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I. TENSORIAL CONSERVATION LAW

A linear polymer is modeled as a continuous WLC presented by the microscopic density field of the polymer length

ρmic(x) =
∑
α

∫
xα(s)

ds δ(x− xα(s)), (1)

i.e., the total length of the polymer per unit volume, where xα(s) is the contour of the chain α in natural parametriza-
tion. For brevity we will be omitting the superscript α and the sum

∑
α over the chains. The continuity of x(s)

stands for the unbroken connectivity of the polymer chains. A microscopic traceless polymer nematic tensor field can
be defined as

Jmic
ij (x) =

∫
x(s)

ds δ(x− x(s)) 3
2

[
ti(s)tj(s)− 1

3δij
]
≡ J̃mic

ij (x)− 1
2δijρ

mic(x), (2)

where t(s) = dx(s)/ds is the unit tangent on the chain.
Taking a divergence of Equation (2),

∂j
(
Jmic
ij + 1

2δijρ
mic
)

= 3
2

∫
x(s)

ds
dxi(s)

ds

dxj(s)

ds

∂

∂xj
δ(x− x(s)), (3)

using
dxj(s)

ds
∂
∂xj

δ(x− x(s)) = −dxj(s)
ds

∂
∂xj(s)

δ(x− x(s)) = − d
dsδ(x− x(s)) and integrating by parts, we get

∂j
(
Jmic
ij + 1

2δijρ
mic
)

= 3
2 [ti(0)δ(x− x(0))− ti(L)δ(x− x(L))] + 3

2

∫
x(s)

ds
d2xi(s)

ds2
δ(x− x(s)), (4)

where s = 0 and s = L corresponds to the beginning and ending of a chain, respectively. In the absence of polar order,
this identification is arbitrary and the beginning and ending tangents can be unified into a single type of tangents tn

always pointing inwards, such that ti(0)δ(x− x(0))− ti(L)δ(x− x(L)) = tni (0)δ(x− x(0)) + tni (L)δ(x− x(L)).
Writing a microscopic field Fmic(x), i.e., Equations (1) to (2) and also the last term of Equation (4), in the form

Fmic(x) =

∫
x(s)

ds δ(x− x(s)) f(x(s)), (5)

coarse-graining it to the mesoscopic volume V centered at x (denoted by ) gives the corresponding mesoscopic
field [1]

F(x) = Fmic(x) =
1

V

∫
V (x)

d3x′ Fmic(x′) =
1

V

∫
x(s)∈V (x)

ds f(x(s)) =
L(x)

V

1

L(x)

∫
x(s)∈V (x)

ds f(x(s)), (6)
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where L(x) =
∫
x(s)∈V (x)

ds ≡ N(x)l0 is the total length of the chain within the volume V , which can be expressed

in terms of an arbitrary segment length l0 and the number N of these segments within the volume. Hence, the
mesoscopic field can be written as

F(x) = ρ(x)l0 f̄(x), (7)

where ρ(x) = N(x)/V is the mesoscopic volume number density of the segments and

f̄(x) =
1

L(x)

∫
x(s)∈V (x)

ds f(x(s)) (8)

is the mesoscopic average of f(x(s)).

Applying this coarse-graining procedure to Equation (4), where in particular ρmic = ρl0, Jmic
ij ≡ Jij = ρl0Qij , and

bearing in mind that the coarse-graining and ∇ commute, we get an equation for continuum mesoscopic fields — the
tensorial conservation law

∂j
[
ρ(Qij + 1

2δij)
]

= 3
2

1
l0
gi + 3

2ρki, (9)

where Q is the nematic order tensor,

Qij(x) =
1

L(x)

∫
x(s)∈V (x)

ds 3
2

[
ti(s)tj(s)− 1

3δij
]
, (10)

g(x) = tn(0)δ(x− x(0)) + tn(L)δ(x− x(L)) is the mesoscopic density of chain-end tangents and

k(x) =
1

L(x)

∫
x(s)∈V (x)

ds
d2x(s)

ds2
(11)

is the mesoscopic average chain curvature vector.

II. CORRELATION FUNCTIONS OF COLLECTIVE FLUCTUATIONS

We present the results for fluctuations of the isotropic linear polymer system in the continuum description. A mi-
nimal free-energy density of the isotropic phase taking into account density variations, nematic fluctuations satisfying
δQkk = 0 by definition, and the constraint is

f =
1

2
B

(
δρ

ρ0

)2

+
1

2
B′
(
∂iδρ

ρ0

)2

+
1

2
A (δQij)

2
+

1

2
L (∂kδQij)

2
+

1

2
G
(

2
3ρ0l0

)2 [
∂jδQij + 1

2∂i

(
δρ

ρ0

)]2

, (12)

where B is the bulk modulus, ρ0 is the volume number density of monomers, A is the “nematic order stiffness” and B′

and L (the nematic elastic constant) are penalizing ρ and Q gradients. The density and nematic correlation lengths

are ξρ ∼
√
B′/B and ξ ∼

√
L/A, respectively. The constraint due to the tensorial conservation law is taken into

account by a quadratic potential penalizing its sources, where G
(

2
3ρ0l0

)2 ≡ G̃ is the strength of the constraint. A
minimal model for G with the final result is developed in Section IV.

In Fourier space, u(q) =
∫

d3r u(r)e−iq·r, and with δρ/ρ0 ≡ δρ̃, the free-energy density (Equation (12)) is

f(q) =
1

2
B̃|δρ̃|2 +

1

2
(A+ Lq2)|δQij |2 +

1

2
G̃
∣∣qjδQij + 1

2qiδρ̃
∣∣2 , (13)

where B̃ = B + B′q2. The free energy is F =
∫

d3rf = (1/V )
∑

q f(q), where V is the volume of the system. By

equipartition, the energy corresponding to an individual quadratic contribution fi(q) to Equation (13) is 〈fi(q)〉/V =
kBT/2, with kB the Boltzmann constant and T the temperature.

To determine the fluctuation amplitudes, the quadratic form in Equation (13) is diagonalized. Since the system
is isotropic, without loss of generality we may assume q = qêz, where z is an arbitrarily chosen direction defining
the z axis of the coordinate system. Axes x and y are then fixed arbitrarily and all results at a given q must be
invariant to rotations of the tensors in the xy plane. Since Q is traceless by definition, only two of δQxx, δQyy, and
δQzz are independent. Conforming to the symmetry of the problem, we put δQzz = −(δQxx + δQyy) and take δQxx,
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δQyy as the variables. Moreover, for the remaining three variables we take δQxy, δQxz, δQyz, which represent also
their transposes and will thus give twofold free-energy contributions. With that, the diagonalized free-energy form of
Equation (13) is

f(q) =
1

2
(A+ Lq2)

(
2|δQxy|2 + |δQxx − δQyy|2

)
+
[
A+ (L+ 1

2 G̃)q2
] (
|δQxz|2 + |δQyz|2

)
+
λ+

v2
+

|a+δρ̃+ δQzz|2 +
λ−

v2
−
|a−δρ̃+ δQzz|2 ,

(14)

where we reverted to δQzz in the last two terms. The expressions v2
± = 2 + a2

±,

a± =
1

4G̃q2

{
4B̃ − 12A− q2(7G̃+ 12L)±

√[
4B̃ − 12A− q2(7G̃+ 12L)

]2
+ 32G̃q4

}
, (15)

λ± =
1

16

{
4B̃ + 12A+ 3q2(3G̃+ 4L)±

√[
4B̃ − 12A− q2(7G̃+ 12L)

]2
+ 32G̃q4

}
(16)

are real and the stability condition requires λ± > 0.
The autocorrelations of the variables that appear quadratically in Equation (14) follow immediately from equipar-

tition, Equations (20) and (21). The fluctuation δQxx − δQyy leaves δQzz unaltered and its free-energy cost is the
same as that of δQxy (note the twofold contribution of this latter off-diagonal term) — as it must be to recover the
isotropy in the xy plane. As such, it does not bring anything new.

The last two terms in Equation (14) represent the contributions of two coupled fluctuation modes, i.e., it is just the
component δQzz (and thus also the sum δQxx + δQyy) that is coupled to density. Alternatively, one can write those
terms as

λ+λ−(a+ − a−)2

λ+v2
− + λ−v2

+

|δρ̃|2 + | . . . δQzz + . . . δρ̃|2 (17)

or

λ+λ−(a+ − a−)2

λ+v2
−a

2
+ + λ−v2

+a
2
−
|δQzz|2 + | . . . δρ̃ . . . δQzz|2 (18)

and therefrom calculate 〈|δQzz|2〉 and 〈|δρ̃|2〉.
Finally, using 〈|δQzz|2〉 and 〈|δρ̃|2〉 together with the average of one of the last terms of Equation (14), e.g.,〈

|a±δρ̃+ δQzz|2
〉

=
kBT

2
V
v2
±
λ±

(19)

which we are not giving explicitly, one arrives at the cross-correlation.
Whence, the complete set of Fourier-component thermodynamic correlation functions in space is

1

N0
〈|δQxy|2〉 =

kBT

2

1

ρ0

1

A+ Lq2
(20)

1

N0
〈|δQ{xz,yz}|2〉 =

kBT

2

1

ρ0

1

A+ (L+ 1
2 G̃)q2

(21)

1

N0
〈|δQzz|2〉 =

kBT

2

4

ρ0

[
3A+

(
3L+

8G̃B̃

4B̃ + G̃q2

)
q2

]−1

(22)

1

N0
〈|δρ̃|2〉 =

kBT

2

8

ρ0

[
4B̃ +

3G̃(A+ Lq2)q2

3A+ (3L+ 2G̃)q2

]−1

(23)

1

2N0
〈δρ̃∗ δQzz + δρ̃ δQ∗zz〉 = −kBT

2

1

ρ0

8G̃q2

12AB̃ + [12B̃L+ (3A+ 8B̃)G̃]q2 + 3G̃Lq4
. (24)
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III. MESOSCOPIC WLC MODEL AND NUMERICAL SIMULATION DETAILS

In the MC simulations, we use a recently developed mesoscopic model of discrete WLCs [2, 3]. The modeled system
contains Nc WLCs comprised of Ns linearly connected segments of fixed length l0. Consecutive segments are subjected
to a standard angular potential

Ub = −εui,s · ui,s+1, (25)

where ui,s is the unit vector along the s-th segment of the i-th chain and ε controls the WLC bending stiffness.
Non-bonded interactions between segments are introduced via the potential Unb = κU(rstij ), where κ is the strength

of the isotropic repulsion between the segments and U(rstij ) = C0Θ
(
2σ − rstij

) [
4σ + rstij

] [
2σ − rstij

]2
represents the

overlap of two spherical clouds centered on the s-th and t-th segments of the i-th and j-th chain, respectively; rstij is
the distance between the segments and σ controls the interaction range as indicated by the Heaviside function Θ. To
verify the predictions of the macroscopic theory it is sufficient to employ a generic model with a single “microscopic”
length scale. Hence, we set σ = l0, although other choices are possible [4, 5] when modeling actual materials. The
normalization constant of U(rstij ) is set to C0 = 3l30/(64πσ6). We empirically set κ = 7.58 kBT [2]. Several molecular
flexibilities ranging from ε = 0 to ε = 13.136 kBT are addressed, corresponding to decreasing flexibility of the chains.
The MC algorithm utilizes a combination of standard random monomer displacement and slithering snake moves
[6]. In addition, every N0 = NcNs random displacement and slithering snake moves, a volume fluctuation move at
pressure Pl30/(kBT ) = 2.87 is employed [7].

The fluctuations of any variables δa(q) =
∑
s ase

−iq·rs and δb(q) =
∑
s bse

−iq·rs are extracted via their correlation
functions,

1

2N0

[
〈δa(q)δb(−q)〉+ 〈δa(−q)δb(q)〉

]
=

1

N0

〈[∑
s

as cos(q · rs)
][∑

s

bs cos(q · rs)
]

+

[∑
s

as sin(q · rs)
][∑

s

bs sin(q · rs)
]〉

, (26)

where s = 1 . . . N0 runs over the segments of all chains and rs are their positions. For segment density fluctuations
δρ we have as = 1, and for the nematic fluctuations δJij we have as = (3usiu

s
j − δij)/2. Note that the coarse graining

does not affect the q → 0 Fourier components, or in other words, the q → 0 components of the extracted discrete
variables are automatically coarse-grained. Hence, the long-wavelength correlations (Equation (26)) computed from
the simulation data can be directly compared to the predictions of the continuum theory.

The ensemble volume is free to fluctuate and the set of q vectors is determined by the current box size. Since the
system is isotropic, all quantities depend only on the magnitude |q| = q. We average them over spherical shells with
thickness ∆q ∼ 2π/〈L〉, taking care that also the smallest shells (q → 0) are adequately populated. In an isotropic
system, the isotropic symmetry of non-scalar quantities is broken only by the direction q, which is exploited in the
averaging procedure as follows. For every q, we set the coordinate system such that q = qêz, while

êx =
êx′ − (êx′ · êz)êz
|êx′ − (êx′ · êz)êz|

and êy = êz × êx, where êx′ is aligned with the simulation box. With that, for the component δJzz we have
as = [3(us · êz)2 − 1]/2 and for the components δJ{x,y}z we have as = 3(us · ê{x,y})(us · êz)/2.

The computed correlations are then averaged over collected configurations. When calculating averages, we use
block-averaging with block size τ , where τ is the number of MC steps needed to decorrelate the end-to-end vector of
the WLC [8].

IV. THEORETICAL MODEL OF THE SOURCES

In this additional step, we build a theoretical model to predict the coupling strength G on the basis of length and
flexibility of the chains. Similar to what has been done in Ref. [3], we resort to a minimal model of the sources of
the tensorial continuity equation in the sense that i) we treat both macroscopic sources as composed of independent
microscopic contributions to chain-end tangent density g (Section IV A) and average chain curvature k (Section IV B),
respectively, and ii) we combine both sources into a single unified source h = g+ρ0l0k with a properly weighted relative
composition (Section IV C). Only this latter case allows the tensorial constraint to be taken into account simply by a



5

penalty potential term in the free-energy density (Equation (12)), which means that no additional variables for the
sources are required.

Thus, we shall construct the nonequilibrium free energy cost of the sources in the simplest possible way and in
lowest, quadratic order of the sources. Since g = 0 in equilibrium, the variation δg of the density of end tangents
involves only the variation of their average orientation, and does not involve the variation of their density. (This is
true also in the nematic phase.) Similarly, the equilibrium average chain curvature k is zero, so the variation of ρk
does not involve the variation of the density. (This is true also in the nematic phase, provided it is not bent.)

A. End tangents

We construct a purely entropic nonequilibrium orientational free energy of orientationally independent end tangents,
taking into account their dipolar ordering that results in nonzero g. The orientational part of the entropic free energy
is then

F (p1) = −TS(p1) = kBT

∫
dΩ p(Ω) ln p(Ω), (27)

where p(Ω) = p0 + p1

√
3/2P1(cos θ) is the orientational distribution function of end tangents with respect to the

solid angle Ω, P1(cos θ) = cos θ is the first Legendre polynomial and p0 = 1/2 is fixed by the normalization∫ 1

−1
d(cos θ)p(Ω) = 1. In the isotropic system, the orientation of the z axis of the spherical coordinate system is

arbitrary. Moreover, p1 =
√

3/2〈cos θ〉 is the dipole moment of end tangent orientations (a nonzero p1 means a
nonzero g), which is the only parameter of the orientational distribution.

One can verify that the first derivative dF
dp1

∣∣
p1=0

= 0, so that the free energy is indeed minimum for the isotropic

orientational distribution of end tangents. Hence, for a single chain end, we have

∆F (p1) =
1

2

d2F

dp2
1

∣∣
p1=0

p2
1 =

1

2
2kBT p

2
1. (28)

For many independent chain ends with density ρ±0 , the free-energy density is thus

∆f =
1

2
2ρ±0 kBT p

2
1 =

1

2

3kBT

ρ±0
g2. (29)

where we took into account that with respect to a given direction g = ρ±0 〈cos θ〉 = ρ±0
√

2/3p1. This is thus the

entropic free energy cost of the density g = |g| of independent tangents of chain ends with number density ρ±0 . Not
unexpectedly, it has the same 1/ρ±0 dependence as the entropic free-energy density of the source of the vectorial
constraint [3].

B. Chain curvature

We shall construct a nonequilibrium free-energy density of nonzero local average curvature of the chains. The
bending free energy of a single WLC with nearest-neighbour bending interactions (which also corresponds to the
angular potential used in the microscopic simulation) is ∆F =

∑
i ∆Fi, with

∆Fi =
1

2
εl20|ki|2 = ε (1− cos θi,i+1) , (30)

where ki = (ui+1 − ui)/l0, ui is the unit vector along the i-th segment of the chain, and cos θi,i+1 = ui · ui+1.
Thus, considering only the bending free energy of Equation (30), the individual microscopic curvature elements,
corresponding to individual monomer joints, are independent. The relevance of this independent joint assumption in
the actual system including also non-bonded interactions is demonstrated in Section V. If the chain segments are bent
only slightly, i.e., when kBT � ε, then the two components of ki can be as usual considered ranging from −∞ to ∞,
such that equipartition holds and

〈(ki1)2〉 =
kBT

εl20
, (31)
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where ki1 is one of the components. In the continuum limit, k(s) = dt/ds is the local chain curvature vector and the
free energy is ∆F = 1

2K
∫

ds k(s)2, where s is the arclength along the chain and K = εl0 is the bending rigidity of the
continuous WLC, if one disregards the rather small influence of the non-bonded interactions on the flexibility of the
discrete WLC.

To arrive at the free energy of the collective (average) chain curvature k, one has to find the configuration of ki’s
that corresponds to the most complete equilibrium [9, pp. 335, 398] at a given k, e.g., for segment pairs that are on
average perpendicular to k this would simply mean ki = k. In the isotropic system, however, the segments point in
all directions. Let k = kêz. By symmetry, the segment pairs oriented along z, i.e., θ = 0, are not bend on average
and therefore do not contribute either to k or to the free energy. The contributions of the segment pairs lying in
the xy plane (θ = π/2) are on the other hand maximum (and equal). We shall assume that the magnitude of the
joint’s curvature vector k0 = −k0êθ goes as k0 ∝ sin θ, such that its contribution to the macroscopic curvature is
k0 ·êz ∝ sin2 θ. Requiring that its solid angle average is k, we get k0(θ) = 3

2k sin θ. For a constant density of monomers
ρ0, the corresponding effective curvature free-energy density is then obtained by averaging Equation (30) over the
solid angle, with the result

∆f(k) =
1

2

3

2
εl20ρ0 k

2 =
1

2

3εl20
2ρ0

(ρ0k)2, (32)

where k is the macroscopic (average) chain curvature in an arbitrary direction of the isotropic system and the quantity
ρ0k enters the source of the tensorial continuity equation.

Considering in Equation (32) only one monomer, i.e., ρ0 = 1/V , we get

〈k2
1〉0 =

2kBT

3εl20
≡ 2

3

1

l0ξp
, (33)

where the superscript 0 stands for kBT/ε → 0. One can verify that the same result as in Equation (33) is obtained
directly by averaging the average square of the curvature in a given direction (Equation (31)) over all possible chain
orientations, which corroborates the reasoning leading to Equation (32). In Equation (33) we have added the general
connection between 〈k2

1〉 and the persistence length ξp of the chain [9, p. 399].
The above developments are approximate and rely on the assumption of small collective curvatures, which is correct

for thermal fluctuations but cannot describe externally imposed arbitrary curvature conditions. In that case nonlinear
effects become non-negligible and a more general theory would be needed.

C. Combined sources

Finally, we establish a model that describes both sources of the tensorial continuity constraint on a unified basis,
with a single variable

h = g + ρ0l0k, (34)

analogous to what has been done in Ref. [3] for the chain ends and chain backfolds as the sources of the vectorial
continuity constraint for the “recovered” polar order. This enables us to predict the strength G of the tensorial
constraint, which is enforced simply by the unified source penalty potential in Equation (12) rather than by introducing
additional system variables for the sources.

Following Equations (29) and (32), the total nonequilibrium free-energy density of the sources is

∆f(g,k) = ∆f(g) + ∆f(k) =
1

2

[
3kBT

ρ±0
g2 +

3

2

εl20
ρ0

(ρ0k)2

]
. (35)

Considering the combined source h, its free-energy density is obtained by averaging Equation (35) over all possible
realizations (Equation (34)) of h,

∆f̄(h) = −(1/V1) d(lnZ)/dβ, (36)

where β = 1/(kBT ) and the partition function is given as

Z =

∫∫
d3g d3kP(g)P(k) δ(g + ρ0l0k− h). (37)
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Here both P(g) and P(k) are thermal Boltzmann weights corresponding to energies V1∆f(g) and V1∆f(k), where
V1 is a coarse-graining volume that does not appear in the final result. To calculate the average in Equation (36),
it is thus sufficient to calculate just the integral in Equation (37), which is carried out in spherical coordinates with
h = hêz and g · h = gh cos θ. The result is

∆f̄(h) =
3kBT

2

(
1

V1
+

h2

ρ±0 + 2kBTρ0/ε

)
, (38)

where the first, constant term 3kBT/(2V1) can be omitted — it arises due to the fact that the state h = 0 can be
realized by g = −ρ0l0k 6= 0, which costs energy (i.e., the ground state energy), while the second term is actually the
free-energy density (Equation (35)) of the average source, in accord with the property of the Gaussian distribution

f(h) = ∆f(0) + ∆f(h̄).
Thus, the nonequilibrium free-energy density of the total effective source h in arbitrary direction is ∆f(h) = 1

2Gh
2,

where the result of the combined sources model for the coupling strength G that enters Equation (12) is

G =
3kBT

ρ±0 + 2kBTρ0/ε
. (39)

V. BEND OF MONOMER PAIRS

Here, we write down the general statistical result for the bending configuration of an independent monomer pair
with bending energy of Equation (30).

In the stiff limit (kBT/ε � 1), the result in Equation (31) holds for the individual component of the curvature
vector perpendicular to the monomers, and Equation (33) holds for the curvature in any direction in the case of
isotropically averaged monomer orientation.

Conversely, in the ideally flexible limit (kBT/ε � 1) the chain undergoes a random walk. Putting ui = êz and
ui+1 = ui + l0k0 = êr, we have

(l0k0)2 = 2(1− cos θ) (40)

and the solid angle average over all possible orientations of ui+1 is l20k
2
0 = 2. Hence, in the isotropically averaged

situation, the average square of the curvature in any direction is

〈k2
1〉∞ =

1

3
k2

0 =
2

3

1

l20
, (41)

where the superscript ∞ stands for kBT/ε→∞.
For general flexibility, the partition function corresponding to the energy in Equation (30) is

Z =

∫ 1

−1

d(cos θ) e−β∆F (θ) = e−βε
2

βε
sinhβε, (42)

where β = 1/(kBT ), and the average energy is

〈∆F 〉 = − ∂

∂β
lnZ =

1

β
− ε (cothβε− 1) . (43)

With that, using Equations (30) and (40) and furthermore taking into account the isotropy as done in Equation (41),
the average square of the curvature in an arbitrary direction is 〈k2

1〉 = 2/(3εl20) 〈∆F 〉, such that

1

〈k2
1〉

=
3

2
l20

ε

kBT − ε
(

coth ε
kBT
− 1
) . (44)

One can verify that the result in Equation (44) includes both the stiff chain limit (Equation (33)) and the flexible
chain limit (Equation (41)).

Finally, the quantity 〈k2
1〉 can be determined from simulation data by measuring the average square of the curvature

in an arbitrarily chosen direction. Figure S1 reveals a remarkable agreement between Equation (44) and 1/〈k2
1〉 from

the simulations. Thus, the exact statistical result for the isolated segment pair applies with great accuracy also to
pairs surrounded by neighbouring chains of the simulated melt.
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Figure S1. The values of 1/〈k21〉 from the simulations (points) for all studied chain lengths Ns, and plot (no fitting) of the
model given by Equation (44). The extra circular point belongs to the simulation without the repulsive potential (κ = 0) and
falls exactly onto the theoretical curve.

Moreover, the additional point in Figure S1 with the repulsive potential between all monomers switched off (κ = 0)
indicates that the repulsion from other chains as well as the repulsion between the monomers forming the joint
(correction to the bending rigidity ε) is small. Also small is apparently the influence of the continuity equation on the
magnitude |δk|2 of its curvature source. Were this not the case, the large compressibility when κ = 0 would result in
a significant change of 〈k2

1〉, as a result of the vanishing cost of density fluctuations that are coupled with fluctuations
δk through the continuity constraint.

VI. INDUCED ORIENTATIONAL ORDER

The equilibrium coupling of the nematic order tensor to a given fixed density or concentration variation δρ(r) is
obtained by minimizing the part of the free energy belonging to δQij and the sources of the continuity constraint,

f ′ =
1

2
A (δQij)

2
+

1

2
L (∂kδQij)

2
+

1

2
G′
[
ρ∂jδQij + (δQij + 1

2δij)∂jδρ
]2
, (45)

where G′ = G
(

2
3 l0
)2

, with the result

δf ′

δ(δQij)
= 0 = AδQij − L∂2

kδQij −G′ρ ∂j
[
ρ∂kδQik + (δQik + 1

2δik)∂kδρ
]
, (46)

pk
∂f ′

∂(∂kδQij)

∣∣∣
∂

= 0 = L∂kδQij
∣∣
∂
pk +G′ρ

[
ρ∂kδQik + (δQik + 1

2δik)∂kδρ
]∣∣
∂
pj , (47)

where, in case relevant, Equation (47) holds at the bounding surface with the normal p. For the reason of generality,
the non-linearized continuity constraint has been considered in Equation (45).

We have already seen via the Fourier space that a density (acoustic) plane wave δρ̃(r, t) = δρ(r, t)/ρ0 with wave
vector q = qêz couples only to the component δQzz. Taking ∇ = êz∂z in Equation (46) and linearizing it, we get

δQzz(r, t) = −1

2

G̃q2

A+ (L+ G̃)q2
δρ̃(r, t). (48)

In polymer solutions, δρ̃ represents concentration variations rather than variations of the density. In the one-
dimensional case where the externally imposed concentration gradient is along z, Equation (46) leads to

(L+G′ρ2)∂2
zδQzz + 2G′ρ(∂zδρ)∂zδQzz +G′(δQzz + 1

2 )ρ∂2
zδρ−AδQzz = 0. (49)



9

If the relevant range is −d/2 < z < d/2 and we for simplicity assume that |∂zδρ|d/ρ� 1, the homogeneous solution
of Equation (49), i.e., the solution for constant ∂zδρ, is of the simple form δQzz(z) = C1eλ1z + C2eλ2z, with real

λ1,2 =
−G′ρ∂zδρ±

√
(G′ρ∂zδρ)2 +A(L+G′ρ2)

L+G′ρ2
. (50)

The relevant regime is that of weak density–nematic coupling and small concentration gradient, such that (G′ρ∂zδρ)2 �
A(L+G′ρ2) holds and λ1,2 → ±

√
A/L = ±ξ−1. Note that this limit is equivalent to linearizing Equations (46)

and (47) with respect to δQij and δρ. Hence, in a good approximation the solution is further simplified, and with the
choice δQzz(z = 0) = 0 becomes

δQzz(z) ≈ C1 sinhλ1z. (51)

The boundary condition at z = d/2 (or, equivalently, z = −d/2) follows from linearized Equation (47),

∂zδQzz(d/2) = −1

4

G′ρ∂zδρ

L+G′ρ2
, (52)

so that finally we have

δQzz(z) ≈ −
G′ρ ∂zδρ

4λ1(L+G′ρ2)

sinhλ1z

cosh(λ1d/2)
. (53)

That is, as a response to a constant concentration gradient, δQzz is modulated in the boundary layers with charac-
teristic thickness of the nematic correlation length ξ.

When the concentration gradient is not constant, ∂2
zδρ presents an inhomogeneity in Equation (49). If ∂zδρ(z) is a

slowly varying function (on the scale of ξ), we get from Equation (49) in the limit δQzz → 0

∂2
zQzz ≈ −

1

2

G′ρ

L+G′ρ2
∂2
zδρ, (54)

which thus represents the drive of the induced nematic ordering.
If the polymer concentration is spherically symmetric, one expects a uniaxial ordering of the chains in the radial

direction and can write, without loss of generality, in spherical coordinates (r, θ, φ)

Q(r) = Qrr(r)
[
êr ⊗ êr − 1

2 (êθ ⊗ êθ + êφ ⊗ êφ)
]
≡ Qrr(r)T(r). (55)

With ∇ = êr
∂
∂r + êθ

∂
r∂θ + êφ

∂
r sin θ∂φ , the nonzero derivatives of the spherical base vectors and some algebra we find

the auxiliary expressions

∇ · Q =

(
∂rQrr +

3

r
Qrr

)
êr, (56)

∇2Q =
1

r2

∂

∂r

(
r2 ∂Qrr

∂r

)
T− 6

r2
QrrT. (57)

It is sufficient to take only the êr-part of the gradient (denoted ∂j) in Equation (46),

G′ρ ∂r

(
ρ∂rQrr +

3

r
ρQrr + (Qrr + 1

2 )∂rρ

)
êr ⊗ êr −AQrrT +

1

r2
L
[
∂r(r

2∂rQrr)− 6Qrr
]
T = 0, (58)

and consider the component along êr ⊗ êr, which one gets simply by dropping all tensors in Equation (58), since
êr · T · êr = 1.

If the polymer concentration is of the specific form given by ρ(r) = ρ0 − Φ/(4πDr), we have ∂2
rρ = −2Φ/(4πDr3).

Using the same approximations as for Equation (54), which are ρ ≈ ρ0,
{

(G′ρ0∂rρ)2, (G′ρ2
0/r)

2
}
� A(L+G′ρ2) and

Qrr ≡ δQrr → 0, from Equation (58) we finally get

(L+G′ρ2
0) ∂2

rδQrr +
2L+ 3G′ρ2

0

r
∂rδQrr −

6L

r2
δQrr = G′ρ0

Φ

4πDr3
. (59)

Using a power-law ansatz, the solution is

δQrr(r) ≈ −
G′ρ0

6L+G′ρ2
0

Φ

4πDr
. (60)
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[3] A. Popadić, D. Svenšek, R. Podgornik, K. C. Daoulas, M. Praprotnik, Soft Matter 2018, 14, 5898–5905.
[4] K. C. Daoulas, V. Rühle, K. Kremer, J. Phys. Condens. Matter 2012, 24, 284121.
[5] C. Greco, Y. Jiang, J. Z. Y. Chen, K. Kremer, K. C. Daoulas, J. Chem. Phys. 2016, 145, 184901.
[6] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego,

2nd ed., 2001.
[7] M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, 2010.
[8] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1990.
[9] L. D. Landau, E. M. Lifshitz, Statistical Physics, Vol. 5, Butterworth-Heinmann, Oxford, 3rd ed., 1980.


