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S1 Elastic energy

Computing the elastic force on a vertex bead of a triangulated object requires an expression

for the total elastic energy as a function of the vertex coordinates. The principle of isotropy

of space leads to certain restrictions on the form of the elastic energy of anisotropic objects.1

More specifically, a simultaneous rotation of both the body and the deformation ε should

lead to the same elastic energy U :

U(ε,M) = U(QεQT ,QMQT ) ∀Q ∈ O(3). (S1)

The elastic energy U is therefore a scalar isotropic function of two symmetric second order

tensors; the elastic strain ε and the structural tensor M. Conversely one can also view the

elastic energy as an anisotropic function with respect to the elastic strain ε:

U(ε,M) = U(QεQT ,M) ∀Q ∈ G ⊆ O(3), (S2)

where G denotes the material symmetry group. The main task is then to find all the possible

scalar terms that are invariant under the action of all the group elements Q ∈ G.

The elastic energy U can also be derived by first writing down the elastic tensor C3D
ijkl,

which relates the strain tensor ε3Dij to the elastic stress tensor σ3D
ij ,

σ3D
ij = C3D

ijklε
3D
kl . (S3)

In linear elastic theory of thin shells, in-plane and bending deformations are decoupled owing

to the assumption that normal stresses are negligible compared to internal tangential stresses

(even if bending is induced by normal stress). Under this approximation, the 3D deformation

field of the thin shell can be split into in-plane (xy) strain εij and bending Hij,

ε3Dij = εij − zHij. (S4)
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The total elastic energy is then simply a sum of the in-plane elastic (Uel) and bending (Ub)

contributions:

U =

∫
V

1
2
C3D

ijklε
3D
ij ε3Dkl dV

=

∫∫ h/2

z=−h/2

1
2
C3D

ijklεijεkl dA dz +

∫∫ h/2

z=−h/2

1
2
z2C3D

ijklHijHkl dA dz

=

∫
1
2
Cijklεijεkl dA︸ ︷︷ ︸

Uel

+

∫
1
2
DijklHijHkl dA︸ ︷︷ ︸

Ub

, (S5)

where we have identified the two-dimensional in-plane elastic tensor Cijkl and the flexural

rigidity tensor Dijkl as integrals of the full 3D elastic tensor C3D
ijkl over the thickness h of the

shell,

Cijkl =

∫ h/2

z=−h/2

C3D
ijkl dz = C3D

ijkl h (S6)

Dijkl =

∫ h/2

z=−h/2

z2C3D
ijkl dz = C3D

ijkl

h3

12
. (S7)

It should be emphasized that, in general, thin shell theory is not always applicable, par-

ticularly for single-molecule layered membranes,2 and the bending coefficients should, in

principle, be regarded as independent of the in-plane elastic ones.

In-plane elastic energy In the constant strain triangle approximation (cst),3 where the

strain field ε is constant across each of the triangles, in-plane elastic energy Uel can be written

as a sum over triangles of the triangulated surface,

Uel =

∫
1
2
Cijklεijεkl dA →

∑
t

1
2
Ct

ijklε
t
ijε

t
kl A

t
0, (S8)

where the sum runs through all the triangles of the object and the superscript t denotes

the corresponding quantity evaluated on the t-th triangle. Since the strains are calculated

relative to the reference stress-free configuration, the At
0 denotes the stress-free area of the
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t-th triangle.

For an isotropic material, the elastic tensor Cijkl is expressed in terms of the Kronecker

delta δij Eq. (21) in the main text, from which the in-plane elastic energy U iso
el is then derived

using Eq. (19). However, since isotropic elasticity has been widely used in literature,2,4 we

instead adopt one of the established expressions for the isotropic elastic energy,5 which is

also included in the Mirheo simulation package:6

U iso
el =

Ka

2

Nt∑
t=1

A0
t [α

2
t + a3α

3
t + a4α

4
t ] + µ

Nt∑
t=1

A0
t [βt + b1αtβt + b2β

2
t ], (S9)

where αt and βt are the elastic invariants corresponding to the triangular face t (see Fig S1).

This expression also includes nonlinear terms (coefficients a3, a4, b1, b2). The invariants α

and β are connected with compression and shear deformation, respectively:

α = λ1λ2 − 1, β =
λ2
1 + λ2

2

2λ1λ2

− 1, (S10)

with λ1,2 the eigenvalues of the deformation gradient Fij, corresponding to local principal

stretches2,5 of a deformed triangular element. The nonlinear coefficients a3, a4, b1 and b2 are

often used when describing the elastic properties of rbcs, especially under large strains. In

this work, all nonlinear coefficients are set to zero.

For small strains, Eqs. (S8) and (S9) are equivalent, as we show next. We express the

eigenvalues λ1,2 in terms of eigenvalues e1,2 of the strain tensor ε, i.e., the principal strains,
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and perform a Taylor expansion around zero strain:

α = λ1λ2 − 1 =
√
1 + 2e1

√
1 + 2e2 − 1

=
√

1 + 2tr(ε) + 2(tr(ε)2 − tr(ε2))− 1

≈ tr(ε) +O(|ε|2), (S11)

β =
λ2
1 + λ2

2

2λ1λ2

− 1 =
1 + 2e1 + 1 + 2e2

2
√
1 + 2(e1 + e2) + e1e2

− 1

=
2 + 2tr(ε)

2
√

1 + 2tr(ε) + 2(tr(ε)2 − tr(ε2))
− 1

≈ tr(ε2)− 1

2
tr(ε)2 +O(|ε|3). (S12)

The quantities tr(ε) and tr(ε2)− 1
2
tr(ε)2 are exactly the strain tensor invariants corresponding

to area dilatation and pure shear deformations, respectively.

For an orthotropic material, the elastic tensor Cijkl is constructed using a structural

tensor Mij = mimj, which describes the preferred direction m (normalized vector), along

with the Kronecker delta δij (or transverse Kronecker delta δ⊥ij = δij − mimj). The tensor

Cijkl should be invariant with respect to the inversion m → −m. Taking into account these

symmetries one gets four independent terms (Eq. (23) in the main text),

Cijkl = Kaδijδkl + µ (δikδjl + δilδjk − δijδkl)

+ (µL − µ)(mimlδjk +mjmlδik +mimkδjl +mjmkδil)

+ cmimjmkml, (S13)

with µL, c the anisotropic elastic coefficients. Since the gv rotates and deforms over time,

the axis m is updated at each step, simply by tracking the end points of the gv.

Thus, the complete expression for the in-plane elastic energy of the orthotropic material
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is

Uaniso
el = U iso

el +
Nt∑
t=1

At
0

[
2(µL − µ)I3 +

1

2
cI24

]
, (S14)

where we introduced scalar strain invariants for compactness:

I3 = mTεTεm, (S15)

I4 = mTεm. (S16)

For vanishing anisotropy, where µL − µ = 0, c = 0, isotropic elasticity is recovered in

Eq. (S14). In principle, there is one more term quadratic in ε, proportional to I5 ≡ αI4 ≈

tr(ε)I4 or equivalently, a term proportional to (δijmkml + δklmimj) in Eq. (S13). In 2D, it

can be expressed as a sum of other invariants in the limit of low strain and was therefore

omitted.

In practice, it is sometimes more convenient to work with the so-called engineering con-

stants, which are typically easier to measure and are therefore more frequently reported in

experimental literature. They are defined in the small-strain limit through the relations

between the strain εij and stress σij components. For 2D isotropic elasticity the definition is


ε11

ε22

ε12

 =


1
E

− ν
E

0

− ν
E

1
E

0

0 0 1
2G



σ11

σ22

σ12

 , (S17)

where E, ν, and G = E
2(1+ν)

are the Young’s modulus, Poisson’s ratio, and shear modulus,

respectively. The bulk Ka and shear µ moduli in Eq. (21) are expressed as

Ka =
E

2(1− ν)
(S18)

µ = G =
E

2(1 + ν)
, (S19)
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while the converse relations are:

E =
4Kaµ

Ka + µ
(S20)

ν =
Ka − µ

Ka + µ
. (S21)

In 2D orthotropic elasticity the relation between εij and σij involves two additional en-

gineering constants: 
ε11

ε22

ε12

 =


1
E1

− νlt
E1

0

− νlt
E1

1
E2

0

0 0 1
2G



σ11

σ22

σ12

 , (S22)

where νlt = − ε22
ε11

is the Poisson’s ratio for uniaxial stress σ11. With that, the other Poisson’s

ratio νtl = − ε11
ε22

for uniaxial stress σ22 is also set,

νlt
El

=
νtl
Et

, (S23)

which was already taken into account in Eq. (S22).

The four engineering constants can be used to calculate the elastic coefficients in Eq. (S13):

Ka =
EtEl(1 + νlt)

2(El − ν2
ltEt)

(S24)

µ =
EtEl(1− νlt)

2(El − ν2
ltEt)

(S25)

µL = G (S26)

c =
E2

l + ElEt + 4EtGν2
lt − 4ElG− 2ElEtνlt

El − ν2
ltEt

. (S27)
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The converse relations are

Et =
4ΛµL + Λc+ 8µLµ− 4µ2 + 2µc

Λ + 4µL − 2µ+ c
(S28)

El =
4ΛµL + Λc+ 8µLµ− 4µ2 + 2µc

Λ + 2µ
(S29)

νlt =
Λ

Λ + 2µL

(S30)

G = µL, (S31)

where Λ ≡ Ka − µ is the Lame’s first parameter. Thermodynamic stability of the 2D

orthotropic material requires Et, El, G > 0 and |νlt| <
√

El

Et
.

Bending energy The bending energy Eq. (24) in the main text is perhaps easier to un-

derstand by comparing it to the bending of a flat plate with a particular direction of the

anisotropy axis (longitudinal direction), e.g., m = êx:

Ub(m = êx, Bij = 0) =
1

2
DxxH

2
xx +DxyHxxHyy +

1

2
DyyHyy +

1

2
DGH

2
xy, (S32)

where Dxx = Elh
2

12(1−νtlνlt)
, Dyy = Eth2

12(1−νtlνlt)
, Dxy = Etνlth

2

12(1−νtlνlt)
and DG = Gh2

12
are the flexural

rigidities. Clearly, bending along the anisotropy axis x depends on El, while bending along

y depends on Et. Given that gvs are stiffer along their axis, one expects circumferential

bending to be more easily induced than axial bending. This is also confirmed in our numerical

calculations of compression and buckling, as well as in our eigenmode analysis.

There are multiple ways of discretizing the bending energy,7,8 such as the Monge-form

based discretization by Kantor and Nelson,9 the edge curvature approach by Jülicher,10 and

approaches that discretize the Laplace-Beltrami operator.11,12 We use the Kantor-Nelson

form, which takes into account the angle between each pair of triangles:

Ub = κb

∑
⟨i,j⟩

[
1− cos(θij − θ0ij)

]
, (S33)
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where κb is the bending parameter, while θij and θ0ij are the actual and spontaneous angles

between two adjacent triangles, respectively. To reproduce Eq. (22), κb =
2√
3
κ must be used.

For simplicity, we use Eq. (S33) for the bending energy of both embs and gvs. Anisotropic

bending effects are retained due to the anisotropic in-plane elasticity generally associated

with the bending of shells.

S2 Elastic forces between mesh vertices

Elastic forces acting on the vertex nodes are calculated as derivatives of the total elastic

energy U = Uel + Ub with respect to the vertex coordinates. In Mirheo,6 each GPU thread

is mapped to one vertex and loops over all adjacent triangles of that vertex. Therefore, only

the force on one of the vertices of a given triangle needs to be specified, e.g.,

f1 =− ∂U

∂x1

. (S34)

An analytical expression for the deformation gradient F entering U is thus required. The

easiest way to calculate the deformation gradient for a cst triangular element is to first

super-impose one of the sides of a triangle (e.g., ξ12 = x2 − x1) and express the coordinates

of the deformed configurations (x2 and x3) in terms of their reference counterparts (x0
2 and

x0
3), see Fig. S1. Here, the basis vectors are ê1 =

ξ12

|ξ12|
and ê2 =

n×ξ12

|n×ξ12|
. The deformation

gradient then reads5

F =

a b

0 c

 , (S35)

where a, b, and c are determined by comparing the deformed and reference triangular faces,
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see Fig. S1:

a =
l

l0
=

√
ξ12 · ξ12
l0

, (S36)

b =
1

sin(ϕ0)

(
l′

l′0
cos(ϕ)− l

l0
cos(ϕ0)

)
=

1

sin(ϕ0)

(
ξ12 · ξ13

ll′0
− a cos(ϕ0)

)
=

l0l
′
0

2A0

(
ξ12 · ξ13

ll′0
− a

ξ012 · ξ013
l0l′0

)
=

1

2A0

(
ξ12 · ξ13

a
− aξ012 · ξ013

)
, (S37)

c =
l′

l′0

sin(ϕ)

sin(ϕ0)
=

√
(ξ12 × ξ13) · (ξ12 × ξ13)

ll′0 sin(ϕ0)
=

2A

ll′0 sin(ϕ0)
=

A

aA0

, (S38)

where A denotes the deformed area of the triangle: A = 1
2
|n∗|, with n∗ = ξ12× ξ13, ϕ0, ϕ are

the angles between the edges ξ12 and ξ13, l0, l are the lengths of the edge ξ12, while l′0, l
′ are

the lengths of the edge ξ13. The quantities calculated in the reference configuration have a

subscript 0. We note that the triangles are indexed so that the vectors n∗ point inside the

object.

x3

x1 x1

(b)(a)

x2 x2

x3

m

mx

my

l0

l'0l'0

l0 l

l' l'

l
ϕ0 ϕ0ϕ ϕ

Figure S1: Triangular element deformation and anisotropy axis projection. (a) A deformed
triangular face of an object (red dashed lines) superimposed to a reference triangular face
(black solid lines) spanned by vertices x1, x2 and x3. b) A scheme representing the projected
anisotropy axis m onto a given triangular element together with its two components mx and
my.

Due to the involved expressions for the total force f1 on a given vertex, we split this force

into two contributions; one from the in-plane elastic energy, f el1 = −∂Uel

∂x1
and the other from
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the bending energy, f b1 = −∂Ub

∂x1
. For the orthotropic case, the force f el1 reads

f el1 =− ∂Uel

∂x1

= f el,iso1 −
Nt∑
t=1

At
0

[
2(µL − µ)

∂I3
∂x1

+ cI4
∂I4
∂x1

]
, (S39)

where I3, I4 are the scalar invariants Eqs. (S15)-(S16), and f el,iso1 denotes the force when only

the isotropic part of the energy (Eq. (S9)) is included. We have implemented the orthotropic

elastic force as an additional membrane force kernel in Mirheo.

The relevant derivatives with respect to the vertex coordinates, used in numerical com-

putation of Eq. (S39), are:

∂A

∂x1

= − 1

4A
n∗ × ξ32, (S40)

∂a

∂x1

= −ξ12
ll0

, (S41)

∂a

∂x2

=
ξ12
ll0

, (S42)

∂a

∂x3

= 0, (S43)

∂b

∂x1

=
1

sinϕ0

(
−ξ13

ll′0
− ξ12

ll′0
+

ξ12 · ξ13
l3l′0

ξ12 +
cosϕ0

ll0
ξ12

)
, (S44)

∂b

∂x2

=
1

sinϕ0

(
ξ13
ll′0

− ξ12 · ξ13
l3l′0

ξ13 −
cosϕ0

ll0
ξ13

)
, (S45)

∂b

∂x3

=
1

sinϕ0

ξ12
ll′0

, (S46)

∂c

∂x1

=
n∗ × ξ23

2All′0 sinϕ0

+
2A

l3l′0 sinϕ0

ξ12, (S47)

∂c

∂x2

=
n∗ × ξ13

2All′0 sinϕ0

− 2A

l3l′0 sinϕ0

ξ12, (S48)

∂c

∂x3

=
n∗ × ξ12

2All′0 sinϕ0

. (S49)

The invariants in Eq. (S39) and their derivatives with respect to the vertex coordinate

can be more compactly expressed using the invariants involving the axis of anisotropy m
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and the right Cauchy strain tensor C

IC3 = mTCTCm = 4I3 + 4I4 + 1 = m2
x(a

4 + a2b2) + 2mxmy(a
3b+ ab3 + abc2)

+m2
y(a

2b2 + (b2 + c2)2), (S50)

IC4 = mTCm = 2I4 + 1 = m2
xa

2 + 2mxmyab+m2
y(b

2 + c2), (S51)

where

C = FTF =

a2 ab

ab b2 + c2

 . (S52)

The derivatives of the invariants IC3 and IC4 are:

∂IC3
∂x1

= m2
x

(
4a3

∂a

∂x1

+ 2ab2
∂a

∂x1

+ 2a2b
∂b

∂x1

)
+ 2mxmy

∂a

∂x1

(
3a2b+ b3 + bc2

)
+ 2mxmy

∂b

∂x1

(
a3 + 3ab2 + ac2

)
+ 4mxmy

∂c

∂x1

abc

+ 2m2
y

∂a

∂x1

ab2 +m2
y

∂b

∂x1

(2a2b+ 4(b2 + c2)b) + 4m2
y

∂c

∂x1

(b2 + c2)c, (S53)

∂IC4
∂x1

= 2m2
xa

∂a

∂x1

+ 2mxmyb
∂a

∂x1

+ 2mxmya
∂b

∂x1

+ 2m2
y

∂b

∂x1

b+ 2m2
y

∂c

∂x1

c. (S54)

The vector m is defined locally for each triangle and is written in the same basis as the

deformation gradient (Eq. (S35)). This vector is derived from the main axis of the gas vesicle

m∗, which is for simplicity calculated from the positions of the tips of the conical ends vt

and vb,

m∗ = vt − vb, (S55)

where the two choices of assigning vt and vb are equivalent due to the m
∗ → −m∗ symmetry.

We projectm∗ onto the triangle by subtracting the component along the triangle unit normal

S12



n:

m∥ = m∗ − n(n ·m∗), (S56)

n =
ξ12 × ξ13
|ξ12 × ξ13|

. (S57)

The components of the projected vectorm∥ in the basis of the deformation gradient Eq. (S35),

then read

mx =
m∥ · ξ12
|m∥||ξ12|

, (S58)

my =
m∥ · (n× ξ12)

|m∥||n× ξ12|
. (S59)

Calculating the bending forces on the vertices requires iterating through all the pairs of

triangles of the triangulated mesh, see Fig. S2. This is a consequence of the Kantor-Nelson

discretization of the bending energy Eq. (S33), which takes into account the angles θij be-

tween the pairs of adjacent triangles i and j. The nodal bending forces on all the vertices

x1,x2,x3,x4 of two adjacent triangles read13

f b1 = −∂Ub

∂x1

= b11ξ × ξ32 + b12 (ξ × ξ43 + ζ × ξ32) + b22ζ × ξ43, (S60)

f b2 = −∂Ub

∂x2

= b11ξ × ξ13 + b12ζ × ξ13, (S61)

f b3 = −∂Ub

∂x3

= b11ξ × ξ21 + b12 (ξ × ξ14 + ζ × ξ21) + b22ζ × ξ14, (S62)

f b4 = −∂Ub

∂x4

= b11ξ × ξ31 + b12ζ × ξ31, (S63)

where b11 = −βb cos(θij)/|ξ|2, b12 = βb/(|ξ||ζ|), b22 = −βb cos(θij)/|ζ|2 and

βb = κb

(
sin θij cos θ

0
ij − cos θij sin θ

0
ij

)
. The normals of the triangles are ξ = ξ12 × ξ13 and

ζ = ξ41 × ξ43, see Fig. S2. The cosine of the angle between the adjacent triangles is

determined from the scalar products of the normals, cos θij =
ξ·ζ
|ξ||ζ |

, which leads to sin θij =

±
√
1− cos2 θij, where the positive sign is taken if (ξ − ζ) · ξ24 > 0 and negative otherwise.
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x3

x2
x1

ξ
ζ

θij

x4
Figure S2: Vertices, normals ξ and ζ, and the angle θij between the adjacent triangles
for the calculation of bending forces. For clarity, the inverse normals are shown. Note
the interchange of x1 and x2 between our indexing convention and that of Ref.13 In our
convention, the normals point inward.

S3 Mechanical properties - technical details

S3.1 Numerical validation of elastic properties

To validate that the elastic membranes of the ultrasound contrast agents reproduce the

desired elastic properties, such as Young’s moduli and Poisson’s ratios, we test the behavior

of a rectangular sheet under extensional stresses σxx and σyy and measure their strains εxx

and εyy. To measure the shear modulus G, we impose a shear strain and measure the

resulting shear stress response.

In these validation simulations, the axis of anisotropy is m = êx, and the engineering

constants are set to Et = 50 kBT0/r
2
c , El = 250 kBT0/r

2
c , νlt = 0.8, G = 5.7 kBT0/r

2
c .

As seen in Fig. S3, the measured Young’s moduli, Poisson’s ratios νlt and νtl, and shear

modulus µL agree excellently with the simulation input values. To calculate the Poisson’s

ratio, we measure νlt = − εyy
εxx

for stretching forces along the x axis, as well as its reciprocal

equivalent νtl = − εxx
εyy

for stretching along the y axis. The two Poisson’s ratios are related

according to Eq. (S23), yielding νtl = 0.16.

The corresponding in-plane displacement fields ux(x, y) of the rectangular sheet are shown

S14



Figure S3: Stretching and shearing of a rectangular sheet. (a) Dilatational stresses σxx and
σyy as functions of strain when stretching the sheet along the x and y axis. (b) Poisson’s
ratios νlt and νtl as a function of strain. (c) Shear stress σxy as a function of shear strain.
Dashed lines represent theoretical values, set as simulation parameters, and points represent
their measured values.

for different values of dilatational stress, Fig. S4, and shear strain, Fig. S5.

Figure S4: In-plane displacement field ux(x, y) for different values of dilatational stress σxx.
ux(x, y) is displayed for the rectangular sheet, stretched along the x axis. The arrows denote
the directions of the forces on the leftmost and rightmost vertices of the sheet.

Figure S5: ux(x, y) for different values of shear strain γ. The arrows indicate the directions
of displacement of the topmost and bottommost vertices of the sheet.
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S3.2 Microbubbles

Stretching Stretching of a microbubble results in an increased diameter along the stretch-

ing direction and a decrease of the diameter perpendicular to the stretching direction. The

stretching is experimentally induced by attaching two micron-sized spherical silica beads

at the ends of a given object and displacing them in opposite directions using lasers. The

equilibrium condition reads:2

σθθ

Rθ

+
σφφ

Rφ

= 0, (S64)

where Rθ and Rφ are the principal radii of curvature along the meridian and equator, re-

spectively. In the low strain limit Rθ ≈ Rφ, which yields σφφ = −σθθ. The tangential stress

at the equator can be calculated from the total force Ftot: σθθ =
Ftot

2πR
, which yields the strain

along the equator εφφ = Ftot

4πRµ
. Taking into account the relation εφφ = D−D0

D0
, the diameter

then reads:

D = D0 −
Ftot

2πµ
. (S65)

Compression Compression is achieved by exerting a uniform excess pressure ∆p on the

fluid containing embs. The induced elastic stresses within the spherical emb shell are ho-

mogeneous and can be determined by virtually halving the sphere and calculating the total

force exerted by the pressure difference on the hemisphere, see Fig. 4 in the main text. This

force equals ∆pπR2, which induces a uniform stress σθθ = σφφ ≡ σ within the shell:

σ = −∆pπR2

2πR
= −R

2
∆p. (S66)

The relative emb volume change is ∆V
V

= 3∆R
R

= 3εθθ = 3εφφ, or also
∆V
V

= 3
2
∆S
S
, where ∆S

S

is the relative emb surface area change. Taking into account

εθθ =
σθθ

E
− νσφφ

E
(S67)

εφφ = −νσθθ

E
+

σφφ

E
, (S68)
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or directly the definition of 2D compression

∆S

S
=

1

Ka

tr(σ)

2
, (S69)

with tr(σ) = σθθ + σφφ, one arrives at

∆V

V
=

3(1− ν)

E
σ =

3

2Ka

σ (S70)

and with Eq. (S66) finally at the relative emb volume change

∆V

V
= −3(1− ν)R

2E
∆p = − 3R

4Ka

∆p. (S71)

For an orthotropic elastic sphere, the result Eq. (S70) becomes

∆V

V
=

1

El

(
1− 3νlt + 2

El

Et

)
σ, (S72)

which reduces to Eq. (S70) when El = Et = E.

Buckling Critical buckling pressure of an emb scales inversely with the square of its ra-

dius:14

∆pc = C
2E3D√
3(1− ν2)

(
h

R

)2

, (S73)

where C is a dimensionless empirical factor, which in real experiments is often found to be

less than 1 owing to the various imperfections of the shell. We find that the Eq. (S73) is in

excellent agreement with the simulations, Fig. S6, with C = 0.52± 0.01.

S3.3 Gas vesicles

Stretching When stretching the gv along the axis one can estimate the local stress tensor

in the cylindrical part from the total force: σzz = Ftot

2πR
. The only other component is
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Figure S6: emb buckling pressure. (a) Volume of an emb as a function of external pressure
∆p for various emb sizes R. (b) Buckling pressure dependence on R, fitted (dashed red)
with Eq. (S73).

the circumferential stress σφφ, which is zero, σφφ = 0. For the resulting longitudinal and

circumferential strain we therefore find rather simple relations:

εzz =
1

El

Ftot

2πR
(S74)

εφφ = −νlt
El

Ftot

2πR
. (S75)

As has been done in the main text, one can then use these relations to estimate the longitu-

dinal Young’s modulus and the Poisson’s ratio νlt.

Torsion On the other hand, to extract the shear modulus G, one has to induce shear strain

on the membrane. We apply this strain by rotating the ends of the gv in opposite directions

by an equal angle of θ/2. The torsional strain is therefore γ = R0θ
H0

cyl
. The torsional stress is

calculated from the measured forces on the vertices, which are needed to sustain this strain.

As one can see from Fig. S7, the theoretical dependence σφr = Gγ matches the numerical

calculations excellently.

S18



(a) (b)

Figure S7: gv torsion. (a) Torsional stress σφr as a function of the torsional strain γ = Rθ
H0

cyl

for a gv twisted around the main axis. The numerical values are compared to theoretical
values in the limit of low strain. (b) Side view of a gv under a specific torsional strain. The
vertices are colored according to their total elastic energy.

Compression Similarly one can obtain an equation for the volume change of gvs:

εzz =
σzz

El

− νtlσφφ

Et

=
σzz

El

− νltσφφ

El

(S76)

εφφ =
σφφ

Et

− νltσzz

El

, (S77)

where σzz =
1
2
∆pR0, σφφ = ∆pR0, and we used Eq. (S23). For cylindrical shapes, the volume

change is ∆V
V0

= εzz + 2εφφ, which yields:

∆V

V0

= −∆pR0

2El

(
1− 4νlt + 4

El

Et

)
. (S78)
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S4 Dissipative Particle Dynamics (DPD)

S4.1 Weight functions

In dpd, the force between the particles linearly decreases with interparticle distance rij = |rij|

up to a cutoff rij = rc. This is encompassed in the conservative weight function ωC in Eq. (1):

ωC(rij) =

 1− rij
rc
, rij < rc

0, rij ≥ rc

, (S79)

To satisfy the fluctuation-dissipation theorem, the weight functions of the random and

dissipative forces (Eqs. (2)-(3)) are related through ω2
R = ωD. Similarly, the amplitude of

the random force σαβ is fixed by temperature T0 and the friction parameter γαβ to σ2
αβ =

2kBT0γαβ.

At a given temperature, the viscosity of the dpd fluid is determined mainly by the

dissipative parameter γαα in Eq. (2) and the density ρ. To allow additional control of viscosity

and the Schmidt number (Eq. (S85)), several authors15,16 have modified the dissipative force

kernel ωD in Eq. (2). We use the form presented in,15 which is also commonly used in the

red blood cell (rbc) modeling community:4,17–19

ωD(rij) =


(
1− rij

rc

)2k

, rij < rc

0, rij ≥ rc

, (S80)

where k is the so-called kernel power.

S4.2 Fundamental scales, simulation parameters and details

The emb and gv sets of fundamental scales, described in the Methods section, are given in

Table S1. The simulation timestep, typical simulation box sizes and obmd parameters used

in shear flow simulations are given in Table S2.
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Table S1: Fundamental scales rc, ε,m, and τ for the emb and gv unit sets, along with the
elastic coefficients down-scaling factor fscale; T0 = 300K.

Fundamental scale Value (emb unit set) Value (gv unit set)

Length scale rc 0.25µm 35nm

Energy scale ε kBT0 kBT0

Mass scale m 5.19× 10−18 kg 1.42× 10−20 kg

Time scale τ 8.85× 10−6 s 6.49× 10−8 s

Scaling factor fscale 0.0074 0.079

Table S2: Values of the simulation parameters used, unless stated otherwise.

Simulation parameter Symbol Value

Integration timestep ∆t 0.0001 τ

Box size - mechanical simulations Lx × Ly × Lz 25 rc × 25 rc × 25 rc

Box size - shear flow simulations Lx × Ly × Lz 50 rc × 25 rc × 25 rc

Buffer mass control parameter αB 0.6

Buffer relaxation time τB 10∆t

Buffer length xB 7.5 rc

To integrate the particle dynamics, we use a modified velocity-Verlet algorithm:20

rk(t+∆t) = rk(t) + ∆tvk(t) +
(∆t)2

2mk

fk(t) (S81)

ṽk(t+∆t) = vk(t) + λ
∆t

mk

fk(t) (S82)

fk(t+∆t) = fk (rk(t+∆t), ṽk(t+∆t)) (S83)

vk(t+∆t) = vk(t) +
∆t

2mk

(fk(t) + fk(t+∆t)) , (S84)

with λ = 1/2, and mk, rk,vk, fk the mass, position vector, velocity, and total force acting on

the k-th dpd bead.
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S4.3 DPD interactions

The dpd interactions, described by aαβ and γαβ in Eqs. (1)-(2), are given in Table 1 in the

main text. These parameters are set to approximately reproduce the viscosity of the water

and gas phases, as well as the no-slip boundary condition between the shell surface and the

phases. To characterize the water and gas phases, we calculate the shear viscosity η, the

self-diffusion constant D, and the Schmidt number

Sc =
η

ρD
(S85)

for a relevant range of dpd parameters aαα and γαα, see Fig. S8. We choose different values

of parameters γww and γgg depending on the length scale (Table S1) and the actual (scaled-

down) viscosities of water and gas phases.

The physical and corresponding model (scaled-down) parameters for gvs and embs used

in our simulations are summarized in Table S3. Most of the physical parameters, except

for the shear modulus µL in gvs, which was estimated by its isotropic counterpart µ, were

obtained from available literature.21–23

S4.4 Inducing pressure

We induce pressure by increasing the interaction parameter between the water beads aww.

Here, we verify that such a protocol leads to a pressure, which matches nicely to the semi-

empirical equation of state Eq. (5) as seen in Fig. S9.

S4.5 Shear flow

Shear flow is induced by adding a term that applies equally opposite forces to the buffers.

This term, given in Eq. (12) in the main text consists of shear stress Pyx, and a unit vector

t̂ ( t̂ = êy at the right buffer and t̂ = -êy at the left buffer).
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Figure S8: Rheological properties of dpd water. (a) Shear viscosity, (b) self-diffusion con-
stant D and (c) Schmidt number Sc as a function of γαα at different values of the interaction
parameter aαα.

Figure S9: Inducing time dependent pressure. Measured simulation pressure over time (blue
circles) compared with pressure from the semi-empirical equation of state (red dashed line).
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Table S3: Physical (above dashed line) and model 2D (below dashed line) parameters for
gvs and embs. The 2D elastic moduli are downscaled by the scaling factor fscale.

Parameter Model value Physical value
Gas vesicles21

H = Hcyl + 2Hcone gv height 14.3 rc 500 nm
Hcone gv cone height 2.1 rc 75 nm

D0 diameter 4 rc 140 nm
h shell thickness 0.057 rc 2 nm

ρs shell mass density 3.97mr−3
c 1320 kgm−3

ρgas gas mass density 1.12× 10−2mr−3
c 3.72 kgm−3

E3D
t transverse Young’s modulus 1.04× 107 kBT0 r

−3
c 1.0GPa

E3D
l longitudinal Young’s modulus 4.14× 107 kBT0 r

−3
c 4.0GPa

νlt Poisson’s ratio 0.3 0.3
Ka bulk modulus 3.11× 104 kBT0 r

−2
c 1.05× 10−1Nm−1

µ shear modulus 1.67× 104 kBT0 r
−2
c 5.66× 10−2Nm−1

µL shear modulus 1.67× 104 kBT0 r
−2
c 5.66× 10−2Nm−1

c anisotropic stiffness 1.43× 105 kBT0 r
−2
c 4.85× 10−1Nm−1

κC bending parameter 16.14 kBT0 6.68× 10−20 J
Protein-based microbubbles22,23

R0 radius 4 rc 1 µm
h shell thickness 0.06 rc 15 nm

ρs shell mass density 3.31mr−3
c 1100 kgm−3

ρgas gas mass density 3.89× 10−3mr−3
c 1.293 kgm−3

E3D Young’s modulus 9.96× 108 kBT0 r
−3
c 264MPa

ν Poisson’s ratio 0.5 0.5
Ka bulk modulus 4.42× 105 kBT0 r

−2
c 2.93× 10−2Nm−1

µ shear modulus 1.47× 105 kBT0 r
−2
c 9.77× 10−3Nm−1

κC bending parameter 204.3 kBT0 8.46× 10−19 J

As seen in Fig. S10, the resulting velocity profile is linear. The overall similarity be-

tween the profile of the undisturbed flow and the profile of the flow in the presence of the

gv indicates that the gv does not significantly disrupt the shear flow, implying limited

resistance.
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Figure S10: Velocity profile vy along the x axis of the simulation box at γ̇ ∼ 0.035 τ−1. Data
from a simulation of a gv in water (red points) are compared with simulation data of pure
water (blue).
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(12) Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A. H. Visualization and Mathematics III ;

Springer Berlin Heidelberg, 2003; p 35–57.

(13) Fedosov, D. A. Multiscale modeling of blood flow and soft matter ; Brown University,

2010.

(14) Zoelly, R. Ueber ein Knickungsproblem an der Kugelschale; Buchdr. Zürcher & Furrer,
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