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ABSTRACT: Ultrasound-guided drug and gene delivery (USDG)
enables controlled and spatially precise delivery of drugs and
macromolecules, encapsulated in microbubbles (EMBs) and nano-
scale gas vesicles (GVs), to target areas such as cancer tumors. It is a
noninvasive, high precision, low toxicity process with drastically
reduced drug dosage. Rheological and acoustic properties of GVs
and EMBs critically affect the outcome of USDG and imaging.
Detailed understanding and modeling of their physical properties is
thus essential for ultrasound-mediated therapeutic applications.
State-of-the-art continuum models of shelled bodies cannot
incorporate critical details such as varying thickness of the
encapsulating shell or specific interactions between its constituents
and interior or exterior solvents. Such modeling approaches also do
not allow for detailed modeling of chemical surface functionalizations, which are crucial for tuning the GV−blood interactions. We
develop a general particle-based modeling framework for encapsulated bodies that accurately captures elastic and rheological
properties of GVs and EMBs at the mesoscopic and nanoscale levels. We use dissipative particle dynamics to model the solvent, the
gaseous phase in the capsid, and the triangulated surfaces of immersed objects. Their elastic behavior is studied and validated
through stretching and buckling simulations, eigenmode analysis, shear flow simulations, and comparison of predicted GV buckling
pressure with published experimental data. The presented modeling approach paves the way for large-scale simulations of nanoscale
and microscale encapsulated bodies of different shapes and local anisotropy, capturing their dynamics, interactions, and collective
behavior.
KEYWORDS: ultrasound, gas vesicles, proteinaceous nanostructures, microbubbles, particle simulations, mesoscopic modeling

1. INTRODUCTION
Ultrasound (US) is increasingly being used in biomedical
applications to diagnose many types of cancer, for blood flow
analysis and therapeutic applications, including thermal tissue
coagulation, kidney stones fragmentation, bone healing,
mechanical tissue disruption and in cases of joint inflammation
or rheumatoid arthritis.1−7 It offers numerous advantages, such
as functionality in opaque media, relatively high spatial
precision on the micrometer scale and fast, reconfigurable
field formation.8 These features have made US a cornerstone of
modern biomedical imaging and therapy.
To further enhance the capabilities of US in diagnostics and

therapeutics, a diverse set of responsive agents has been
developed, including encapsulated biomaterials and even
synthetic nano- and microrobots.9,10 Encapsulated biomate-
rials2,11 have emerged as powerful tools due to their unique
design and shell properties make them highly adaptable for two
major US biomedical applications: enhancing US imaging as
ultrasound contrast agents (UCAs)1,5,11,12 and enabling the
encapsulation and targeted delivery of therapeutic
drugs.1,2,11−18 Among these materials, encapsulated micro-

bubbles (EMBs) and gas vesicles (GVs) have garnered significant
attention for their adaptability and effectiveness in such
applications. Radial oscillations of EMBs and GVs generate
strong nonlinear acoustic signals with a unique signature in the
acoustic field and a frequency range much greater than that
produced by tissues. This allows them to generate significant
US contrast across a range of frequencies, supporting harmonic,
multiplexed, and multimodal US imaging, as well as cell-specific
molecular targeting.19,20

EMBs injected into the bloodstream are already being used for
echocardiography,11,13,21 which is one of the essential tools for
diagnosing cardiovascular diseases. EMBs are typically 1 μm in
diameter and consist of biologically inert gases, such as air or
gases with lower water solubility, stabilized within a lipid,
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protein, or polymer shell.1,12,22 When an EMB is subjected to a
high-intensity acoustic field, it expands in volume and collapses
violently. This process is known as inertial cavitation.23 In
contrast, during noninertial or stable cavitation, EMBs oscillate
with relatively minor deformations under lower acoustic
pressure amplitudes. Cavitation is utilized in sonoporation,24

which is a targeted drug delivery technique that creates
temporary pores in cell membranes, enabling the entry of
foreign substances.14,25 Exploiting the sonoporation effect for
disease therapy has many advantages, for instance, injecting
EMBs intravenously can lower drug dosage and minimize side
effects of nonspecific drug delivery into healthy organs as the
EMBs only collapse in specific diseased areas due to focused US

irradiation. One limitation to the use of EMBs is their size,
which prevents them from extravasating into tumors. To
circumvent this limitation, GVs have been introduced as a new
class of nanoscale US imaging agents.26−32

GVs are gas-filled, protein-shelled nanostructures produced
by buoyant photosynthetic microbes. These vesicles vary in
size, with widths ranging from 45 to 200 nm and lengths from
100 to 800 nm, depending on their genetic origin, and can
withstand external pressures of several bar without collapsing.
Recently, GVs have also been shown to increase the influx of
calcium ions, when attached to biological cells and insonated
by US.33 The structure of several types of GVs has already been
characterized using cryo-EM (Cryogenic electron microscopy)
and cryo-ET (Cryogenic electron tomography),34,35 revealing
that the main structural protein GvpA self-assembles helically
in a cylindrical shape, which closes off on both sides by cone-
shaped tips. The polarity of the helical assembly inverts at the
midpoint of the GV cylinder, which may act as an elongation
center for growth. This implies that the ribs are oriented
helically along the cylinder, reversing direction at the central
rib.34,36 Unlike EMBs, which confine preloaded gas in an
unstable state, GVs have 2 nm-thick protein shells that exclude
water but allow gas to diffuse in and out of their interior.37

The acoustic behavior of EMBs and GVs is influenced by
several factors, such as the viscosity and temperature of the
surrounding fluid, the applied acoustic pressure and the
physical characteristics of the objects, including size and shell
properties like viscosity and elasticity.38,39 In addition, the
presence of nearby vessel walls or cells can significantly affect
the EMB behavior.39 Unlike the detailed modeling of blood
flow40−55 or cloud cavitation collapse,56,57 the current
theoretical modeling of EMB oscillations primarily relies on
the continuum theory developed by Rayleigh and Plesset for a
single, free, spherically symmetric bubble in an infinite liquid
with constant viscosity.58,59 The Rayleigh-Plesset EMB model
incorporates several assumptions, including the ideal gas
behavior of the encapsulated gas and the absence of a shell.
A series of increasingly complex models have been developed
to more accurately represent the dynamics of EMBs in vivo�
particularly those excited by US while flowing through small
blood vessels. Despite these improvements, the models
continue to rely on various assumptions and simplifica-
tions.60−62 A novel stress−strain method63 was derived to
characterize the viscoelastic shells of individual lipid-shelled US-
driven microbubbles, aiming to extract their elastic and viscous
properties with minimal assumptions.
Continuum models for GVs are very scarce, with the

exception of finite element models for various types of GVs,
such as the Anabaena flos-aquae20,34,64,65 and the Halobacte-
rium salinarum,66 which focus purely on mechanical properties

in vacuum, without explicitly modeling the surrounding solvent
or encapsulated gas. A microscopic model has been reported,67

in which a model for the GvpA rib was developed and used to
calculate the Young’s moduli of the GV shell. A recent paper68

examined the use of GVs as cavitation nuclei, where the authors
conducted simulations of bubbles formed by the coalescence of
gas released from destroyed GVs. Although significant efforts
have been made to improve continuum models for EMBs and
GVs,38,60,62,66,69−77 accurately modeling the shell properties
before and after insonation remains a challenging task. The
applicability of continuum models in these scenarios is limited,
mainly due to the lack of detailed interfacial constitutive
models.60 These limitations of existing continuum models
preclude an accurate description of cavitation, drastically
degrading the prediction of drug delivery outcomes.
The development of novel EMBs and GVs models using

mesoscopic particle-based approaches tailored to the specific
shell material is crucial to study changes in the material upon
deformation and its mechanical response to interaction with
US. Importantly, the mechanical behavior of UCAs differs
significantly between water and blood, due to variations in
viscosity, elasticity, and the complex interplay with surrounding
EMBs and vesicles in the bloodstream. Incorporating these
factors into simulations is essential for accurate predictions of
their performance in real physiological environments. To
accurately capture the rheological and acoustic properties, as
well as the dynamics of EMBs and GVs, we propose mesoscopic
particle-based models inspired by the network models of red
blood cells (RBCs). The proposed models are designed to be
general enough to accommodate a wide range of physical
systems. Here, we use the dissipative particle dynamics (DPD)
method, a state-of-the-art particle-based method for modeling
colloidal suspensions, polymers, soft matter, and simple fluids.
We model mechanical properties of EMBs and GVs, including
their behavior in stretching and buckling experiments. Our
predictions for the buckling pressure of GVs are compared to
experimental measurements. Furthermore, we determine
fundamental eigenmodes of EMBs and GVs. Finally, we study
their rheological properties under shear flow and compare
them with analytical expressions.

2. METHODS
The simulations were carried out using Mirheo,78 a high-throughput
simulation package, specifically designed and optimized for DPD

simulations. While isotropic elastic forces are already implemented in
Mirheo, we modified and extended its functionalities to include
orthotropic elastic forces, the gas pressure contribution as well as the
OBMD used in nonequilibrium simulations.

2.1. Dissipative Particle Dynamics. The DPD method79 is a
particle-based mesoscopic simulation technique that allows modeling
of fluids and soft matter.80,81 A DPD system is represented by N
particles, which interact through pairwise effective potentials and
move according to Newton’s second law. In a DPD simulation, a
particle represents a cluster of molecules. In our case, the DPD particle
represents a large number of water or gas molecules.

The interparticle force Fij = Fij
C + Fij

D + Fij
R exerted by bead j on bead

i consists of conservative, dissipative, and random forces82

a rF r( )ij C ij ij
C = (1)

rF v r r( )( )ij D ij ij ij ij
D = · (2)

rF r( )ij R ij ij ij
R = (3)
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where aαβ and γαβ represent the conservative and dissipative
parameters for a bead pair of species α and β (water, gas, UCA

object), specified in Table 1, σαβ is the random force amplitude

connected with the dissipative parameter γαβ (S4.1), rij
r r

r r
i j

i j
= | | is the

normalized vector along the interparticle axis, vij = vi − vj the relative
velocity of the two interacting particles, ωC, ωD, ωR are the weight
kernels described in S4.1, while Θij = Θji is a zero-mean random
Gaussian variable with unit variance, uncorrelated between different
pairs of particles i and j

t t t t( ) ( ) ( ) ( )ij kl ik jl jk il= + (4)

The equation of state of a DPD fluid is quadratic in the density

p k T aB 0 ww
2= + (5)

where α ≈ 0.100rc4 is a semiempirical prefactor.83

2.2. Membrane Modeling. We represent the GV and EMB

membranes as triangulated surfaces, where each vertex corresponds to
a DPD bead (particle). Interactions between these membrane particles
are derived from a discretized continuum elastic energy, as detailed in
the Supporting Information.

For EMBs, we generate spherical meshes using icosahedral
subdivision, resulting in a surface composed of 2562 vertices. For
GVs, the structure is constructed by stacking concentric circles of
particles in a staggered configuration, which are then smoothly
tapered to form the conical end-caps, resulting in a mesh with 1404
vertices. This coarse-grained representation captures both the global
geometry and local elastic properties of the membranes while
remaining computationally efficient at the mesoscale.

2.3. Fundamental Scales. The solvent and encapsulated gas
phases are modeled using DPD, which allows capturing relevant
rheological properties, such as viscosity, on large spatiotemporal
scales.84 To parametrize the interactions between the various DPD

beads, we first select the appropriate coarse-graining level, or
equivalently, the length scale rc. Due to the disparate sizes of EMBs,
which can be as large as several micrometers, and GVs, where the
diameter is at most several hundred nanometers, we use two different

sets of fundamental scales (length, energy, and mass), specified in
Table S1 of Supporting Information.

We choose the length scale rc so that the radius of the particular
object in the smallest dimension is at least 2 rc. This is to ensure a
large enough resolution of the immersed objects compared to the
cutoff 1 rc of the DPD interaction between the beads, eqs S79 and S80
of Supporting Information. The mass scale m is chosen to reproduce
the density of the water/gas/shell and is calibrated, so that the mass of
the water bead is equal to 1 m: m = ρw

exprc3/ρw, where ρw is the number
density of water beads and ρw

exp = 997 kg/m3 is the physical density of
water. For the energy scale ε, we take the thermal energy at room
temperature T0 = 300 K, ε = kBT0. The time scale τ follows from the
other three fundamental scales

mrc
2

=
(6)

We use the DPD parameters specified in Table 1. To keep the DPD

system fluid-like and avoid the freezing artifacts appearing at aαβ ≳
250 kBT0/rc,

85−87 we use aαβ = 100 kBT0/rc. For high coarse-graining
levels, as is the case here, such a value of aαβ leads to a highly
compressible liquid or equivalently a low value of the speed of sound
c0. Since we are interested in phenomena characterized by a low Mach
number Ma = u/c0 ≪ 1, with u the typical particle velocity, this does
not have a great impact on dynamics in this work.

We set the DPD interaction coefficients awg, aoo and aog in line with
existing red blood cell models. We should note that setting awg and aog
to zero results in zero surface tension between the corresponding
phases. The surface tension of the interfaces can be tuned by
introducing an exponential conservative interaction between the
beads of different phases,88,89 however this is beyond the scope of the
current paper. Additionally agg was set to zero to model the ideal gas
with a linear pressure density relation, which we discuss in detail
below in subsection “Inducing compression and buckling”.

We have also ensured that the water/gas viscosity ratio is high by
varying γgg and the kernel power kgg in eq S80 of Supporting
Information. Our choice of DPD parameters yields realistic viscosity
ratios ηw/ηN2 ≈ 63 for water/nitrogen and ηw/ηair ≈ 48 for water/air,
which are close to the experimental values of ηw/ηN d2

≈ 51 and ηw/ηair

≈ 48.
2.4. Down-Scaling of Elastic Forces. At typical length scales rc

of the objects, the dimensionless values of the 2D Young’s moduli are
large, as they scale as ∼rc2/ε, i.e., physically, elastic energy is much
larger than kBT0. To ensure computational feasibility, we scale down
all elastic moduli in our simulations by a factor fscale ≪ 1. This
preserves the so-called Föppl-von-Karman number FvK, which
determines the shape of the objects in equilibrium90,91

ER
FvK 0

2

=
(7)

where E is the 2D Young’s modulus, κ ∝ E is the bending constant,
and R0 is the typical radius of the object. Consequently, computed
quantities such as critical stretching forces and buckling pressures
must be divided by fscale.

The behavior of elastic objects under shear flow is governed by the
dimensionless capillary number91,92

R
Ca eff=

(8)

To preserve it, the viscosity of water must also be scaled accordingly,
fw scale w= , where ηw is the physical viscosity of water.

We choose two different fscale values corresponding to each unit set
(Table S1), ensuring that κ/(kBT0) > 10 to prevent significant
perturbation of the object by thermal fluctuations, which primarily
originate from the solvent beads. For each unit set, the target viscosity
η̃ is achieved by adjusting the values of γww and kww (Table 1).

2.5. Fluid−Structure Interactions. The boundary conditions at
the fluid-immersed structure interface have a large effect on the
behavior of UCAs under nonequilibrium conditions, such as shear or

Table 1. Values of the DPD Parameters Used, Unless Stated
Otherwise, for EMB and GV Unit Setsa

DPD parameter value (EMB unit set) value (GV unit set)

aww
k T

r
100.0

c

B 0 k T
r

100.0 B 0

c

awg, agg, aoo, aog
k T

r
0.0

c

B 0 k T
r

0.0 B 0

c

aow
k T

r
40

c

B 0 k T
r

40 B 0

c

γww
m

3.5
m

18.0

γgg
m

11.0
m

12.0

γwg
m

0.0
m

0.0

γow
m

7.4
m

19.5

γog
m

0.2
m

0.5

ρw, ρg 3.0 rc−3 3.0 rc−3

kww 0.25 0.125
kgg 0.25 0.0
kfsi 0.5 0.5

aThe subscripts denote the different types of beads: (o)bject, (w)ater,
(g)as.
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plug flow.93 First, to prevent leakage of the solvent inside the gas
vesicles or microbubble, we impose the no-through boundary
condition by using the bounce-back mechanism, where the particles
are introduced back based on the Maxwell distribution of velocities at
temperature T0.

94

To control the velocity boundary conditions at the UCA−water or
UCA−gas interface, one typically tunes the dissipative parameter γow
(γog) between the water (gas) and the UCA beads. A specific value of
the dissipative parameter ensures the no-slip boundary condition48

k k k k

r

2 (2 1)(2 2)(2 3)(2 4)

3o w,g
w,g fsi fsi fsi fsi

c
4

w,g m

=
+ + + +

{ }
{ }

{ } (9)

where ρm is the area number density of the vertices of the immersed
membrane, ρ{w,g} is the number density of the fluid (water or gas),

w,g{ } is the corresponding scaled-down viscosity, and kfsi is the kernel
power of the dissipative weight function set to 0.5 for both unit sets.
The complete DPD parameter sets used for UCA−water and UCA−gas
interfaces are given in Table 1.

2.6. Inducing Compression and Buckling. According to the
semiempirical equation of state eq 5, the fluid pressure is linearly
proportional to aww, which is confirmed numerically (see Figure S9 in
Supporting Information). Thus, water pressure is controlled by
varying the interaction parameter aww between water beads linearly in
time until it reaches a desired final value, where it remains for the
second half of the simulation to allow the structure to relax into its
final shape.

Unlike that of water, the compressibility of the gas phase plays an
important role, significantly affecting the shell’s collapse pressure. At
the buckling transition, the dominant deformation mode is
determined by the bending constant (which is small for thin shells)
and is thus sensitive to the compressibility of the interior gas. At
realistic pressure, the compressibility of DPD gas, as follows from the
DPD equation of state eq 5, is anomalously low. To remedy this, we
model the gas phase as ideal by setting the interactions between gas
beads to 0, which also aligns with the ideal gas behavior in the relevant
temperature and pressure range. Consequently, the resulting DPD gas
pressure is extremely low. To ensure mechanical stability, it is
compensated by applying an outward force to each triangular face of
the shell, evenly distributed among its three vertices to ensure zero
torque on the triangle: fp = −pAn/3, where A and n are the area and
inward-pointing normal of the triangle (see Supporting Information
S2), and p is the desired pressure compensation.

2.7. Open-Boundary Molecular Dynamics. To perform
nonequilibrium simulations we use open-boundary molecular
dynamics (OBMD),95−97 which allows imposing momentum and/or
heat fluxes at the system’s boundaries. A typical OBMD setup consists of
three fundamental parts: a central domain�the region of interest
(ROI), and two buffer regions in which particle deletion or insertion is
performed. The particle number in the buffer regions is controlled by
a feedback algorithm

N t N N( )
B

B 0=
(10)

where ΔN is the number of particles to be deleted (ΔN < 0) or
inserted (ΔN > 0), Δt and τB are the time step and relaxation time of
the buffers, N and N0 the current and equilibrium particle numbers in
either buffer, and αB an empirical customized parameter. Particle
insertion is facilitated by the USHER algorithm,98 which employs an
iterative steepest descent scheme on the potential energy surface.

OBMD imposes boundary conditions by adding external forces fi to
all buffer particles i, determined from the momentum balance

A
m

t
J n f

v( )

i
i

i

i i· = +
(11)

where J is the momentum current density tensor, A the surface area of
the interface between the buffer and the ROI, and n the normal to this
interface pointing toward the center of the ROI. The second sum in eq

11 stands for the momentum gain or loss upon insertion or deletion
of particles i′ in the current time step. The momentum flux across the
buffer−ROI interface is dictated by the desired boundary condition for
the stresses, e.g. on boundaries with normals n = ±ex

P P PJ n n e exx yx y zx z· = + + (12)

where Pxx is the equilibrium pressure, and Pyx, Pzx the shear stress
components.

2.8. Quasiharmonic Analysis. In the analysis of molecular
dynamics simulations of biomolecules, extracting eigenmodes and
their frequencies is essential. The well-established method for this is
quasiharmonic analysis,99−101 also sometimes referred to as principal
component analysis (PCA).102 This approach is not limited to
molecules but can also be applied to coarse-grained models of elastic
objects, such as carbon nanotubes,103,104 and in our case to UCAs.

The thermalized equilibrium configurational probability distribu-
tion of membrane vertices is given by

P e
e

x
x

( )
d

E

E

x

x

( )

( )
=

(13)

where E(x) is the potential energy of the configuration expressed by a
supervector x of particle coordinates, and β = 1/(kBT0). In the
quasiharmonic approximation, the potential energy surface is assumed
to be a quadratic function E Ex x x x V x x( ) ( ) ( ) ( )T1

2
+ ,

where Vij
E

x xi j

2
= is the Hessian, and ⟨.⟩ denotes thermal average,

which is in our case calculated as a time-average of the vertex
positions. Within this approximation, the configurational probability
function takes the form of a multivariate Gaussian distribution and
therefore the Hessian can be extracted from the trajectory through the
covariance matrix Σij = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩ of particle coordinates

k TV B 0
1= (14)

In determining Σ, we subtract the motion of the center of mass of
the object and remove rotational motion using a trajectory alignment
algorithm from the MDAnalysis Python package.105,106 This
algorithm finds the optimal rotation matrix between the current and
reference configurations by minimizing the root-mean-square
deviation between the configurations.107,108

Ignoring the damping coming from the solvent and the gas, the
equation of motion reads

Mx Vx 0
.. + = (15)

where M is the diagonal mass matrix, M = mI in our case. Using the
ansatz x = x0eiωt, one obtains the generalized eigenvalue problem

k T
M x 0B 0

2
1

0
i
k
jjjj

y
{
zzzz =

(16)

which can be recast into a standard eigenvalue problem by defining
q M x0 0= and M M=

I q( ) 00 = (17)

where the eigenfrequencies of the structural vibrations

k TB 0=
(18)

are obtained from the eigenvalues λ′.

3. RESULTS AND DISCUSSION
3.1. General Particle-Based Elasticity Framework for

Simulating Membrane-Encapsulated Soft- and Bioma-
terials. The role of membranes in soft- and biomaterials is
multifaceted. For biological cells, the membrane separates the
interior from external disturbances and can also provide means
for the exchange of ions, solvents, gas molecules, and other
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substances.109 Biological membranes typically consist of lipid,
polymer, or protein units. The type of these units, their
interaction with each other and the environment, as well as
their bonding topology dictate the elastic behavior of
membranes.
This extreme diversity of membranes with different elastic

properties requires a general methodology that is capable of
incorporating various possible symmetries, for example, the
isotropic elasticity of EMBs on one hand, and orthotropic
elasticity of GVs on the other. There are different approaches to
modeling elastic properties of thin shells. A popular one is
connecting the various subunits with harmonic bonds or
potential wells, aided by a harmonic angular potential.110 It is
well-known that a straightforward application of such an
approach�using harmonic bonds with equal spring con-
stants�does not lead to general elastic behavior.111 An
alternative approach, which we follow here, is to discretize
the continuum elastic surface energy on a triangulated surface
spanned by the various subunits (see Figure 1).112 This energy
expression is then used in the subsequent per-vertex force
calculations.
We quantify the deformation using the deformation gradient

Fij
x

x
i

j0
= , which relates the difference in positions of two

infinitesimally close material points in the deformed config-
uration x to their difference in the reference configuration
x0.

113 To exclude local rotation, deformation is typically
described using the Green-Lagrange deformation tensor (strain

tensor) F F I( )T1
2

= , which measures the deformation
relative to the reference configuration. Moreover, we
incorporate anisotropic elasticity to model the diverse and
generally complex elastic properties of biological membranes.
Anisotropic objects are characterized by their reduced
symmetry group or equivalently by a set of structural tensors
M, which reflect the distinguished directions, lines, or planes of
an object. See Supporting Information for a detailed overview
of the effects of material symmetry and the principle of
isotropy of space on the form of the elastic energy.
In linear elastic theory of thin shells, in-plane and bending

deformations are decoupled, and the total elastic energy is U =
Uel + Ub, where Uel and Ub are the in-plane elastic and bending
energies, respectively.
The general in-plane elastic energy is formulated using the

two-dimensional (2D) in-plane strain tensor ε

U C A
1
2

dijkl ij klel =
(19)

where dA is the surface element of the shell, and Cijkl = hCijkl
3D is

its in-plane elastic tensor, derived from the three-dimensional
(3D) material elastic tensor Cijkl

3D and the shell thickness h, eq
S6 in Supporting Information. The in-plane stress tensor σij =
Cijklεkl has units of force per unit length. The tensor Cijkl
satisfies Cijkl = Cjikl = Cijlk, which reflects the symmetries of the
strain and stress tensors. Under the assumption of hyper-
elasticity, where stress is derived from an elastic potential, it
also satisfies Cijkl = Cklij. These symmetries reduce the

Figure 1. Overview of particle-based elastic modeling of thin shells used in this work. An object is described by its subunits and a triangulated
network. Elastic energy is split into two parts: in-plane elastic energy, characterized by the material elastic tensor Cijkl and the strain tensor εij
measuring the deformations; and bending energy, characterized by the flexural rigidity tensor Dijkl and the bending tensor Hij. The corresponding
vertex forces are calculated by taking derivatives of the total elastic energy with respect to vertex positions. The modeling framework is applicable to
biomaterials of different shapes and general local anisotropy.
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maximum possible number of elastic parameters from 81 to 21
in 3D and from 16 to 6 in 2D. The in-plane elastic tensor Cijkl
is expressed as a combination of Kronecker delta δij and in-
plane structural tensor(s) Mij, as derived in Supporting
Information in the context of orthotropic elasticity of GVs.
A general form of the bending energy is

U D H H A
1
2

db ijkl ij kl=
(20)

where Hij = Bij − Bij
0 is the bending tensor,114 which measures

the deviation of the curvature tensor Bij = n · ∂i∂jx in the
deformed state from the spontaneous curvature tensor Bij

0 = n0
· ∂i∂jx0. Here, n and n0 denote the normals to the deformed (x)
and undeformed (x0) configuration surfaces, respectively. The
principal directions of the curvature tensor align with extremal
curvatures, represented by its eigenvalues 1/R1 and 1/R2,
where R1 and R2 are the principal radii of curvature. In linear
thin shell elasticity, the material flexural rigidity tensor Dijkl is
fully specified by the material elastic tensor through the

relation D C Cijkl
h

ijkl
D h

ijkl12
3

12

3 2

= = , eq S7 in Supporting Informa-
tion.
In the constant strain triangle approximation (CST),115 where

the strain field ε is assumed to be constant within each triangle,
the surface integrals eqs 19 and 20 can be replaced by
summation over the triangles of the triangulated surface, as
given in eqs S8 and S33 of Supporting Information.

3.2. Models of Ultrasound Contrast Agents. Within the
introduced general elastic particle-based computational frame-
work, we focus on modeling the behavior of two encapsulated
agents: EMBs and GVs . The specific models we
emp loy a r e in sp i r ed by RBC membrane mod-
els.40,41,43,44,47,49−51,54,55,91,116−118 The RBC membrane consists
of two main components: a pseudohexagonal elastic spectrin
network,119 and a fluid-like lipid bilayer. In contrast, polymer-
or protein-based EMBs and GVs comprise only an elastic
network,29 while lipid-based microbubbles are encapsulated by
a lipid monolayer membrane.72 The primary differences in
modeling EMBs and GVs compared to RBCs lie in the different
topology of the triangulated surfaces and, in the case of GVs, the
inclusion of anisotropic elastic terms.

3.3. Microbubbles. EMB shells are made of proteins,
polymers, or lipids. Most EMBs appear to be well described by
an isotropic elastic model,120 although there are continuum
models that assume transversely isotropic elastic shells where
the anisotropy axis is along the radial direction.121

The elastic tensor Cijkl of isotropic materials is exclusively
expressed through the isotropic tensor�the Kronecker delta
δij. It has two independent terms

C K ( )ijkl ij kl ik jl il jk ij kla= + + (21)

where Ka and μ are the bulk and the shear moduli, respectively.
There is a more detailed description of the elastic moduli and
the expression for elastic energy in Supporting Information.
The bending energy follows from eq 20 and, for isotropic

shells, consists of two independent terms

U J J A
1
2

(1 ) db 1
2

2

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ=

(22)

where Eh
12(1 )

2

2= is the bending constant, E, ν are the 2D

Young’s modulus and Poisson’s ratio (eqs S20 and S21 in
Supporting Information), and the scalar differential

curvature invariants are defined as J1 = tr(H) and
J H H Htr( ) tr( ) det( )2

1
2

2 2= [ ] = . The bending energy eq
22 is discretized using the Kantor-Nelson approach, see
Supporting Information.

3.4. Gas Vesicles. The GV membrane consists of GvpA
protein ribs arranged helically around the GV axis,34,36 see
Figure 1. Its elastic properties differ along the ribs and
perpendicular to them.34,65 The local material symmetry group

is therefore orthotropic, spanned by four elements: identity,
inversion and a pair of reflections across the rib direction and
perpendicular to it. The 2D elastic tensor can therefore be
constructed using Kronecker delta δij and one structural tensor,
which is invariant to all group elements in : M = m ⊗ m,
where m is chosen to point perpendicular to the rib. Since the
ribs run nearly perpendicular to the GV axis, m is well
approximated by a projection (see Supporting Information).
Taking into account this symmetry, the most general form of

the elastic tensor is

C K

m m m m m m m m

cm m m m

( )

( )( )

,

ijkl a ij kl ik jl il jk ij kl

i l jk j l ik i k jl j k il

i j k l

L

= + +

+ + + +

+
(23)

with μL > 0, c > 0122,123 the anisotropic elastic coefficients,
which are positive for stability reasons. The coefficient μL is the
membrane’s (in-plane) shear elastic constant, while c
contributes to the stiffness along the anisotropy axis m.124 A
more in-depth explanation regarding the in-plane elastic energy
is provided in Supporting Information. Our construction of the
elastic tensor assumes isolated, fully formed shells with a fixed
equilibrium helical arrangement of GvpA proteins. Modeling of
the elastic properties of GVs during the biogenesis or under
variable temperature conditions, where the shell is forming
through dynamic self-assembly of GvpA proteins, is beyond the
scope of this paper.
In the linear regime, the coefficients Ka, μ, μL, and c in eq 23

can be related to the engineering constants: Young’s modulus
along the GV axis, El, and perpendicular to it (along the ribs),
Et, Poisson’s ratio νlt for stretching along the ribs, and shear
modulus G(=μL). The other Poisson’s ratio νtl is already fixed
with these choices. These relations are given in eqs S24−S31
of S1.
Following eq 20, the bending energy of a thin orthotropic

shell can be expressed as a sum of four independent terms

U J J J J A
1
2

(1 )
1
2

dt t lt cb 1
2

2 3 4
2i

k
jjj y

{
zzz= + +

(24)

where new scalar differential curvature invariants are defined as

J 3 = mTHTHm , J 4 = mTHm , and t
E h

12(1 )
t

2

lt tl
= ,

,
h( )

6
L

2

= c
ch
12

2

= are the bending constants in the thin
shell regime.125

For simplicity, we keep the bending energy of the GV

membrane isotropic in this work and set the bending constant

to E h
12(1 )

t
2

lt
2= , where we have used the smaller Young’s

modulus Et. This is to ensure that the circumferential
instability, which in buckling experiments occurs at lower
pressure amplitudes than other more complicated instabilities,
has the correct energy cost.

ACS Applied Nano Materials www.acsanm.org Article

https://doi.org/10.1021/acsanm.5c02783
ACS Appl. Nano Mater. 2025, 8, 16053−16070

16058

https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
www.acsanm.org?ref=pdf
https://doi.org/10.1021/acsanm.5c02783?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.5. Mechanical Properties. Mechanical properties of
biomaterials can be determined by performing elementary
mechanical experiments, such as stretching,126 torsion,127 and
compression.128 Stretching experiments are typically done
using optical tweezers, where two micrometer-sized spherical
silica beads are attached to the ends of a particle and then
moved in opposite directions. The experimental data consist of
force−displacement curves, which can be translated to stress−
strain curves under certain assumptions.
We conducted stretching, compression/buckling, and

torsion simulations of EMBs and GVs. The stretching force−
displacement curves of our model EMBs and GVs were
determined by adding oppositely equal forces to a small set
of diametrically opposite vertices of their membrane. The GV

torsion simulations were performed by rotating the GV cylinder
ends in opposite directions, Figure S7. In principle, this could
be achieved experimentally with an angular optical tweezer
device, which is a relatively new methodology.129,130

We also derive analytical results for the stretching, torsion,
and compression in the small deformation limit and verify their
validity by simulations.

3.6. Microbubble Stretching. We model the stretching
experiment by uniformly distributing the stretching forces over
64 vertices at each pole of an EMB (approximately 2.5% of all
the vertices). This is equivalent to a contact diameter of
approximately 0.65 μm, which falls within a range of typical
silica bead sizes used in optical tweezer experiments. As shown
in Figure 2a, the stretching of an EMB results in a decrease in

diameter D perpendicular to the stretching direction. For small
strains, one finds (eq S65 of Supporting Information)

D D
F

20
tot=

(25)

where Ftot is the total force applied to the ends of the EMB, and
D0 = 2R0 is its equilibrium diameter. As seen in Figure 2a,b, the
measured diameter perpendicular to the stretching direction
matches excellently with eq 25 in the regime of small strains.
The expression eq 25 differs from the result for an elastic disc,
which is often used to model red blood cell stretching in the

linear regime:131 ( )D D 1 1F
K0 2 2

tot

a

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ= .

Above Ftot ≈ 0.099 μR0, the EMB undergoes a transition into
a circumferentially wrinkled shape and the diameter, calculated
as twice the average distance of equatorial particles from their
center of mass, drops significantly.
The onset of this wrinkling transition can be understood as a

trade-off between compression in the circumferential direction
and out-of-plane bending deformation. When stretching is
applied, the shell initially accommodates the deformation
through in-plane stretching and accompanying in-plane
compression in the equatorial direction. Eventually, this
compression becomes too costly and destabilizes. At this
point the shell reduces the compression energy by buckling.
One can also notice an azimuthally nonuniform distribution

of energy of the equatorial slice in Figure 2c. These variations

Figure 2. EMB stretching. (a) Relative EMB diameter change as a function of applied force Ftot in units of μR0. (b) Small-strain part of the dependence
in (a), compared to eq 25. (c−e) Equatorial slices of EMBs perpendicular to the stretching direction at values of Ftot, corresponding to the three
regimes in (a); Ftot0 = 0.099 μR0. The coloring in the side views (a) the top views (c−e) represents local elastic energy. Equatorial slices (c−e) are
single-particle thick.

ACS Applied Nano Materials www.acsanm.org Article

https://doi.org/10.1021/acsanm.5c02783
ACS Appl. Nano Mater. 2025, 8, 16053−16070

16059

https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.5c02783/suppl_file/an5c02783_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsanm.5c02783?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.5c02783?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.5c02783?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.5c02783?fig=fig2&ref=pdf
www.acsanm.org?ref=pdf
https://doi.org/10.1021/acsanm.5c02783?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


appear random and reflect the fluctuations in the membrane as
it approaches the wrinkling transition.

3.7. Gas Vesicle Stretching. We examine the response of
a GV to stretching along its axis (z axis), Figure 3, which should
be the most feasible experimentally. In these simulations we
distribute the stretching forces uniformly over all vertices of
the conical parts. For small stretching forces, the length of the
GV increases linearly, while its diameter in the xy plane
decreases, in line with simple linear elastic response. The
stress−strain response of a GV can be estimated by considering
the uniaxial stress in its cylindrical part, zz

F
R2

tot= , and the

corresponding strain along z, εzz=(Hcyl − Hcyl
0 )/Hcyl

0 , where Hcyl
and Hcyl

0 are the heights of the GV cylinder in the deformed and
reference configurations, respectively. The circumferential
strain, on the other hand, is deduced from the relative radius
change, εφφ = (R − R0)/R0, where R and R0 are the radii in the
deformed and reference configurations, respectively. It is
important to emphasize that Hcyl is measured between the ends
of the cylindrical section, excluding the conical parts, where the
stress depends on z as the radius tapers from R to 0. Figure
3a,b shows that the linear response matches excellently with
the constitutive equations eqs S74 and S75 of Supporting
Information. Measurement of this small-strain response could

Figure 3. GV stretching. (a) Stress σzz as a function of longitudinal strain εzz and circumferential strain εφφ for a GV stretched along its axis. (b)
Comparison with eqs S74 and S75 of Supporting Information in the limit of low strain. (c−e) Side views and (f−h) central xy slices of the GV at
different values of σzz, with σzz

0 = 2184 kBT0/rc2. The coloring represent local elastic energy. To better depict the first buckling transition, slice (g) is
taken at a height of 4 rc from the GV center. Central slices (f−h) are single-particle thick.
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therefore be used to estimate both the longitudinal Young’s
modulus El and the Poisson’s ratio νlt.
At a certain point, the GV buckles, forming a dimple,

localized to each end of the cylindrical part, see Figure 3d,g.
The onset of these dimples is already seen in Figure 3c which
shows an azimuthally nonuniform distribution of energy at the
ends of the cylindrical parts. At a larger longitudinal stress

k T r2184 /zz
0

B 0 c
2, the GV buckles into a shape with a single

dimple along the entire length, Figure 3e,h. The onset of this
instability is analogous to that in the stretching of EMBs�the
circumferential compression of the GV reaches a point, where
out-of-plane bending is energetically favorable. This transition
is also accompanied by a large jump in the circumferential
strain εφφ. Interestingly, the longitudinal strain εzz keeps
increasing linearly with σzz without a large discontinuity.

3.8. Compression. In compression experiments, the
external fluid pressure is increased and the corresponding
volume change of the body is measured. In simulations, the
pressure increase Δp is controlled by varying the interaction
parameter aww (eq 1) between the water beads.
For low Δp, the volume change can be obtained analytically

for both EMBs and GVs by calculating the stresses σθθ and σφφ,
depicted in Figures 4 and 5. Neglecting the compressibility

modulus of the trapped gas and the membrane bending
contributions, which are negligible in the regime of low
deformation, the volume strain of an EMB is (eqs S66−S71 of
Supporting Information)

V
V

R
E

p
R
K

p
3(1 )

2
3
40

0 0

a
= =

(26)

which is confirmed numerically in Figure 6a,b.
For a GV with orthotropic elasticity, the volume strain

depends on both Young’s moduli El and Et, and the Poisson’s
ratio νlt (eqs S76−S78 of Supporting Information)
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jjjjj

y
{
zzzzz= +

(27)

which is again confirmed numerically in Figure 7a,b. The linear
weak-compression slope was also observed experimentally by
Walsby132 using a glass compression tube and was used to
estimate the bulk modulus of GVs. In the isotropic case, where
El = Et, eq 27 agrees with the well-known result for isotropic

cylindrical shells,133 which is often used to estimate the
Young’s modulus of GVs.29,132

In the small deformation regime governed by the membrane
in-plane elasticity, as described by eqs 26 and 27, the effective
compressibility of the shell increases linearly with its size R0.
The shape of the shell also plays an important role. There is a
distinct difference between the compression of the spherical
EMB and the cylindrical GV with the same radius. For the same
shell material, i.e., El = Et = E, νlt = ν, eq 27 gives

pV
V

R
E

(5 4 )
20

0= , which should be compared with eq 26.

Thus, for the same shell material and radius, the cylinder has
almost twice the compressibility of the sphere.

3.9. Buckling. GVs are known to produce nonlinear acoustic
signals when exposed to high-amplitude ultrasound pulses20�
at such pressure amplitudes, they buckle reversibly. By
measuring optical density as a function of pressure, the
buckling pressures were experimentally determined for a wide
range of GV sizes and diameters. We investigate buckling
instabilities of EMBs and GVs by increasing the solvent pressure
beyond the small strain limit.
Examples of EMB buckling are shown in Figure 6c−e. An

analytical expression for the critical buckling pressure of
spherical shells exists, eq S73 in Supporting Information, which
is in an excellent agreement with our simulations, see Figure S6
in Supporting Information. It involves an empirical correction
factor due to imperfections of the shell, which consistently
takes on a well-defined value also for our model EMB. We also
performed dynamic numerical buckling experiments at various
pressure increase rates. While the buckling pressure remains
nearly unchanged across different rates, the structure evolves
through different intermediate shapes, from a single inden-
tation for the slowest pressure increase to multiple lobes when
the pressure increases more abruptly, which is in line with the
numerical simulations of ref 134.
For GVs, we compare the predicted buckling pressure to the

hydrostatic critical pressure in ref 66, which considers isolated
H. salinarum GVs in a solution. At a pressure of about Δp0 ≈
31.0 kBT0/rc3, our GV buckles into a shape with three lobes
along the circumference, Figure 7d,g. Reverting to physical

Figure 4. Pressure-induced stress in the EMB membrane. (a) EMB in a
pressurized environment, exerting uniform compression forces. (b)
Differential pressure force on the hemisphere (black arrows) in
equilibrium with elastic force of the shell (red arrows).

Figure 5. Pressure-induced stress in the GV membrane. GV in a
pressurized environment: (a) meridional stress σφφ caused by
differential pressure on the longitudinal cross-section, and (b)
equatorial stress σzz caused by differential pressure on the transverse
cross-section.
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units and up-scaling by fscale (see Methods and Table S1), Δp0
≈ 37.9 kPa. This is below the value of 64 kPa in ref 66. It is
also significantly below experimental values of refs 19 and 64 of
about Δp0 ≈ 200 kPa and Δp0 ≈ 178 kPa, respectively. One
possible reason for the discrepancies with refs 19 and 64 is that
these experiments used acoustic waves to induce the GV

collapse, which is known to yield higher measured collapse
pressures than hydrostatic techniques. A general reason is that
the actual bending constant κ is an independent parameter,
lower than predicted by thin-shell theory�a single molecular
layer membrane can hardly be considered a continuum across
its thickness. Another possible reason is that the nonlinear
elastic coefficients a3, a4, b1 and b2 (see Supporting
Information), which we neglected in this work, could play an
important role in large deformations, such as buckling. Optimal
values of these nonlinear elastic coefficients and their
uncertainties could be estimated directly from experimental
measurements using hierarchical Bayesian uncertainty quanti-
fication,91 which will be addressed in our future work.
At an even higher pressure of Δp ≈ 58 kBT0/rc3 ≈ 71 kPa, the

GV undergoes a transition into a two-lobe shape, Figure 7e,h,
which is actually closer to the collapse pressure in ref 66. This
particular shape was also obtained via a linear buckling analysis
by Salahshoor et al.65 Both buckling shapes are corroborated
by the existence of two low-frequency vibrational modes of
similar shape, which are calculated in the next section.
Our buckling simulations were conducted under quasi-static

conditions, where pressure was increased slowly to mimic low-

frequency ultrasound or static compression experiments. While
this approach provides valuable insight into mechanical
thresholds, it does not capture the effects of rapid acoustic
pressure fluctuations typical of therapeutic ultrasound.
Extending the framework to incorporate dynamic loading
and cavitation phenomena�potentially through reactive force
fields�remains an important direction of our next steps.

3.10. Vibrational Modes. Finding the right ultrasound
frequency is key for optimal tissue imaging,135 as well as for
inducing sonophoresis and affecting drug carrier behavior in
terms of growth, oscillations, rupture, and drug release via
cavitation.136 Here, we study the low-frequency modes of GVs
that could play a major role in ultrasound backscattering
phenomena.
To extract the eigenmodes and their corresponding

eigenfrequencies, we run a long simulation of 4000 τ (eq 6,
Table S1) of a GV surrounded by DPD water and perform
principal component analysis (PCA) on the trajectories of the
GV vertex beads, see Methods. Some of the extracted low-
frequency modes are shown in Figure 8a−f.
In the relevant regime, where the GV cylinder is longer than

the end cones, the lowest-frequency modes are largely confined
to the cylindrical region, as highlighted by Figure 8h.
Consequently, the ends of the cylinder impose an effectively
rigid boundary condition. In this regime, the modes can be
classified not only according to their circumferential number n,
but also their axial number m, on top of their polarization
branch, Figure 8a−f. They follow considerably well the

Figure 6. EMB compression and buckling. (a) Relative volume change of an EMB due to the external pressure increase Δp, compared to eq 26 (red
dashed line). (b) Closeup of (a) in the small deformation regime. (c−e) Compressed EMB at different values of Δp, with Δp0 = 1113 kBT0/rc3 the
buckling threshold pressure. Local buckling nucleations are noticeable in (c), while (d,e) show fully buckled states. The coloring represents local
elastic energy.
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solutions to the linearized equations (Donnel theory137) of
simply supported cylindrical shell (shear diaphragm
a t b o t h e n d s a t z H1

2 cyl
0= a n d z H1

2 cyl
0= ) , 1 3 8
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where ur, uφ, uz are displacement fields of the cylindrical shell
in r, φ, and z directions, m

Hm
cyl
0= , and Cr, Cφ, Cz are the

amplitudes, which depend on n, m, and the elastic
coefficients.138 For every mode with n ≠ 0, there exists
another mode with the same frequency, rotated by

n2
around

the z axis, i.e., with cos(nφ) and sin(nφ) in eqs 28−30
interchanged.

Figure 7. GV compression and buckling. (a) Relative volume change of a GV due to the external pressure increase Δp, compared to eq 27 (red
dashed line). The buckling pressure Δp0 = 31.0 kBT0/rc3 is indicated by a black dashed vertical line. (b) Closeup of (a) in the small deformation
regime. (c−e) Side views and (f−h) central transverse slices of the GV at different Δp. The coloring represents local elastic energy.
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The lowest-frequency mode is the doubly degenerate (m, n)
= (1, 2) mode, Figure 8a, with ω ≈ 23.1 τ−1, corresponding to
frequency ν ≈ 201 MHz. It resembles the GV shape at the
second buckling transition, Figure 7e,h.
Our results can be compared with the FEM simulations of

GVs in ref 65, where the lowest-frequency vibrational mode is
the (m, n) = (1, 1) mode at ν = 328 MHz. The lower
frequency in our case is due to the larger diameter of GV, 140
nm, compared to 85 nm in ref 65. Interestingly, in our case, the
(m, n) = (1, 1) mode appears only as the 15th mode in Figure
8g, with a frequency of ν ≈ 555 MHz.

The elastic shell dynamics that govern these low vibrational
modes largely depend on the shell’s elastic parameters, which
are independent of the chosen DPD scale. Our chosen time step
of Δt = 10−4 τ ≈ 6.5 ps is sufficient to resolve frequencies
above 10 GHz, well beyond the ultrasound-relevant regime
shown in Figure 8g. While our focus is on low-frequency
behavior, capturing higher-frequency responses may require
smaller scales139,140 or coupling with atomistic models.141

3.11. Rheological Properties: Behavior in Shear Flow.
Considering the effects of shear forces on GV dynamics is
crucial for their use in targeted drug delivery within the
bloodstream. Since GVs are elongated and exhibit a wide range

Figure 8. GV vibrational modes. (a−f) Selected low-frequency eigenmodes of a GV with corresponding axial and circumferential numbers m, n,
ordered by increasing frequency. The mesh triangles are colored according to modal displacement. (g) First 30 eigenfrequencies with selected
modes labeled by their mode indices (m, n). The star (m,n)* denotes an eigenmode rotated by

n2
around the z axis, relative to the mode with the

same indices (m, n). (h) The ur(z) profile (axial profile) of selected modes. The dashed lines indicate the ends of the GV cylinder.
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of aspect ratios, their behavior in shear flow can be compared
to that of ellipsoids. In shear flow, neutrally buoyant ellipsoids
with no-slip boundary conditions undergo rotations known as
Jeffery orbits.142 During these rotations, the ellipsoid is
continuously flipping in the shear plane (the plane spanned
by the velocity and its gradient), and the angle θ between its
axis and the velocity evolves as

a
b

ab t
a b

tan( ) tan 2 2
i
k
jjj y

{
zzz=

+ (31)

where a and b are the major and minor axes of the ellipsoid
and γ̇ is the shear rate.
Using OBMD, we generate shear flow and apply it to a GV fixed

at the center of the domain but free to rotate. In our model,
the dissipative interaction between the GV vertex beads and
water beads, taking into account eq 9, ensures no-slip
boundary condition. This boundary condition leads to a
tumbling motion consistent with eq 31, as shown in Figure 9a.
In principle, one could functionalize GVs with a hydrophobic
surfactant. In such a case, the no-slip boundary condition may
no longer apply, potentially altering the qualitative behavior of
GVs in shear flow. To investigate this, we explore the GV

response in shear flow depending on the repulsive interaction
strength aow between the vertices and water beads.
The dependence of the mean inclination angle ⟨θ⟩ on aow is

shown in Figure 9b. The mean angle and its standard deviation
were calculated over the second half of each simulation. For 0
< aow < 50 kBT0/rc, the GV exhibits tumbling behavior. Above
aow ≈ 50 kBT0/rc, the GV aligns at a fixed angle in the shear
plane, which increases to approximately 40° in the limit of
large aow. Here, γow was fixed to the value required by eq 9,
which guarantees no-slip boundary conditions for aow = 0.

4. CONCLUSIONS
The growing demand for encapsulated materials in theranostic
ultrasound applications underscores the need for versatile and
robust modeling approaches. Current theoretical frameworks
often rely on oversimplified descriptions, while fully atomistic
models, though detailed, are computationally prohibitive for
large-scale or dynamic simulations. In this paper, we developed
a general framework for modeling shelled biomaterials, and
presented particle-based mesoscopic models of EMBs and GVs as
two representative applications. The elastic energy of their
membrane was derived from the continuum theory of elasticity
and discretized on a triangular surface, where we drew

inspiration from RBC membrane network models. Thus, our
description of membrane elasticity builds on the same
theoretical foundation as existing force fields and compatibly
encompasses previous models, e.g. for RBCs91,116,143−150 or viral
capsid shells.151,152 Moreover, it extends this established
framework by incorporating anisotropic elasticity, enabling
straightforward application to anisotropic membranes such as
GVs, which exhibit orthotropic elasticity due to increased
stiffness along the ridges of the GvpA protein.
The elasticity of computational shell models is governed by

elastic coefficients, including Young’s moduli, Poisson’s ratios,
bending constants, as well as coefficients of mutual influence,
which describe the coupling between extensional and shear
strains, and Chentsov coefficients, which characterize the
interaction of shear strains across different planes. These
coefficients can be determined experimentally. Consequently,
any membrane composition can be modeled by our frame-
work, as long as its elastic properties are known. This has
important implications for fields such as bioengineering and
medical applications where elastic properties are concerned, as
our framework can model a wide range of membrane-based
systems of arbitrary shapes and local anisotropy, from
biological cells to artificial capsules.
We validated the framework by simulating stretching,

buckling, and shear flow dynamics of EMBs and GVs, comparing
our results with theoretical predictions in the limit of small
deformations. The stress−strain curves obtained from the
stretching experiments agree well with the theory of linear
deformation for both EMBs and GVs. Furthermore, we were able
to reproduce the relationship between the critical buckling
pressure and the membrane radius. We also derived analytical
expressions that can be used for the experimental determi-
nation of the elastic coefficients.
However, the mechanical properties of fluid-immersed

objects depend not only on the material of the membrane
but also on their environment and the interactions with it.
These interactions significantly influence the rheological
behavior, which is crucial when modeling membranes in
flow. In this study, we focused on simplified, controlled
environments to isolate the intrinsic mechanical response of
GVs and EMBs, modeling the surrounding medium as a simple
Newtonian fluid within the DPD framework. However, we
acknowledge that physiological viscoelastic intracellular con-
ditions can significantly influence the dynamic behavior. Future
extensions of the model could incorporate these effects to

Figure 9. Tumbling and alignment of a GV in shear flow. (a) Time dependence of the GV axis inclination angle θ with respect to the flow direction
for GV−water repulsion strength aow = 50 kBT0/rc and GV−water dissipative interaction strength γow = 40 m/τ for 0.0862 1= . Numerical values
(blue circles) are compared to eq 31 (red dashed line). (b) Dependence of mean θ on aow for 0.0862 1= .
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enhance physiological relevance in gene delivery or imaging
scenarios. DPD allows tuning of fluid−object interactions,
thereby influencing the dynamic coupling between objects
and the fluid. Proper adjustment of the dissipative parameter
γow enables control over the degree of slip in the boundary
condition at the membrane−solvent interface, ranging from
no-slip to full slip. Our shear flow numerical experiments
demonstrated the rotational periodic motion (flow tumbling)
of a single GV suspended in a DPD solvent, consistent with
Jeffery’s theoretical predictions. Moreover, we find that both
the repulsion and dissipative parameters, aow and γow, play a
crucial role in GV motion, either inducing flow tumbling or
leading to flow alignment at a specific inclination angle. This
tunability of slip conditions also enables our model to account
for physiologically relevant surface modifications, such as
lipoprotein adsorption or surfactant functionalization, which
may alter interfacial dynamics and influence particle behavior
in vivo. While a detailed treatment of membrane functionaliza-
tion is beyond the scope of this study, our framework is well-
suited for future investigations of such effects, offering a path
to model vesicle−fluid interactions under more complex
biological conditions.
Interaction of ultrasound with encapsulated biomembranes

is a highly relevant yet complex topic. While the current work
focuses on the mechanical behavior of encapsulated structures
under quasi-static conditions, modeling their dynamic response
to propagating or standing-wave ultrasound fields is a central
objective of our ongoing research. In typical biomedical
ultrasound applications (100 kPa−1 MPa, 1−100 MHz), the
applied pressures and frequencies are sufficient to induce both
linear and nonlinear deformations of UCAs, including buckling
and collapse, as supported by our results in Figure 6a and
Figure 7a. Given that the wavelength of low-frequency
ultrasound (10 μm−1 cm) greatly exceeds the characteristic
size of the particles (100 nm−1 μm), such wavefields can be
reasonably approximated as spatially uniform pressure loads at
the particle scale. This approximation justifies the use of
isotropic loading in our present simulations as a first-order
model of therapeutic ultrasound exposure. Looking ahead, we
plan to extend our framework using reactive dissipative particle
dynamics (DPD-RX) to explicitly capture ultrasound-driven
effects such as bond breakage, shell rupture, and gas exchange
under high strain rates. This will allow us to model cavitation-
like phenomena and shell failure, ultimately enabling more
accurate simulation of therapeutic ultrasound scenarios.
While continuum models focus on modeling the dynamics

of individual bubbles to elucidate fundamental principles,60 our
DPD approach extends beyond these limitations by allowing the
simulation of multiple interacting bodies, thus capturing
collective behavior and complex interactions that are critical
in many applications. The presented modeling framework is a
first step toward large-scale simulations of multiple micro- and
nanostructures and their interaction with propagating ultra-
sound waves. Modeling the ultrasound propagation on
mesoscopic scales with our virtual US machine139,140,153,154

will assist and advance simulation-driven optimization of
ultrasound-based theranostics. The optimal parameters that
reproduce the given experiments can be efficiently determined
using Bayesian uncertainty quantification.91,118 The proposed
computational framework would allow for controlled testing,
data-driven quantification of uncertainties, and rational
optimization of experimental US parameters.
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