is the case of quantum systems. In some cases, as for PIMD, the concept of adaptive
molecular resolution already offers the possibility of studying open systems at the same conceptual complexity of the
classical models. The problem becomes more challenging when electrons become relevant. While the QM/MM schemes
are very practical but conceptually not solid if used to simulate GC systems, methods such as CNP or the GC extension of the
Hartree–Fock method provide very solid conceptual ingredients for a truly GC treatment of electrons and nuclei.

In conclusion, although we have reported on a large number of successful applications, ranging from biomolecules in
solution to macromolecular liquids of materials science, an optimal embedding of first principle concepts into numerical
schemes remains a vivid aim. In this perspective, the aim of this review, enforced by the discussion in the previous section,
is simply to offer the ingredients for further development in the field.
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Appendix A. Molecular dynamics

In MD simulations [279], we compute the evolution of a system according to the classical Hamilton equations3

dη
dt
= {η,H} = L̂Hη, (A.1)

where L̂H is the Lie operator, {, } is the Poisson bracket and η = (q, p) is a vector of the coordinates of all the particles and
their conjugate momenta.

The formal solution of the above Hamiltonian system can be written in terms of Lie operators as

η|t+∆t = exp(∆tL̂H )η|t (A.2)

and represents the exact time evolution of a trajectory in phase space composed of coordinates and momenta of all the
particles from t to t +∆t , where∆t is the integration timestep [47].

If we split Hamiltonian H into two terms as H = U + T and use a second order approximation, known as the generalized
leap-frog scheme [280,281], for Eq. (A.2)

η|t+∆t = exp
(
∆t
2

L̂U

)
exp(∆tL̂T ) exp

(
∆t
2

L̂U

)
η|t + O(∆t3), (A.3)

we obtain the widely-used velocity Verlet algorithm [47]. If we split H in a different way we obtain different integrators.
For example, splitting H = H0 + Hr , where H0 is the high-frequency harmonic part, which can be solved analytically
using the normal modes of a given molecule, and Hr the remainder, yields the Split Integration Symplectic Method (SISM)
[127,282–284].

The velocity Verlet algorithm is second-order (only one force calculation per integration timestep) and symplectic,
i.e., phase space area conserving (see Liouville’s theorem) [47]. Expanding Eq. (A.3) yields the following numerical integration
scheme for coordinates and momenta of a given particle i:

pi

(
t +

1
2
∆t
)
= pi(t)+

1
2
∆tFi(t), (A.4)

qi(t +∆t) = qi(t)+
∆t
m

pi

(
t +

1
2
∆t
)
, (A.5)

pi(t +∆t) = pi

(
t +

1
2
∆t
)
+

1
2
δtFi(t +∆t), (A.6)

3 They can also be given in the Lagrange or Newton form (see Section 3.1.2).
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where Fi = − ∂U
∂qi

is the total force acting on the ith particle. For stochastic MD using, for example, Langevin or DPD
thermostats, other integration methods are more appropriate, see, e.g., Ref. [285] and references therein.

MD yields information about temporal evolution of properties of the system. We compute statistical properties of the
system as time averages over the trajectories. If we assume that the system is ergodic [47] then these statistical properties
match the ones computed from the corresponding microcanonical NVE statistical ensemble (computed by, for example,
the MC approach) in the thermodynamic limit [286]. To mimic an infinitely large system, MD simulations are traditionally
performed under periodic boundary conditions (PBCs) [286]. If a particle leaves the box during the simulation then it enters
back at the opposite side of the box. Thus, the total number of particles in the simulation box remains constant. Typically, MD
simulations are performed in the microcanonical NVE and canonical NVT ensembles [68]. However, like the MC technique
(see below) it can be modified to sample from other statistical ensembles such as isothermal–isobaric NPT or GC µVT , as
explained in Section 3.

Appendix B. Monte Carlo

MC is a stochastic simulation method [66,287,288]. In the Metropolis algorithm, a trial configuration x′ of a system is
generated by a random perturbation of the initial configuration x (displacement of particles). The trial configuration is
accepted if its corresponding energy U(x′) < U(x). However, if ∆U = U(x′) − U(x) > 0 then the new configuration is
accepted with the probability

Pdis = min (1, exp(−∆U/kBT )) , (B.1)

that is, if Pdis is greater than a uniformly generated random number on interval (0,1). Otherwise, the move is rejected. In this
way, we sample configurations with the Boltzmann probability. Ensemble averages are then computed from the obtained
set of configurations for properties of the system that depend on positions only. There is no kinetic energy contribution in
the total energy, which is determined solely by the potential energyU . There is also no time relationship between successive
MC configurations as each new configuration depends only upon the previous configuration [68].

In GC MC simulations, we sample the GC probability distribution. To this end, an additional trial move, i.e., insertion and
deletion of particles, is introduced besides the Metropolis displacement move, described above. A new particle is inserted at
a random position and the move is accepted with a probability [66]

Pins = min
(
1,

V
Λ3(N + 1)

exp([µ− U(N + 1)+ U(N)]/kBT )
)
, (B.2)

where V is the volume, µ is the chemical potential andΛ the thermal de Broglie wavelength. A randomly selected particle
is deleted with a probability [66]

Pdel = min
(
1,
Λ3N
V

exp(−[µ+ U(N − 1)− U(N)]/kBT )
)
. (B.3)

For further details, see also Section 4.1.1.

Appendix C. Path integral formalism in a nutshell

In this section, we sketch the basic procedure to obtain a quantized Hamiltonian via the path integral formalism within
the framework of quantum statistical mechanics. A detailed discussion of both formal and numerical aspects of the theory
and of applications can be found in Refs. [47,235] (see also [289]). We start from the Hamiltonian of a single particle subject
to an external potential U:

Ĥ =
p̂2

2m
+ U(x̂) = K̂ + Û, (C.1)

where K̂ and Û are the kinetic and potential energy operators, respectively, with [K̂ , Û] ̸= 0. The density matrix element in
the space representation is:

ρ(x, x′) = ⟨x′|e−βH|x⟩. (C.2)

Since K̂ and Û do not commute, the Trotter theorem is used to facilitate the computation of (C.2). Given two non-commuting
operators, A and B, the Trotter theorem states that:

eλ(Â+B̂) = lim
P→∞
[e

λÂ
2P e

λB̂
P e

λÂ
2P ]

P , (C.3)

where P is named ‘‘Trotter number’’. The application of the theorem to our specific case leads to: ρ(x, x′) = limP→∞⟨x′|[e−
βÛ
2P

e−
βK̂
P e−

βÛ
2P ]P |x⟩. Let us define the operator Ω̂ = e−

βÛ
2P e−

βK̂
P e−

βÛ
2P , it follows:

ρ(x, x′) = lim
P→∞
⟨x′|Ω̂P

|x⟩ = ⟨x′|Ω̂P
|x⟩ = lim

P→∞
⟨x′|Ω̂Ω̂Ω̂Ω̂..Ω̂|x⟩. (C.4)
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Next, by P − 1 insertions between each Ω̂ of the identity operator, Î =
∫
dx|x⟩⟨x|, one obtains:

ρ(x, x′) = lim
P→∞

∫
dx2..dxP × ⟨x′|Ω|xP ⟩⟨xP |Ω|xP−1⟩⟨xP−1|...|x2⟩⟨x2|Ω|x⟩. (C.5)

The problem is now reduced to the calculation of the matrix elements ⟨xk+1|Ω̂|xk⟩ = ⟨xk+1|e−
βÛ
2P e−

βK̂
P e−

βÛ
2P |xk⟩. Since

Û |xk⟩ = U(xk), one obtains: ⟨xk+1|e−
βÛ
2P e−

βK̂
P e−

βÛ
2P |xk⟩ = e−

βU(xk+1)
2P ⟨xk+1|e−

βK̂
P |xk⟩e−

βU(xk)
2P . Regarding the kinetic operator

one can introduce the identity operator in momentum space I =
∫
dp|p⟩⟨p| and, since K̂ |p⟩ = p2

2m , obtain: ⟨xk+1 | e−
βK̂
P |

xk⟩ =
∫
e−

βp2
2mP ⟨xk+1 | p⟩⟨p | xk⟩. Next, using the relation between the position andmomentum eigenstate: ⟨x | p⟩ = 1

√
2π h̄

e
ipx
h̄

one obtains:

⟨xk+1 | e−
βK̂
P | xk⟩ =

1
2π h̄

∫
dpe

ip(xk+1−xk)
h̄ e−

βp2
2mP , (C.6)

whose integration delivers the following expression: ⟨xk+1 | e−
βK̂
P | xk⟩ =

(
mP

2πβh̄2

)1/2
e
−

mP
2βh̄2

(xk+1−xk)2 and, by substituting in
the expression of the density matrix, one obtains:

ρ(x, x′) = lim
P→∞

(
mP

2πβh̄

)∫
dx2...dxP

× exp

(
−

1
h̄

P∑
k=1

[
mP
2βh̄2 (xk+1 − xk)2 +

βh̄
2P

(U(xk+1)+ U(xk))
])⏐⏐⏐⏐⏐

xP+1=x′

x1=x

. (C.7)

The partition function corresponds to the trace of the density matrix:

Z =
∫ L

0
dx⟨x|e−βĤ|x⟩ =

∫ L

0
dxρ(x, x) (C.8)

within an interval [0, L]. The explicit expression is:

Z = lim
P→∞

(
mP

2πβh̄2

)P/2 ∫
D(L)

dx1...dxP × exp

(
−

1
h̄

P∑
k=1

[
−

mP
2βh̄

(xk+1 − xk)2 +
βh̄
P

U(xk)
])⏐⏐⏐⏐⏐

xP+1=x′

x1=x

, (C.9)

whereD(L) are all pathswithin [0, L]. If we express it as: Z = limP→∞

(
mP

2πβh̄2

)P/2 ∫
D(L) dx1...dxPe

−βH(x1...xP ) one can notice that

the ‘‘effective’’ Hamiltonian is given by: H(x1...xP ) =
∑P

k=1

[ 1
2mω

2
P (xk+1 − xk)2 + 1

P U(xk)
]
, withωP =

√
P

βh̄ and xP+1 = x1. The
expression above is known as the discretized path integral (quantum) representation of the partition function of a single
particle. In effective terms it represents the partition function of a polymer ring with P beads harmonically linked, with
coupling strength ωP , via nearest neighbor connections. The extension to a system of N particles is not trivial since the
particle’s statistics/symmetry (fermionic or bosonic) needs to be included. However, for the cases treated in this work, the
approach is semiclassical, so in first approximation there is not the necessity of introducing the symmetry. It follows that
for a Hamiltonian of N particles in d-dimensions: Ĥ =

∑N
i=1

p̂2i
2m + U(r̂1, . . . , r̂N ), one has:

Z = lim
P→∞

N∏
i=1

(
miP

2πβh̄2

)dP/2 ∫ N∏
i=1

dr (1)i ...dr
(P)
i

× exp

(
−

P∑
k=1

[
N∑
i=1

miP
2βh̄2 (r

(k+1)
i − r (k)i )2 +

β

P
U(r(k)1 , . . . , r

(k)
N )

])
r(P+1)i =r(1)i

. (C.10)

A consequence of the formalism is that the beads with the same index k do interact with each other while the cross-
interactions are not included. The partition function obtained above can be sampled using MC or MDmethods. While, given
the Hamiltonian, theMC techniquemay be applied straightforwardly, for MD one needs tomake a further step of derivation.

Appendix D. Path integral formalism in molecular dynamics

In order to perform MD simulations, it is required to have momenta associated to each particle (atom). This aim can be

achieved by writing:
(

mP
2πβh̄2

)
=
∫
dp1...dpP

(
−β
∑P

i=1
p2i
2m′

)
that is by adding P-Gaussian integrals via fictitious momentum

variables p1, . . . , pP withm′ = mP
(2π h̄)2

, being an arbitrarymass parameter. For simplicity,we consider here a systemcomposed
of equivalent atoms, thus mj = ma for the j-atom and as a consequence m′j = m′ for the fictitious mass. The extension to
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different species of atoms is straightforward. In the text, we will implicitly assume it. With this manipulation one obtains
the following partition function:

Z = lim
P→∞

∫
dp1...dpP

∫
dx1...dxP × exp

(
−β

P∑
k=1

[
p2k
2m′
+

1
2
maω

2
P (xk+1 − xk)2 +

βh̄
P

U(xk)
])⏐⏐⏐⏐⏐

xP+1=x′

x1=x

, (D.1)

where the corresponding quantized Hamiltonian is : HP =
∑P

k=1

[
[p(k)]2
2m′ +

1
2maω

2
P (xk+1 − xk)2 + 1

P U(xk)
]
. According to the

expression above, one can perform MD of a system of ring polymers whose fictitious dynamics (due to the introduction
of fictitious momenta) allows for a sampling of a quantum partition function. For dynamical properties, the direct Path
Integral MD cannot be used. Specific techniques which employ as basis the Path Integral MD were developed to calculate
also dynamical properties. Two techniquesmust bementioned: (a) Ring Polymermolecular dynamics (RPMD) [290,291] and
(b) Centroid Molecular Dynamics (CMD) [292,293].

D.0.1. Ring polymer molecular dynamics

The method was developed by Craig andManolopoulos [290]. The essential point is that the (actual) physical mass of the
atom is used instead of a fictitious mass, that is: m′ = ma, we refer to such method in the text as H2. There exists also an
alternative formulation of RMPD [294] where the Hamiltonian considered is:

HP =

P∑
i=1

⎡⎣ N∑
j=1

[p(i)
]
2
j

2mj
+

N∑
j=1

mj

2β2
P h̄

2 (r
(i)
j − r(i+1)j )2 + U(ri1, . . . , r

i
N )

⎤⎦ , (D.2)

whereβP = β/P . This implies that the actual simulation is performed at P times the original temperaturewhile the harmonic
bead–bead interaction and the potential energy terms are no more scaled by P . We refer to this method in the text as H3.
It can be shown that RPMD provides an accurate approximation to the Kubo-transformed correlation functions between
operators Â and B̂ [295,296]: KAB(t) = 1

βZ

∫ β
0 dλ

[
e−(β−λ)ĤÂe−λĤeiĤt/h̄B̂e−iĤt/h̄

]
. The RPMD approximation in this case is

given by [291]:

c̃AB(t) ≈
1

(2π h̄)9PNZP

∫ ∫
dPp0dP r0e−βPHP (p0,r0)

1
N

N∑
i=1

Ai
P (r0)B

i
P (rt ), (D.3)

where ZP is the canonical partition function and rt indicates the position at time t . AP (r) and BP (r) are calculated as:
AP (r) = 1

P

∑P
j=1A(rj) : BP (r) = 1

P

∑P
j=1B(rj). The beads in the polymer ring are treated as dynamical variables and thus are

not thermostated (NVE simulations).

D.0.2. Centroid Molecular Dynamics

Centroid Molecular Dynamics (CMD) [292] allows for a reasonable approximation of real time quantum dynamics.
A centroid corresponds to a semi-classical object defined as an average over all the beads in a polymer ring: xc =
1
P

∑P
i=1xi; pc = 1

P

∑P
i=1pi. The time evolution of xc occurs according to the equations:

ẋc =
pc
m
, (D.4)

mc ẍc = −
∂Vo(xc)
∂xc

, (D.5)

wheremc is the physical mass while Vo is a mean field potential generated by the dynamics of the beads. Simulation is made
possible by performing the dynamics in normal mode coordinates and by adiabatic decoupling of the fictitious motion of
the non-centroid modes from the physical motion of the centroid [297–299]. The quantum time correlation between two
operators Â and B̂, via Kubo transform is approximated by [299]:

CAB(t) =
1
Z

∫
dxcdpc
2π h̄

A(xc(0))B(xc(t))e−βHc , (D.6)

with Hc = p2c/2m+ Vo(xc).

Appendix E. Basics of QM/MM

QM/MM was born as a multiscale approach where only one portion of a system is treated at quantum mechanical level
(QM) while the rest of the system is represented at classical level (molecular mechanics, i.e., MM). MM is computation-
ally far less expensive than quantum chemical calculations, either with typical wavefunction based quantum chemistry
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Fig. E.22. Pictorial representation of a typical QM/MM setup. A caffeine molecule in aqueous solution. The region around the solute is treated at quantum
level and the electronic charge is continuously distributed in space as a result of the quantum calculation. Outside the QM region water molecules are
treated at classical level, here represented as rigid neutral molecules with effective charges 2q+, q−, q− on the atomic sites.

approach [300] or with Density Functional/Kohn–Sham approaches [255,256] (see also Fig. E.22 as an illustrative example).
The physical justification of the idea is based on the fact that electronic properties are very often localized in space and need
only a small portion of the system [301]. The fact that the cost of the calculations is drastically reduced compared to a full
QM calculation and that results were satisfactory made such methods very popular [246,247]. From the technical point of
view, standard QM/MM methods employ a so-called subtractive or additive scheme. For the purpose of this review, in the
context of open boundary techniques and adaptive resolution QM/MM, only the additive scheme is of importance and will
be described below. The system is described by a global hybrid Hamiltonian: Hglob = HQM + HMM + HQM/MM and following
this definition the energy of the system (in the ground state) corresponds to the lowest eigenvalue of Hglob, so that the QM
calculation is done with the presence of the MM environment. The electrostatic coupling of the classical molecules with the
quantum molecules is usually taken into account either by classical point charge interactions (i.e., the electronic charges
in the QM region are localized on some sites), or by considering the electrostatic interaction of the classical charges as an
external potential which polarizes the electronic charge of the QM system. Several techniques are then used to consider
bonds occurring across the QM/MM boundaries (see e.g. [302,303]). The major problemwith such an approach is the abrupt
change in resolution across the QM/MM interface. This is a problem not only for pragmatic questions (bonds that cross
the boundaries) but also for conceptual/numerical questions linked to the QM finite size effects. For example, molecules in
the QM and molecules in the MM region are not allowed to cross the boundary and change resolution. If the QM region is
large enough the problem may be, at least numerically, not important, but usually the QM region is relatively small and the
fluctuation of number of molecules (e.g., of the solvent) will have relevant statistical and thermodynamical consequences,
altering in turn the electronic properties. The problem of suppression of particle number fluctuation was the main driving
force for the development of adaptive resolution QM/MMwhich is discussed in 4.2 and is of interest to us as basic prototype
of open boundary approach for electrons and nuclei.

Appendix F. Kohn–Sham density functional theory: essentials

The Hohenberg-Kohn (HK) formulation of DFT [255,256] has provided the essential platform to access many-electron
problems otherwise intractable with other many-electron approaches. The essence of the HK formulation of DFT is the
shift from the 3N-dimensional electronic wavefunction of N electrons,ψ(r1, . . . , rN ), to the 3-dimensional electron density,
ρ(r) =

∫
ΩN−1
|ψ(r, r2, . . . , rN )|2dr2....drN ; where ΩN−1 indicates that the integral is made over all the domains except

that of one particle. This shift, expressed rigorously by the two HK theorems [257], leads to the existence of a variational
problem: E0 = MinρE[ρ]; where E0 is the ground state energy of a system with fixed number of electrons N , and E[ρ] =
F[ρ]+

∫
v(r)ρ(r) is the energy functional of the electron density, with v(r) being the external potential (e.g. nuclei–electron

Coulomb interaction). The expression of E[ρ] leads in turn to the existence of a universal functional F[ρ] = T [ρ] + Vee[ρ]

common to allN-electron systems regardless of the external potential.F[ρ] is composed by two terms, the kinetic functional
T [ρ] and the electron–electron Coulomb functional Vee[ρ]. Unfortunately, the form of T [ρ] and Vee[ρ] is unknown except,
in good approximation, in simplified physical situations. A solution to this problem was later on provided by Kohn and
Sham and nowadays known as the Kohn–Sham (KS) approach [258]. They introduce N

2 single particle orbitals in a non
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interacting frame, φi(r), each accommodating two electrons according to the Pauli principles; in this case one also has:

ρ(r) =
∑ N

2
i=1|φi(r)|2. This leads to the simplification of the kinetic functional T [ρ]which now can bewritten exactly in its non

interacting form Ts[φ] =
∑ N

2
i=1|∇|φi(r)|2. Also,Vee[ρ] is simplified and reduced to theHartree term,Vee[ρ] =

∫ ∫
ρ(r)ρ(r′)
|r−r′| drdr

′

Next, the unknown part of F[ρ], due to the missing interacting part of the orbitals, is contained in the so called exchange
and correlation energy term, Exc[ρ]. This setting reduces the HK variational problem to a system of N

2 Schrödinger-like
equation: h̄2

2m∇
2φi(r) + veff (ρ, r)φi(r) = ϵiφi(r). Here, h̄ is the Planck’s constant, m the electron mass, ϵi the equivalent of

an eigenvalue for the ith orbital. Finally, veff (ρ, r) = v(r) +
∫

ρ(r′)
|r−r′|dr

′
+ vexc(ρ, r), with vexc(ρ, r) = δExc [ρ]

δρ
. The advantage

of such a formulation is that it provides a single electron description which is rather close to the idea of electron orbitals of
chemistry and band-structure idea of solid state physicists. For these reasons, the KS approach gained enormous popularity
in the last decades and is today themost used approach in electronic structure calculations. However, a clear disadvantage of
the KS approach is implicit in the very formulation of the method: the problem of the unknown F[ρ] in the HK formulation
is now shifted to the problem of the unknown Exc[ρ]. This latter can be build, at various levels of approximation, from
combining physical intuition, mathematical prescription and numerical data from high level quantum chemical calculations
(see e.g. [304–307]). The extension to finite temperature (and to the Grand Potential functional of a Grand Canonical
Ensemble) was done by Mermin [256,259] and implies the passage from F[ρ] to Fgc[ρ]. The latter is formally defined as:

Fgc[ρ] = MinΓ→ρTr
[
Γ̂

(
T̂ + V̂ee +

1
β

ln Γ̂
)]

, (F.1)

where Γ̂ =
∑

N
∑

i|ΨNi⟩⟨ΨNi|, is the density operator in Fock space, i is the index for a particular state with Ni electrons
(occupation), N is the total number of electrons, |Ψi⟩ is a basis set in Fock space (see also Appendix G), T̂ is the standard
kinetic operator and V̂ee is the electron–electron Coulomb operator (see e.g. Ref. [308] for a practical use of (F.1)). Instead,
an approach to treat fractional number of electrons (for open systems) in DFT is that of considering Kohn–Sham equations
with orbital occupation numbers 0 ≤ fi ≤ 1 and including it into the energy expression through the kinetic energy and the
charge density (see [256], see also [309–311]). In this approach, we have:

E[ρ, φi] = −
1
2

∑
i

fi⟨φi|∇
2
|φi⟩ +

∫
v(r)ρ(r)dr+ Vee[ρ], (F.2)

where we have: ρ(r) =
∑

ifi|φi|
2. The Kohn–Sham setup consists no more of a single determinant but of linear combination

of pure KS Slater determinants. The minimization of the energy w.r.t. the occupation number is justified by Janak’s
theorem [312]:

∂E[ρ]
∂ fi
= ϵi, (F.3)

with ϵi being the energy of the ith orbital with occupation number fi. Since the occupation numbers can be fractional, the
minimization of the energy of the system can be achieved by transferring an infinitesimal amount of charge (electron)
from high energy orbitals to low energy orbital. Following Schneider and Auer [263], the essential distinction between the
canonical and GC ensembles is that in the former, one assumes a fixed (constant) number of electrons for each microscopic
configuration that the system takes; in such a case the chemical potential is an average over all the configurations. Instead, in
the GC ensemble the chemical potential is fixed for eachmicroscopic configuration. Thus, the number of electrons is variable
and one can talk only of average number of electrons per configuration. In the work of Schneider and Auer, one also finds
technical details (and corresponding references) of further computational approaches that directly employ the concepts
above.

Appendix G. Number operator

In general, the number operator is defined as:

N̂ =
∑
k

N̂k ≡
∑
k

a+(φk)a(φk), (G.1)

that is the product of the creation and annihilation operator acting on a Fock state |ψ⟩ in a basis set |φk⟩: |ψ⟩ =
|φ1, φ2, . . . , φm⟩; Nk is the number of particles in the state |φk⟩. The action of the number operator follows the standard
rules of quantization of the creation and annihilation operator: N̂k|ψ⟩ =

√
Nka+k |φ1, φ2, . . . , φk−1, φk+1, . . . ........., φm⟩ =√

Nk
√
Nk|φ1, φ2, . . . , φk−1, φk, φk+1, . . . ........., φm⟩, see Refs. [289,313,314] for more details.
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