
PROGRESS REPORT
www.advtheorysimul.com

Particle–Continuum Coupling and its Scaling Regimes:
Theory and Applications

Luigi Delle Site,* Matej Praprotnik, John B. Bell, and Rupert Klein

This work is motivated by the goal of designing simulation software for
technical devices that, at their functional core, rely on atomistic-scale
processes embedded in a larger-scale fluid environment. The core of the
problem is the conceptual and technical approach for coupling particle and
continuum representations of a fluid. The state of the art for key aspects
including physical modeling, mathematical formalization, computational
implementation, and applications, is discussed and organized in a consistent
picture across the relevant physical regimes.

1. Introduction

Potential applications, where we are in the presence of atomistic-
scale processes embedded in a larger-scale fluid environment,
are, for example, the electrochemical surface processes and large-
scale transport around “artificial leafs”[1] that turn sunlight into
the chemically bound energy of suitable substances, or ther-
mophoretic micro-swimmers.[2] Such applications involve non-
equilibrium states sustained by persistent material, momentum,
or energy fluxes. As reported, for example, by R. Schmitz,[3] while
fluctuations in fluids are always present, non-equilibrium states
give rise to hydrodynamic fluctuations that are correlated across
mesoscales. These scales are too large to be covered efficiently
by atomisticmolecular dynamics simulations. Atomistic detail is,
however, of central interest in the cited applications, and in this
report we discuss coupledmolecular dynamics (MD)–fluctuating
hydrodynamics (FHD) simulations as a potentially fruitful ap-
proach to capturing the pertinent scale interactions.
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Key building blocks of the related de-
velopments that we will summarize and
appraise in some detail below are i) finite
volume FHD solvers following Bell, Donev,
Garcia, Nonaka and colleagues[4] (see
Section 2), ii) the “adaptive resolution sim-
ulation” (AdResS) approach that enables
molecular dynamics simulations on limited
size domains[5–7] (see Section 3), and iii) the
recent mathematical formalization of open
molecular systems by two of the authors[8]

(see Section 4). In Section 5, we discuss scal-
ing regimes and the rationale behind pos-
sible MD–FHD coupling strategies, finally,

Section 6 is dedicated to the description of some representative
examples, while Section 7 outlines future perspectives and sum-
marizes our conclusions.

2. Fluid Dynamics on Meso-Scales

In this report we are interested in processes on meso-scales and
how they couple to the microscale. By the notion of “meso-scale”
we refer to processes involving particle numbers that are finite
but too large to allow for atomistically resolved simulations. The
present section summarizes alternative approaches to model-
ing this regime in the light of their potential for contributing to
micro-to-mesoscale coupled simulations.
There are two principally different lines of development that

aim at themeso-scales: Particle-based coarse-graining techniques
maintain the model structure of interacting particles but asso-
ciate one of their representative particles withmany of themicro-
scopic degrees of freedom. This yields a modeling system with a
manageable number of particles while the modeling challenge is
to design effective particlemodels that faithfully represent the dy-
namics and statistics of the microscopic system on larger scales,
see Section 2.1.
The alternative approach treats meso-scale modeling from

the continuum perspective by reconsidering the derivation of
continuum fluid mechanics from microscopic particle dynam-
ics. Such derivations have a long-standing history but remain a
topic of intense research.[9–15] Consistently, albeit along different
routes of analysis, continuum mechanical conservation laws for
mass, momentum, and energy are obtained in the limit of large
particle numbers from amore general model for the dynamics or
statistics of the underlying many particle system. In addressing
the meso-scales following this route one maintains the mass,
momentum, and energy densities as the primary unknowns,
while the modeling challenge is to upgrade the continuum
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representation with stochastic or memory terms that cover for
deviations from the deterministic continuum limit equations,
see Sections 2.2 and 2.3.

2.1. Coarse-Grained Molecular Dynamics and Particle-Based
Fluid Models

2.1.1. Coarse-Grained Molecular Dynamics Models

Coarse-grained (CG) MD[16] aims at the efficient extension of
atomistically detailed molecular dynamics to length and time
scales otherwise inaccessible to the latter. The idea is to retain
the principal model structure of MD but to utilize artificial par-
ticles and particle interactions that are specifically designed to
reproduce important statistical properties of the atomistic coun-
terparts of the considered systems. Typically, the detailed degrees
of freedom of a group ofmolecules or of parts of a single complex
molecule are collected into representative “coarse-grained” parti-
cles with a much lower number of internal degrees of freedom.
Representative particles interact through effective potentials
which, depending on the intended degree of model reduction,
are custom-fitted such that selected statistical properties agree
between the considered material and the CG MD model. Thus,
these pair interactions are typically tuned so that equilibrium
statistical properties, such as free energies, radial distribution
functions, or their Fourier space counterparts, the structure
factors, are reproduced.[17] The number of statistical character-
istics that can be matched to those of the respective detailed
model is generally limited (see e.g., refs. [18, 19] and references
therein).
In the context of the present paper, such CGmodels represent

an intermediate level of model reduction between atomistic MD
and a continuum mechanical representation of fluid dynamics.
Yet, because it is not clear that the large scale–many particle
continuum limit of a given CG model will match that of the
underlying atomistic model automatically, one must ensure that
the particular statistical properties of the two systems that define
the material parameters of the associated fluid are in agreement.
Examples are the diffusivities and viscosities as defined by
time autocorrelation functions according to the Green–Kubo
formulae.[20,21] However, the fitting of statistical parameters
at the level of time correlations is, to the best of the authors’
knowledge, today the exception rather than the rule. A numerical
check done a posteriori may sometimes be employed to detect
a capability of a CG model for reproducing certain time corre-
lations that is not expected a priori on theoretical grounds.[22]

For further discussion of the role of CG models in multiscale
simulations involving atomistic–CG hybrid models see also
Section 3 below.

2.1.2. Particle-Based Fluid Dynamics

It is possible, on the other hand, to directly design particle-based
simulation models so as to reproduce the continuum mechan-
ics of a specific fluid with given material properties. Prominent
examples are the Smooth Particle Hydrodynamics[23] (SPH) and
Dissipative Particle Dynamics (DPD) models,[24] direct simula-

tion Monte Carlo (DSMC) schemes,[25] Yserentant’s finite par-
ticle discretization of the compressible Euler equations,[26] and
the Lattice Boltzmann method,[27] although the latter is based
on a combination of grid- and particle-based modelling princi-
ples in contrast to the other grid-free schemes which work with
interacting particles only. We note that, while DSMC was origi-
nally developed as a particle-based continuum solver for rarefied
gases, when each DSMC particle represents a single molecule
the DSMC model provides an accurate atomistic description of
dilute gases.[28,29]

Particle-based fluid dynamics models are attractive for several
reasons. They allow, for example, for the flexible and efficient
representation of complex flow domain boundaries and they
naturally include fluctuations about mean fluid dynamical flow
states, although they can only approximate the details of the fluc-
tuation statistics in general. Furthermore, their mathematical
structure is close to that of atomistic and CG MD models which
makes them an attractive option in the development of seamless
multiscale simulation schemes that bridge between the atomistic
and continuum fluid dynamical scales. Recent developments
have shown, however, that grid-based FHD models, to be de-
scribed in more detail in Section 2.3 below, are well capable of
representing fluid dynamical length and time scales across a very
wide range of scales, starting at grid resolutions for which a typi-
cal grid cell covers just tens to hundreds of molecules.[30,31] That
being the case, and since atomistic MD simulations typically
require at least this number of particles in a simulation, it seems
justified to attempt a direct coupling between atomistic MD and
FHD, thereby skipping the added complexity of intermediate
CG MD or particle-based hydrodynamic models.
There is also evidence[32] that large distance tails of two-point

velocity correlations get distorted in small-domain particle-based
simulations but that these can be recovered in hybridmodels that
cover the large scales by grid-based FHD.

2.2. Single-Particle Distributions and the Boltzmann Equation

Ludwig Boltzmann[9] pioneered an approach that takes a detour
via the single particle probability density. Considering spherical
particles that interact only upon collision with each other and
starting from the dynamics of the full many-particle system,
he derives the famous Boltzmann equation for the probability
density f (t, r, v) of finding at time t and location r a particle with
given velocity v. For a system with identical particles of massM,
one may define the continuum mechanical mass, momentum,
and energy densities as statistical moments with respect to the
velocity variable of that distribution, so that 𝜌(t, r) = ⟨Mf (t, r, v)⟩v,
𝜌v(t, r) = ⟨Mvf (t, r, v)⟩v, and 𝜌e(t, r) = ⟨M(v2∕2)f (t, r, v)⟩v, respec-
tively. Depending on suitable choices of distinguished limits
between particle numbers and length and time scales one can
show rigorously that the evolution of statistical moments as
determined by the Boltzmann equation is compatible with
the compressible or incompressible Euler or Navier–Stokes
equations. The time scale of validity of these limits depends on
the particular regime considered and on smoothness properties
of the reference continuum solutions. Much of this scientific
program has meanwhile been developed all the way to the level
of rigorous mathematical theorems and proofs.[13–15]
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In the present context, it is important to notice, however, that
adoption of Boltzmann’s equation as an intermediate model—
located between the Liouville equation for the N-particle state
space distribution on the one hand and the continuummechani-
cal conservation laws for the mass, momentum, and energy den-
sities on the other hand—implies that only limited information
regarding fluctuations of these fields remains available: One can
assess local statistical quantities such as variances, skewnesses,
etc., but to calculate, for example, space and time correlations,
multi-point statistical information would be required.
More specifically, we note that f (t, r, v) is the expected value (or

marginal) of the full many-particle distribution with respect to
the positions and velocities of all other particles in the system.
That being so, f (t, r, v) does describe the expected local densities
of mass, momentum, and energy but any information about sta-
tistical deviations from these is by construction inaccessible to
the Boltzmann approach. After all, deviations from, for example,
the expected mass in a control volume require many particles
to collude in populating or not populating that volume and the
statistics of such an accumulation necessarily requires access to
the many particle joint probability distribution. As discussed be-
low in Section 4, however, the faithful coupling of atomistic mi-
croscale to effective mesoscale models requires the latter to pro-
vide accurate fluctuation information to the former. Otherwise,
important system properties such as, for example, grand canon-
ical fluctuation statistics, cannot be maintained in the coupled
simulation. As a consequence, the Boltzmann theory has limited
value as a starting point for developing micro-to-mesoscale hy-
brid models

2.3. Many-Particles, Projection Operators, and Fluctuating
Hydrodynamics

An approach that is in this sense more general, but much less
amenable to rigorous mathematical analysis so far, is the projec-
tion operator technique.[10,12,33,34] This technique has been em-
ployed in the construction of continuum fluid dynamics mod-
els that include stochastic noise terms to represent the influence
of thermal fluctuations in many particle systems onto the con-
tinuum mechanical observables, that is, onto the mass, momen-
tum, and energy densities.[11] The resulting “fluctuating hydro-
dynamics” equations generalize the linearized theory of Landau
and Lifshitz.[35] Moreover, the projection operator technique is
sufficiently general to also include memory effects that may arise
in general coarse-graining procedures. For its generality and as it
is the theoretical basis for continuum FHDmodels, we provide a
more detailed overview of the technique in the following Subsec-
tions 2.3.1–2.3.6. Subsections 2.3.7 and 2.3.8 will then summa-
rize the state of the art of thermodynamically faithful (reacting)
FHD models.

2.3.1. Time Evolution of State Space Distributions

Suppose Ω and X ∈ Ω denote the state space and a particular
state of a complex many-particle (Hamiltonian) dynamical sys-
tem, respectively, and that its dynamics is governed by Ẋ = R(X ).
More specifically, for an N-particle system we may think of

X = (pi, ri)
N
i=1 to denote the collection of all particle momenta, pi,

and positions, ri. The projection operator technique originates
in non-equilibrium statistical mechanics. It takes the evolution
equation of state space probability distributions,

f : ℝ+ × Ω → ℝ+

(t,X ) → f (t,X )
, ∫Ω

f (t,X ) dX = 1 (1)

where ℝ+ = {x ∈ ℝ |x ≥ 0}, that is, the Liouville equation,(
𝜕

𝜕t
+ R ⋅ ∇X

)
f (t,X ) = 0 (2)

as its point of departure. Equation (2) is a scalar linear advection
equation for which R(X ) plays the role of the transport velocity.
Given an initial distribution, so that f (0,X ) = f0(X ), the Liouville
equation is solved straightforwardly by the method of character-
istics: The characteristic curves of (2) are defined by trajectories
of the underlying dynamical system

X (t) ≡ ΦtX 0 which satisfy dX
dt

= R(X ) , X (0) = X 0

(3)

Then (2) states that the probability density f (t,X ) is constant
along the characteristic curves. The density at time t and state X
may therefore be evaluated by following the characteristic pass-
ing throughX backward in time to t = 0 and evaluating the initial
density f0 at that location,

f (t,X ) = f0(Φ−tX ) ≡ (
f0◦Φ−t)(X ) (4)

where the ◦-symbol denotes function composition. The Liouville
equation encodes the same information as the original Hamilto-
nian system. Its advantage for analytical purposes is its linearity,
its disadvantage is that its unknown is a function ofN6 state space
coordinates, which makes its actual solution an arduous task.
Reasons to hope that this “curse of dimensionality” can be ad-

dressed come from the fact that the effective behavior of macro-
scopic (very) many particle systems are often described extremely
well by the evolution of a rather small number of effective vari-
ables that are functions of time and physical space only. For in-
stance, the dynamics of a homogeneous fluid is governed essen-
tially by the conservation laws for mass, momentum, and total
energy densities in the form of the Euler or Navier–Stokes equa-
tions. These constitute just five, albeit nonlinear, partial differen-
tial equations in merely three space dimensions and time.

2.3.2. Liouville Operator

The projection operator approach aims to provide a systematic
procedure for deriving such reduced dynamical systems from
the Liouville equation. To this end, (2) is first cast in a form
that emphasizes its linearity and turns out to be notationally
convenient,

𝜕f
𝜕t

= −f , where  = R(X ) ⋅ ∇X (5)
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Recall that  is a linear operator because the argument X of the
advection velocity R is an independent variable of the unknown
function f (t,X ). Formally, given an initial distribution f (0,X ) =
f0(X ), the exact solution of the Liouville equation then reads

f (t,X ) =
(
e−tf0

)
(X ) , e−t =

∞∑
k=0

(−t)k

k!
k (6)

where the operator exponential is defined by its Taylor series as
indicated. Going back to (4) above, we note that its action is read-
ily identified as

f (t, ⋅) =
(
e−tf0

)
(⋅) ≡ (

f0◦Φ−t)(⋅) (7)

The Liouville operator also describes the time evolution of any

physical observable Ã : Ω → ΩA (8)

where ΩA ⊆ ℝm is a set of quantities that we can “observe” in the
sense of experimental measurements. In fact, let

A(t) = Ã(X (t)) = Ã(ΦtX 0) =
(
Ã◦Φt

)
(X 0) (9)

denote the time evolution of measurements along the trajectory
ΦtX 0 of our system starting from X 0. Then, we see by compar-
ison with (7) and (2) that there is a time dependent observation
function (or operator)

Ãt : Ω → ΩA; X 0 →
(
Ã◦Φt

)
X 0 =

(
etÃ

)
(X 0) (10)

which, when evaluated at the initial state X 0 generates the obser-
vation at time t for the trajectory emerging from that state.
We note in passing that the change of perspective implied

by Ã(X (t)) = Ãt(X 0) corresponds to the equivalence of the
Schrödinger and Heisenberg pictures in Quantum Mechanics.
The former considers the observation operation to be given
while the system’s state changes, the latter identifies a trajectory
of the system with its initial state and associates the evolution
of the observation with the observation operator itself. We also
observe that (10) determines the evolution equation of the
observables as

d
dt
A(t) = (Ã)(X (t)) (11)

2.3.3. The Statistics of Arbitrary Functions of Relevant Observables

Given that one can measure and is interested in merely a limited
set of “relevant” observables of a many-particle system, the de-
tailed information encoded in the state space probability density
f from (1) is more than is needed or of interest in practice. Now,
let Ã = {Ã1,… , Ãm} for somem ∈ ℕ ∪ {∞} denote a finite or infi-
nite set of such relevant observables as defined in (8). Then what
is of interest in the sense of statisticalmechanics is the probability
density in the space ΩA spanned by these observables, that is,

p : ℝ+ × ΩA → ℝ+

(t,𝜶) → p(t,𝜶)
, ∫ΩA

p(t,𝜶) d𝜶 = 1 (12)

If we are given the detailed state space distribution, f , then the
density in observable space is straightforwardly computed as

p(t,𝜶) = ∫Ω
𝛿
(
Ã(X ) − 𝜶

)
f (t,X ) dX

= ∫Ω
𝛿
(
Ã(ΦtX 0) − 𝜶

)
f0(X 0) dX 0 (13)

In the second expression, we have introduced a variable transfor-
mation that maps the state X to the origin X 0 = Φ−tX of the tra-
jectory that passes through X at time t. From this representation
it becomes clear that the time dependence of p(t,𝜶) is fully de-
termined by that of the elementary distributions 𝛿(Ã(ΦtX 0) − 𝜶)
which we will address shortly.
Interestingly, the time evolution of any function of the observ-

ables, say g(𝜶), is also determined entirely by that of the elemen-
tary distributions since

g(A(t)) = g
(
Ã(X (t))

)
= ∫ΩA

g(𝜶) 𝛿
(
Ã(ΦtX 0) − 𝜶

)
d𝜶 (14)

Finally, the statistics of values of such functions is encoded by

pg (t, 𝛾) = ∫Ω
𝛿
(
g
(
Ã(X )

)
− 𝛾

)
f (t,X ) dX

= ∫ΩA

𝛿
(
g
(
𝜶

)
− 𝛾

)[
∫Ω

𝛿
(
Ã(X ) − 𝜶

)
f (t,X ) dX

]
d𝜶 (15)

= ∫ΩA

𝛿
(
g
(
𝜶

)
− 𝛾

)
p(t,𝜶) d𝜶 ,

and it is thus fully determined by the distribution p(t,𝜶) in the
space of the relevant observables.
For these reasons, the time evolution of the elementary dis-

tributions 𝛿(Ã(etX 0) − 𝜶) is of central interest in the projection
operator approach.[10]

2.3.4. Projections

If all we can effectively measure in terms of the state of a system
are the relevant observables Ã, then it makes sense to separate
the statistics of general state space functions F(X ) into their con-
ditional expectations on level sets of these observables, that is,

⟨F⟩𝜶 = ∫Ω

F(X )
p(0,𝜶)

𝛿
(
Ã(X ) − 𝜶

)
f0(X ) dX (16)

and their deviations from these. This gives rise to the projection
operator ℙ which maps general state space functions to these ex-
pected values on the level sets of the relevant observables such
that

ℙF(X ) = ∫ΩA

⟨F⟩𝜶𝛿(Ã(X ) − 𝜶

)
d𝜶 = ⟨F⟩Ã(X ) (17)
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Obviously, ℙℙF = ℙF, that is, the operation is indeed a pro-
jection, and in the sequel we denote its complement by
ℚ = 𝕀 − ℙ.

2.3.5. Time Evolution of The Elementary Distributions
𝛿(Ã(X (t)) − 𝜶)

The last two sections have demonstrated that elementary distri-
butions 𝛿(Ã(etX 0) − 𝜶) play a central role in themodel reduction
process. Here we consider the time evolution of these elementary
distributions closely following refs. [10, 33].
Equation (10) provides a compact description of the time evo-

lution of any state space function along a trajectory that starts in
some initial state X 0. The elementary distributions are general-
ized state space functions as well with values in the set of Dirac-
𝛿 distributions in the space of observables. Thus, neglecting for
this formal calculation the difficulty that these are singular dis-
tributions so that expressions involving their gradients w.r.t. the
state variables can at best be defined in a weak sense, we have

𝛿
(
Ã(X (t)) − 𝜶

)
= 𝛿

(
Ã(ΦtX 0) − 𝜶

)
=

(
et𝛿

(
Ã(⋅) − 𝜶

))
(X 0)

(18)

To abbreviate the notation in the sequel we let[10,33]

𝛿
(
Ã(X ) − 𝜶

) ≡ Ψ
𝜶
(X ) (19)

and then (18) yields

𝜕

𝜕t
Ψ

𝜶
(X (t)) =

(
etΨ

𝜶
(⋅)

)
(X 0) (20)

The next goal is to utilize the projection operators ℙ and
ℚ = 𝕀 − ℙ to decompose the right hand side into terms that vary
only between the level sets of the relevant observables, that is,
terms for which a deterministic closure might be achievable, on
the one hand, and terms with zero conditional average over these
level sets, that is, terms not expressible in terms of the observ-
ables only, on the other hand. To this end the following identity
comes handy,[33]

et = etℙ + ∫
t

0
esℙℚe(t−s)ℚds +ℚetℚ ≡ rhs(t) (21)

This identity is verified as follows: First, we observe that for t = 0
both the left and right hand sides of the equation reduce to the
identity. Second, we subtract et from both sides of the equation
and take the time derivative of the resulting expressions. Observ-
ing that for any operator B for which the operator exponential
exists we have d

dt
etB = etBB, we find

𝜕

𝜕t

(
rhs(t) − et

)
= −etℚ + etℙℚ

+∫
t

0
esℙℚe(t−s)ℚℚds +ℚetℚℚ (22a)

=
(
rhs(t) − et

)ℚ (22b)

Since (rhs(t) − et)t=0 = 0 as pointed out above, (22) is indeed
solved when (21) is satisfied for all t. Insertion of that identity
in (20) yields

𝜕

𝜕t
Ψ

𝜶
(X (t)) =

((
etℙΨ

𝜶
(⋅)

)
+∫

t

0
esℙℚe(t−s)ℚΨ

𝜶
(⋅) ds +ℚetℚΨ

𝜶
(⋅)

)
(X 0)

(23)

= ℙΨ
𝜶
(X (t))

+ℙ∫
t

0
ℚe(t−s)ℚΨ

𝜶
(X (s)) ds +ℚetℚΨ

𝜶
(X 0)

(24)

The first two terms in this expression for the rate of change of
the elementary distributions are projections onto the space of the
relevant observables. That is, they can in principle be expressed
as functions of the observables through appropriate closure for-
mulae. The third term is not accessible this way for two reasons.
First, it is itself in the orthogonal complement of the space of
functions of the observables since the last operation involved in
computing it is the projection onto this complement, ℚ. Second,
it involves the orthogonal dynamics induced by the operator ℚ,
that is, by the Liouville operator being applied only to the “com-
plementary” part of its argument.

2.3.6. Finite Volume Averages as Observables

In the theory of compressible fluid dynamics, the conservation
laws for mass, momentum, and energy play a central role. These
methods keep grid cell averaged densities of these conserved
quantities as the primary dependent variables which get updated
in time by balances of suitable flux approximations across the
grid cell faces. This way, conservative finite volume methods
provide a natural link with derivations of the flow equations
from the Boltzmann equation[14] as balances of statistical mo-
ments of the single-particle distribution function; they constitute
the physical basis for the concept of weak solutions[36] which
allows us to make mathematical sense of shock waves, contact
discontinuities, and more general non-smooth solutions; and,
in close correspondence with the latter, they motivate robust
numerical discretizations in conservation form [37]. Moreover,
many strategies for coupling particle-based and continuum
mechanical descriptions of fluid motions rely on subdivisions of
the flow domain into subregions with particle- and continuum
representations and on matching the respective fluxes of mass,
momentum, and energy across the respective interfaces (see
Section 3 below). These observations motivate the following
closer examination of the projection operator technique applied
with finite volume averages of the fundamental conserved
quantities as the underlying observables.
Español[11] provides an overview of the derivation of fluctuat-

ing hydrodynamics in just this framework. In doing so, he opts
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for the second of the following two alternative paths established
in the literature (see related discussions in ref. [33]):

1. Directly utilize the evolution Equation (23) for the elementary
distributions Ψ

𝜶
(X (t)), insert the definition A(t) = Ã(X (t)) =

∫ΩA
𝛿(X (t) − 𝜶)𝜶 d𝜶, and make sense of the unclosed terms

arising from the complementary projections ℚ = 𝕀 − ℙ in
the resulting expressions in deriving directly a Langevin-type
equation for the observables.

2. Use (23) instead to establish the evolution equation for the
observable space density, p(t,𝜶), from (13), utilize Zubarev &
Morozov’s[38] arguments for the closure of said terms within
this framework, and establish an approximating Fokker-
Planck-type equation (FPE) for p(t,𝜶). The stochastic partial
differential equations that generate this FPE according to the
related well-established analogy[39] are then interpreted as the
FHD model.

Zubarev and Morozov[38] work with long-wave Fourier compo-
nents rather than with finite volume averages as their relevant
observables, but their general approach can be transferred. For
a system of N-particles of mass M, the observables used by
Español[11] are, in contrast, the empirical mass, momentum, and
energy

(𝛼ir(t))
3
i=1 =

⎛⎜⎜⎝
m
mu
me

⎞⎟⎟⎠r(t) =
N∑
k

𝜒r(xk(t))
⎛⎜⎜⎝

M
Mẋk(t)

Mẋk(t)
2∕2 + 𝜙k(t)

⎞⎟⎟⎠ (25)

covered by the control volume r of a discrete grid or their densities

𝛼∗
r =

⎛⎜⎜⎝
𝜌

𝜌u
𝜌e

⎞⎟⎟⎠r =
𝛼r
vr

(26)

Here, vr is the volume of cell r, 𝜒r is its indicator function, and 𝜙k
is the total potential energy of the kth particle, induced through
inter-particle interactions and external force fields. The empirical
densities are also the relevant variables to be used in a finite vol-
ume computational fluid dynamics scheme in conservation form
(see the next section).
Relying on arguments put forth by Zubarev and Morozov,[38]

and assuming a large time scale separation between the dynam-
ics of individual particles on the one hand and the empirical den-
sities on the other, Español then derives a Fokker–Planck-type
equation for the probability density of finding a CG state (𝛼r)r∈R,
whereR denotes the set of all grid cell indices. The derivation pro-
ceeds from (23), utilizing the definition of the probability density
in the space of observables in (13). A lengthy calculation, not re-
peated here, yields the evolution equation of the observable space
probability density p(𝜶, t),

𝜕tp = −𝜕𝜈 ⋅
(
K𝜈p

)
+ 𝜕𝜈𝜕𝜇

(
D𝜈𝜇p

)
(27)

where we use the Einstein summation convention for the indices
of the generalized vector of observables 𝜶 = (𝛼𝜈)𝜈∈{1,2,3}×R, let

𝜕𝜈 ≡ 𝜕∕𝜕𝛼𝜈 , and define

K𝜈(𝜶) = v𝜈(𝜶) +
1

Z(𝜶)
𝜕𝜇

(
𝜁𝜈𝜇(𝜶)Z(𝜶)

)
(28a)

v𝜈(𝜶) = ⟨A𝜈⟩𝛼 (28b)

𝜁𝜈𝜇(𝜶) =
∞

∫
0

⟨
(A𝜈 − v𝜈(𝜶)) e

s(A𝜇 − v𝜇(𝜶))
⟩𝛼
ds (28c)

D𝜈𝜇(𝜶) = 𝜁𝜈𝜇(𝜶) + 𝜁𝜇𝜈(𝜶) (28d)

Z(𝜶) = ∫Ω
𝛿(Ã(X ) − 𝜶)f0(X ) dX (28e)

Notice that thememory term in (23) collapses to a contribution to
the second order diffusion-like term in (27) due to the time scale
separation assumption, and that the effective diffusivity collects
time correlations of fluctuations of the right hand side Ã of the
observable evolution Equation (11) over the entire time horizon.
Note also that the last term in Equation (23) cancels exactly from
the evolution of the probability density.[33]

Equation (27) comes in the standard drift-diffusion form of a
Fokker-Planck equation (FPE) for the observable-space probabil-
ity density. Español,[11] building upon Español and Öttinger,[33]

suggests to derive a FHD description from this equation using
the well-known relationship between stochastic partial differen-
tial equations of Langevin type and FPEs. Along this route, and
utilizing the transformation to densities from (26), Español de-
rives the FHD equations

d𝛼∗
𝜈
= K∗

𝜈
(𝜶∗)dt + B𝜈𝜇(𝜶

∗)dW𝜇 (29)

where the dW𝜇 denote a multi-component Wiener process with

dW𝜈(t)dW𝜇(t
′) =

{
𝛿𝜈𝜇dt (t = t′)

0 otherwise
(30)

while the drift term is

K∗
ir(𝜶

∗) = 1
vr
Kir(𝜶) (31)

and the multiplicative stochastic amplitude is the “square root”
of the diffusion matrix from Equation (28) in the sense that

Bir,𝜇′B𝜇′ ,js(𝜶
∗) = 1

vrvs
Dir,js(𝜶) (32)

Of course, 𝛼 and 𝛼∗ are related through the definition of the den-
sities in Equation (26) and we have again used Einsteins summa-
tion convention.
After these rather formal arguments, one may now ask what is

the concrete explicit form of the FHD equation in Equation (29)
and, in particular, whether there is any physical justification for
the white noise forcing. In response, we refer first to Zubarev and
Morozov[38] and Español[11] who explicitly demonstrate that for a
“simple fluid,” and under the assumption of local equilibrium—
velocity fluctuations are locally Gaussian with the identity as the
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correlationmatrix—andweak spatial variations that allow for Tay-
lor expansions in gradients, the equations in (29) boil down to the
explicit form of FHD referred to in subsequent sections,

𝜌t = −∇ ⋅ (𝜌v) (33a)

(𝜌v)t = −∇ ⋅ (𝜌v ◦ v + 𝜎) (33b)

(𝜌e)t = −∇ ⋅ (v[𝜌e] + v𝜎 + j) (33c)

where the fluxes 𝜎, j decompose into deterministic and fluctuat-
ing parts as

𝜎 = p𝕀 − 2𝜂
(
�̇� − 1

3
tr[�̇� ]𝕀

)
− 𝜁 tr[�̇� ]𝕀 + 𝜎 ,

�̇� = 1
2
[∇v + (∇v)T ] (34a)

j = −𝜅∇T + j̃ (34b)

Here, p is the local thermodynamic pressure, v the flow velocity,
𝜂 and 𝜁 are the dynamic shear and bulk viscosities, and 𝜅 is the
heat conductivity. These quantities all satisfy the same formulae
one obtains, for example, from the classical kinetic theory of
gases.[14,40] The fluctuating momentum and heat fluxes, 𝜎, j̃
are space-time decorrelated white noise perturbations, the
detailed prescription of which in the more elaborate context
of flows of multicomponent mixtures will be addressed in
Section 2.3.7 below.

2.3.7. Compressible FHD Equations for Multicomponent Mixtures

To provide some insight into the current state of development of
FHDmodels, we consider here the extension of FHD to nonideal
mixtures, focusing on a compressible formulation. The general-
ization of FHD to binary mixtures was first presented by Cohen
et al.[41] and by Law and Nieuwoudt.[42,43] The standard FHD the-
ory for (thermo)diffusion in binary mixtures (see, for example,
Ortiz de Zarate and Senger[44]) has recently been extended to non-
ideal ternarymixtures in thermodynamic equilibriumbyOrtiz de
Zarate et al.[45] Multicomponent gaseous systems are discussed
within the GENERIC framework in the work of Öttinger.[46] Here
we follow the development of themulticomponent idealmixtures
described in Balakrishnan et al.[47] extended to include nonideal
effects as discussed in Donev et al.[48]

We consider a system with Ns species in the absence of any
external forces. In this case, the species density, momentum, and
energy equations of hydrodynamics are given by

𝜕

𝜕t

(
𝜌k
)
+ 𝛁 ⋅

(
𝜌kv

)
+ 𝛁 ⋅  k = 0 (35)

𝜕

𝜕t
(𝜌v) + 𝛁 ⋅

[
𝜌vvT + p𝕀

]
+ 𝛁 ⋅ 𝝉 = 0 (36)

𝜕

𝜕t
(𝜌E) + 𝛁 ⋅

[
(𝜌E + p)v

]
+ 𝛁 ⋅ [ + 𝝉 ⋅ v] = 0 (37)

where 𝜌k, v, p, and E denote, respectively, the mass density for
species k, fluid velocity, pressure, and total specific energy for the

mixture. Note that vvT is a (tensor) outer product with T indicat-
ing transpose and 𝕀 is the identity tensor (i.e., 𝛁 ⋅ p𝕀 = 𝛁p).
We note that mass conservation is exact, which requires that

the species diffusion fluxes satisfies the constraint,

Ns∑
k=1

 k = 0 (38)

Summing the species equations then gives the continuity equa-
tion

𝜕

𝜕t
𝜌 + 𝛁 ⋅ (𝜌v) = 0 (39)

where the total density 𝜌 =
∑Ns

k=1 𝜌k.
To close the system we need to specify an equation of state and

the transport terms. The equation of state specifies p = p(𝜌, T, Yk)
where T is the temperature and Yk = 𝜌k∕𝜌 are themass fractions.
The thermodynamic model of the system also species the inter-
nal energy e(𝜌, T, Yk), which is related to the the total energy by
E = (e + v ⋅ v∕2). The transport terms are given by the viscous ten-
sor, 𝝉 , the species diffusion flux,  , and heat flux, . In FHD,
we augment each of the transport fluxes in Equations (35)–(37)
by adding a zero-mean stochastic flux to the deterministic flux.
The covariance of these fluxes is chosen so that the equilibrium
fluctuations match those specified by statistical mechanics. The
Curie symmetry principle[49] says that fluxes and thermodynam-
ics fluxes of different tensorial character do not couple so we can
consider viscosity separately from species and thermal diffusion.
In each case, we need to specify the deterministic flux and the
stochastics flux.
For Newtonian fluids, the deterministic viscous tensor is

𝝉 = −𝜂
(
∇v + (∇v)T

)
−

(
𝜅 − 2

3
𝜂
)
𝕀(𝛁 ⋅ v) (40)

where 𝜂 and 𝜅 are the shear and bulk viscosity, respectively.
We now want to augment the deterministic stress tensor with
a stochastic flux 𝝉 = 𝝉 + �̃� where ⟨�̃�⟩ = 0 with ⟨ ⟩ denoting a suit-
ably defined ensemble average. The stochastic viscous flux tensor
is a Gaussian random field that can be written as[11,50]

�̃�(r, t) =
√
2kBT𝜂 ̃v +

(√
kB𝜅T
3

−
√

2kB𝜂T
3

)
Tr(̃v) (41)

where kB is Boltzmann’s constant, T is temperature and
̃v = (v + (v)T )∕

√
2 is a symmetric Gaussian random tensor

field. (The
√
2 in the denominator accounts for the variance

reduction from averaging.) Here v is a white-noise random
Gaussian tensor field; i.e.,

⟨v
𝛼𝛽
(r, t)v

𝛾𝛿
(r′, t′)⟩ = 𝛿𝛼𝛾𝛿𝛽𝛿 𝛿(r − r′) 𝛿(t − t′)

Next, we need to formulate the species diffusion and heat
fluxes. As with the viscosity, we require both a deterministic and
a stochastic flux. In this case, the construction is complicated
by cross-diffusion of species and thermal diffusion effects (Soret
and Dufour). The formulation of the fluxes is based on the en-
tropy production for a mixture, as formulated by de Groot and
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Mazur[49] and by Kuiken.[51] Entropy production establishes the
deterministic form of the thermodynamics forces and fluxes. The
fluctuation dissipation principle is then used to specify the noise.
The entropy production arising from gradients in species con-

centration and temperature are given by

𝔳 = − 1
T2


′ ⋅ ∇T − 1

T


T ⋅ ∇T𝜇 (42)

where 𝜇 is the vector of chemical potentials per unit mass of each
species,  is the vector of species fluxes and the reduced heat flux
is given by


′ =  − hT (43)

where h is the vector of specific enthalpies. (When required we
denote components of a vector with a subscript; i.e., hk is the k

th

component of h.) In other words, ′ is the part of the heat flux
that is not associated with mass diffusion.
For the discussion here, we assume the chemical poten-

tials to be functions of p, T and the mole fractions, X , where
Xk = nk∕

∑Ns
j=1 nj with number densities, nk. Here, ∇T is a gradi-

ent taken holding temperature fixed, that is,

∇T 𝜇k(p, T, X ) = ∇𝜇k −
(
𝜕𝜇k

𝜕T

)
p,X

∇T (44)

The mole fractions can also be written in terms of the mass frac-
tions as

X = m−1Y (45)

where  is a diagonal matrix of molecular masses and m =
(
∑Ns

k=1 Yk∕mk)
−1 is the mixture-averaged molecular mass.[51]

The general form of the phenomenological laws expresses the
fluxes as linear combinations of thermodynamic forces[49]

J = 𝕷X (46)

where the fluxes J and thermodynamic forces X are given by

J =
[



′

]
and X =

⎡⎢⎢⎢⎣
− 1
T
∇T𝜇

−∇T
T2

⎤⎥⎥⎥⎦ (47)

Onsager reciprocity say that the matrix 𝕷 is symmetric; hence, it
can be written in the form

𝕷 =
[
L l
l 𝓁

]
(48)

Here, L is a positive semi-definite matrix whose rank is one less
than the number of species in the system, reflecting the con-
straint that mole (and mass) fractions sum to 1.
Before constructing the noise for the system, we note that we

can write the Onsager matrix 𝕷 in a modified form by defining 𝜉
such that l = L𝜉. This construction is feasible because l is in the
range of L. Note that 𝜉 is not uniquely determined. We choose 𝜉
such that 𝜉Tu = 0 where u is a vector of all ones. We also define

𝜁 = 𝓁 − 𝜉TL𝜉. With these definitions, the Onsager matrix can be
written as

𝕷 =

[
L L𝜉

𝜉TL 𝜁 + 𝜉TL𝜉

]
(49)

Öttinger[46] gives a derivation of this form using the GENERIC
formalism subject to the linear constraint

∑Ns
k=1 Yk = 1. From

Equation (49) we can then obtain the deterministic species flux

 = − 1
T
L
[
∇T𝜇 + 𝜉

T
∇T

]
(50)

and the deterministic heat flux

 = −𝜁 ∇T
T2

+ (𝜉T + hT ) (51)

We now want to establish the form of the stochastic fluxes in
the FHD equations. Since these fluxes are white in space and
time we can write them in the form

J̃𝛼 = (𝛼) where J̃𝛼 =

[
̃ 𝛼

̃
′
𝛼

]
and (𝛼) =

[( ;𝛼)

(′ ;𝛼)

]
(52)

where 𝛼 = x, y, z denotes spatial direction and ( ;𝛼) =
[(1;𝛼),… ,(Ns ;𝛼)]T is a vector of independent Gaussian white
noise terms, that is,

⟨(i;𝛼)(r, t),(j;𝛽)(r′, t′)⟩ = 𝛿ij 𝛿𝛼𝛽 𝛿(r − r′)𝛿(t − t′),

⟨(′ ;𝛼)(r, t),(′ ;𝛽)(r′, t′)⟩ = 𝛿𝛼𝛽 𝛿(r − r′)𝛿(t − t′)

and ⟨( ;𝛼)(′ ;𝛽)⟩ = 0.
To satisfy fluctuation dissipation balance, we need[44,45]

T = 2kB 𝕷 (53)

Thus represents a scaled square root of 𝕷. The form of is not
unique; however, if we introduce the Cholesky factorization B of
L; that is, L = BBT and define

 =
√
2kB

[
B 0
𝜉TB

√
𝜁

]
(54)

then the resulting matrix satisfies Equation (53).
The species diffusion noise is then given by ̃ 𝛼 = B( ,𝛼) and

the augmented stochastic heat flux is thus given by

̃𝛼 =
√
𝜁(′ ;𝛼) + (𝜉T + hT )̃ 𝛼

Wenote that althoughB is of sizeNs × Ns, onlyNs − 1 noise terms
are needed because the last column of B is identically zero, re-
flecting the singularity of L.
The discussion above presents the species diffusion and heat

flux in the form used in nonequilibrium thermodynamics.[49] We
now want to recast both the deterministic and stochastic diffu-
sive fluxes in the Fickian form more typically used in the trans-
port literature. See Giovangigli[52] for additional details of this
construction and how the Fickian diffusion matrix is computed
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from Maxwell–Stefan binary diffusion coefficients. In the Fick-
ian description, the diffusion is expressed in terms of gradients
of X and p rather than in terms of gradients of chemical poten-
tial, 𝜇. This is not simply a cosmetic difference. The gradient of
the chemical potential for a given species has a singularity when
that species vanishes. In the Onsager form of diffusion L van-
ishes when a species vanishes, which cancels the singularity. In
the Fickian form, this singularity is canceled analytically.
Here, we include nonideal effects so that we can model trans-

port in liquids. At a fundamental level, these nonideal effects are
expressed in terms of the Gibbs free energy, g. The chemical po-
tentials per unit mass are given by

𝜇(X, T, p) =
𝜕g
𝜕Y

(55)

Each chemical potential can then be decomposed into an ideal
contribution and an excess contribution to give

𝜇(X, T, p) = 𝜇(id) + 𝜇(ex) =
(
𝜇0(T, p) + kBT−1ln(X)

)
+ 𝜇(ex) (56)

From this definition, we can define thematrix of thermodynamic
factors

Γ = m̄
kBT

 𝜕𝜇

𝜕X
= I + m̄

kBT
 𝜕𝜇(ex)

𝜕X
(57)

where is the diagonalmatrix ofmass fractions. In the engineer-
ing literature[51] the excess chemical potential is often described
in terms of the logarithm of an activity coefficient. The second
term on the right hand side of (57) represents the derivative of
the activity coefficients with respect to composition. However, re-
calling that 𝜇(ex) = 𝜕g(ex)∕𝜕Y we have that

Γ = I + m̄
kBT

 𝜕

𝜕X
𝜕g(ex)

𝜕Y
= I + m̄

kBT
( − XXT )

𝜕2g(ex)

𝜕X2

= I + ( − XXT )H (58)

where  is the diagonal matrix of mole fractions and

H = m̄
kBT

𝜕2g(ex)

𝜕X2
(59)

is the Hessian of the excess free energy per particle. This
form shows the linkage between nonideal transport effects
and the Gibbs free energy and provides a more fundamen-
tal characterization that is directly linked to thermodynamic
stability.[48]

With these definitions, we can now compute

∇T𝜇 = 𝜕𝜇

𝜕X
∇X + 𝜕𝜇

𝜕p
∇p (60)

=
kBT
m̄

−1
[
Γ∇X + m̄

kBT
𝜃∇p

]
(61)

=
kBT
m̄

−1
[
Γ∇X + m̄

kB𝜌T
𝜙∇p

]
(62)

where 𝜃 = 𝜕𝜇∕𝜕p and 𝜙 = 𝜌𝜃.

We then define the diffusion driving force as

d =
kBT
m̄

[
Γ∇X + m̄

kB𝜌T
(𝜙 − Y)∇p

]
(63)

This is the quantity inside the braces in Equation (62) minus

m̄
kB𝜌T

Y∇p (64)

This additional term is added to normalize the diffusion driving
forces so that they sum to zero.
The deterministic species fluxes can now be expressed in Fick-

ian form as

 = 𝜌[
d +

𝜒

T
∇T

]
(65)

where 𝜒 is the vector of thermal diffusion ratios. As noted above,
the matrix of diffusion coefficients,, can be computed from bi-
nary diffusion using theMaxwell–Stefan description of diffusion;
see refs. [48, 52].
Comparing with the Onsager form we then have

L = m̄𝜌

kB
 and 𝜉 =

kBT
m̄

−1𝜒 and 𝜁 = T2𝜆 (66)

Using these relationships we can now compute both determinis-
tic and stochastic species diffusion and heat flux from standard
transport properties.

2.3.8. Chemical Reactions

The multicomponent FHD framework discussed can be ex-
tended to include chemical reactions. Unlike the transport
processes, chemistry cannot be viewed in the framework of
linearized phenomenological Onsager theory. Except in rare
circumstances, chemical reactions are typically not sufficiently
close to equilibrium. However, it is still possible to derive a
stochastic representation of chemical reactions from the chemi-
cal master equation.[53] The resulting equation, referred to as the
chemical Langevin equation can then be coupled to FHD.[54]

When there are a sufficiently large number of reactants, the
chemical Langevin equation provides an accurate model of
chemical processes. However, when the number of reactants
becomes small, the approximation breaks down and an alter-
native approach is required. For small numbers of reactants
an approximation based on Poisson statistics that more closely
approximates the chemical master equation is needed. One can-
didate for a model for reactions in the small reactant limit is the
stochastic simulation algorithm (SSA) of Gillespie[55] that directly
samples the chemical master equation using an event driven
approach. A more efficient variant of SSA is the tau-leaping
approach first introduced by Gillespie[56] that approximates the
master equation by estimating the number of reactions within a
time step using Poisson random numbers. The tau-leaping ap-
proach has been coupled to an FHD-based model of diffusion[57]

and to a low Mach number hydrodynamics algorithm.[58]

Adv. Theory Simul. 2020, 3, 1900232 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900232 (9 of 20)



www.advancedsciencenews.com www.advtheorysimul.com

2.4. Summary of and Conclusions from Section 2

Grid-based FHDmodels have matured over the past two decades
to become versatile tools for the study of non-equilibrium
effects in inert and reacting fluids on meso-scales, that is, on
scales in between those accessible by molecular dynamics on
the one hand and deterministic continuum mechanics on the
other hand. FHD models have successfully been coupled to
particle-based fluid representations in various contexts, but
these efforts thus far involved predominantly CG molecular
models or direct particle-based discretizations of continuum
mechanics. In contrast, the construction of such hybrid models
with atomistic MD at the particle end of the coupling interface
has gained momentum only rather recently. In the authors’ view,
the following issues and considerations deserve attention in this
context:
Advantages of Conservative Finite VolumeDiscretizations of FHD:

Model equations for FHD have been formulated in terms of vari-
ous spatial representations. The pioneering work by Zubarev and
Morozhov[38] utilized the long-wave Fourier modes of the field
variables as the relevant FHD variables. Español[11] suggested fi-
nite volume balances of mass, momentum, and energy, while
more recently Español et al.[59,60] introduced a formulation akin
to unstructured grid finite element schemes for computational
fluid dynamics. In the present discussion of particle-continuum
hybridmodels, the focus is on finite volumemethods for FHD for
the following reasons: The hybrid models considered here em-
ploy atomistic MD on finite subdomains of the flow field, and
information exchange between the MD and FHD subdomains is
naturally organized via fluxes of mass, momentum, and energy.
The embedding of such a model in a finite volume-based FHD
solver naturally fits the discrete structure of the discretized con-
tinuum model in this sense.
Validity of Time Scale Separation Assumption and Markovianity:

Most FHD implementations do not account for non-Markovian
(memory) effects. The only exception the authors are aware of is
work of Voulgarikas et al.[61] who extend FHD to non-Markovian
rheological models and colored noise. Utilizing standard existing
models therefore implies a sufficient level of coarse-graining or,
in turn, a sufficiently large particle numbers in the coupled MD
subdomain to justify this assumption. An interesting future re-
search question then concerns the quantification of these limita-
tions: Thus, according to Bian et al.,[62] particle numbers of a few
hundredmolecules in theMD part of a hybridmodel—a number
that has been repeatedly used with success in studies of equilib-
rium situations, see e.g. Jabes et al.[63]—suffice in this sense. If
higher quantitative accuracy is needed, are there efficient exten-
sions of finite volume FHD that account for the finite size effects
in time correlation functions observed by these authors, or for
memory effects?
Long Wave Information and Hybrid Modeling: Long-range

correlations in non-equilibrium systems can induce “giant fluctu-
ations” on scales far beyond the atomistic ones.[47,48,64] Successful
representation of the net effects of such fluctuations evidently
requires computational domains that cover at least a few multi-
ples of the giant fluctuations’ scales. As a consequence, hybrid
modelling becomes even a necessity when non-equilibrium
dynamics is to be represented by atomistic MD on limited
subdomains.

3. Molecular Dynamics (MD) and (Particle-Based)
Multiscale Simulations

Atomistic MD simulations provide us with a wealth informa-
tion about the structural and dynamic properties of complex
molecular systems at the atomistic length scales including
hydrodynamic effects if an explicit solvent is included in our
molecular model.[65,66] In MD simulations,[66] the time evolu-
tion of a system is computed employing the classical Newton
equations of motion:

dri
dt

= vi (67)

mi

dvi
dt

= Fi (68)

where ri, vi, Fi are the position, velocity, and forces acting on
the ith particle with mass mi. Statistical properties of the sys-
tem are computed as time averages over the trajectories. If we
assume that the system is ergodic[67] then the time-averaged
statistical properties match the ones computed from the corre-
sponding microcanonical statistical ensemble in the thermody-
namic limit.[65] However, due to the computational complexity
related to studying, for example, biomolecular systems, MD
simulations still have limitations in reaching experimentally
required time and length scales. In particular, simulating a
solvent explicitly is computationally the most expensive part in
all-atom biomolecular simulations because of a huge number
of corresponding degrees of freedom.[68] The computational
burden is drastically alleviated by implicit solvent models but if
one is interested in hydrodynamic interactions the inclusion of
explicit solvent is in many cases unavoidable.[69,70]

Coarse-graining approaches, of which some basic aspects
have already been introduced in the previous sections, drastically
reduce the number of degrees of freedom in the system and
became rather popular for the simulation of molecular systems
at the mesoscale level.[71–73] In particular, in chemical physics
and biophysics applications, coarse-graining can be done both in
a bottom-up fashion,[74–82] in that one builds a given CG solvent
model based on an underlying atomistic model and/or in a
top-down way,[83–90] as for example, in the DPD method.[24,91–97]

Typically, the atomistic resolution is mandatory only in the
first few hydration layers around solvated biomolecules to
properly account for the interaction between water and the
biomolecules. The rest of the system then plays merely the role
of a thermodynamic bath. The most efficient way to tackle such
situations is using multiscale modeling approaches, in particu-
lar, concurrent multiscale methods, which couple fine- and CG
resolutions at the same time in the simulation box, for example,
refs. [6, 7, 98–117].
Some of us have been developing a particularly efficient

scheme of concurrent coupling in the course of the years that
is called the Adaptive Resolution Scheme (AdResS).[18,118,119] In
such a scheme, molecules can change their resolution on-the-fly
during the course of an MD simulation according to the region
where they are instantaneously located. This scheme, allowing
for the dynamic exchange of particles between different regions
at different resolution, is an optimal basis for the coupling with
the hydrodynamic scale. In fact, from the point of view of fluid
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dynamics, the hydrodynamic/macroscopic scale is typically con-
nected to the atomistic scale by calculating local continuum me-
chanical properties in attached atomistic MD simulations with
fixed relatively small particle numbers. Themean statistical prop-
erties of these local MD simulations are synchronized after every
few time steps to the local fluid state tomaintain consistency with
the continuum mechanical equations (see e.g., refs. [120, 121]).
On the one hand, it is clear that the fixed number of particles in
any fluid element is a nonphysical hypothesis which of course im-
poses a bias on, for example, local particle density fluctuations.
On the other hand, from the point of view of atomistic simula-
tions, it is typically assumed that beyond the region of chemi-
cal interest, with fixed number of molecules, the system can be
sufficiently described as a generic, large scale, electrostatic con-
tinuum (see e.g., ref. [122]). Obviously also in this case there is

a bias on local particle density fluctuations. The adaptive reso-
lution technique instead can automatically satisfy both points of
view by allowing the natural exchange of particles consistently
with microscopic and macroscopic equations. For this reason, in
this paper the adaptive resolution scheme is taken as a prototype
for coupling the scales, but of course we must underline that it
does not necessarily represent the unique path to coupling, this
point will be underlined later by providing references of similar
and complementary couplings.

3.1. Adaptive Resolution Scheme(AdResS)

Resorting to AdResS,[18,119] the total force acting on a molecule 𝛼
is

F𝛼 = FAdResS
𝛼

+ FTD
𝛼

+ Fthermo
𝛼

(69)

where FAdResS is the force coupling atomistic and CG descrip-
tions, FTD is the thermodynamic force, and Fthermo is the thermo-
stat contribution. The AdResS force, which is, in general, non-
conservative, is defined as

FAdResS
𝛼

=
∑
𝛽≠𝛼

{
𝜆(r𝛼 , r𝛽 )F

AT
𝛼𝛽

+ [1 − 𝜆(r𝛼 , r𝛽 )]F
CG
𝛼𝛽

}
(70)

where FAT
𝛼𝛽
and FCG

𝛼𝛽
are atomistic (AT) and CG forces, respectively,

between molecules 𝛼 and 𝛽 (see also Figure 1, panel (a)). The

forces are computed from the AT (UAT ) and CG (UCG) potentials
as

FAT
𝛼𝛽

= −
∑
i𝛼,j𝛽

𝜕UAT

𝜕ri𝛼j𝛽
and FCG

𝛼𝛽
= −𝜕UCG

𝜕r𝛼𝛽
(71)

The sum runs over of all pair atom interactions between explicit
atoms i of the molecule 𝛼 and explicit atoms j of the molecule 𝛽.
The vector r𝛼𝛽 = r𝛼 − r𝛽 connects the centers of mass (CoM) of
molecules 𝛼 and 𝛽, while ri𝛼j𝛽 = ri𝛼 − r j𝛽 is the relative position
vector of atoms i and j. A smooth transition from the AT to CG
representations and vice-versa is enabled with the hybrid (HY) re-
gion (RAT < R < RCG). Two different interpolations of forces have
been proposed: the original[118] and the “reverse” definition.[124]

The 𝜆 is respectively given by

𝜆(r𝛼 , r𝛽 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w(r𝛼)w(r𝛽 ); w(r𝛼,𝛽 ) =

⎧⎪⎪⎨⎪⎪⎩

1, AT

cos2
[
𝜋(‖r𝛼,𝛽 − r0‖ − RAT )

2(RCG − RAT )

]
, HY

0, CG

⎫⎪⎪⎬⎪⎪⎭
; original

1 − w(r𝛼)w(r𝛽 ); w(r𝛼,𝛽 ) =

⎧⎪⎪⎨⎪⎪⎩

0, AT

cos2
[
𝜋(RCG − ‖r𝛼,𝛽 − r0‖)

2(RCG − RAT )

]
, HY

1, CG

⎫⎪⎪⎬⎪⎪⎭
; reverse

(72)

In both implementations, the weighting function w is a smooth
sigmoid function with extreme values of 0 and 1. However, it
is defined for the computational benefits upside down in the
“reverse” implementation. In Equation (72), r0 denotes the cen-
ter of the AT region, which can be either a fixed point (usu-
ally the center of the simulation box) or a mobile point, as for
example, in a simulation of a protein where it coincides with
the protein’s CoM. AdResS can accommodate various geomet-
ric boundaries between the resolution regions: splitting in 1
dimension,[125] cylindrical,[126] spherical.[127] It also permits the
use of flexible domains[128] where the atomistic region is defined
as a distance from the surface of themacromolecule which is ben-
eficial for multiscale simulations of macromolecules that change
their shape during the simulation, for example, proteins that fold
or unfold.
The thermodynamic force FTD accommodates the coupling

of rather loosely connected molecular representations, that is,
it maintains two different models with, in general, different
thermodynamic properties like pressure and chemical poten-
tial in thermodynamic equilibrium.[129–131] Typically, there is a
preferential tendency of the molecules to migrate into the low-
resolution domain with lower chemical potential density. This
effect is manifested as density undulations across the direction
of the resolution change. The thermodynamic force, which cor-
rects for these undulations, is defined as the negative derivative
of the chemical potential density, and is numerically computed
iteratively as

FTD
k+1(‖r − r0‖) = FTD

k − C∇𝜌k(‖r − r0‖) (73)

Adv. Theory Simul. 2020, 3, 1900232 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900232 (11 of 20)



www.advancedsciencenews.com www.advtheorysimul.com

Figure 1. a) Schematic representation of the original version of AdResS.
AT indicates the region at atomistic resolution, Δ (HY), represents the
transition region where molecules have hybrid atomistic/coarse-grained
resolution, regulated by the switching function w(x), finally, CG is the re-
gion at coarse-grained resolution. b) Schematic representation of a most
recent version of AdResS: the change of resolution is no more regulated
by w(x) inΔ. Atomistic and coarse-grained molecules are directly coupled.
TheΔ region is now chosen large enough to allowmolecules to equilibrate
upon entering the AT region. c) Schematic representation of an extension
of the version above, relevant for this paper. The CG region is reservoir of
non-interacting point-like particles brought into equilibrium through the
action of the Δ region and of a thermostat. In addition, the thermody-
namic force is calculated and applied over the whole Δ ∪ TR region. Re-
produced under the terms of the CC-BY-NC license.[123] Copyright 2019,
The Authors. Published by Wiley-VCH.

Here k denotes the iteration step and C = M
𝜌20𝜅T

, with 𝜌0 and 𝜅T

the bulk density and isothermal compressibility. The iteration
based on Equation (73) is terminated after, say, the nth step if
the density reaches a certain accuracy in matching the target
density in the Δ region. The criterion used is maxΔ |𝜌0 − 𝜌n| ≤ 𝜖,
where an extended experience with applications has shown that
𝜖 ≤ 0.03 yields satisfactory accuracy. In most of the applications,
however, 𝜖 is chosen below 0.01. It was also empirically found
that in practice C can be adjusted along the process to prevent
under/over correction and to speed up the iteration procedure
without producing artifacts in the simulation results. Thus, in
practice, we run several simulations with different prefactors
simultaneously at each iteration step and select the best one
for the next iteration. Admittedly, we have thus far not found
a systematic procedure with provable convergence, so that this
aspect remains as an interesting challenge for future research.
Note that the force definition in Equation (70) satisfies New-

ton’s third law, that is, F𝛼𝛽 = −F𝛽𝛼 . However, since the total pair
force depends not only on their relative distances but also on the
absolute positions of the molecules, it is not conservative and the
corresponding potential does not exist. This implies the use of a
local thermostat that supplies or removes the latent heat caused
by the switch of resolution.[118] Since we are interested in a proper

description of hydrodynamics interactions, we focus here on a lo-
cal thermostat that preserves the linear momentum, that is, the
DPD[132,133]:

Fthermo
𝛼

= FD
𝛼
+ FR

𝛼

FD
𝛼
=

∑
𝛽≠𝛼

FD
𝛼𝛽

FD
𝛼𝛽

= −𝛾𝜔D(R𝛼𝛽 )(r̂𝛼𝛽v𝛼𝛽 )r̂𝛼𝛽

FR
𝛼
=

∑
𝛽≠𝛼

FR
𝛼𝛽

FR
𝛼𝛽

=
√
2𝛾kBT𝜔

R(R𝛼𝛽 )𝜂𝛼𝛽 r̂𝛼𝛽

(74)

where v𝛼𝛽 = v𝛼 − v𝛽 is the velocity between the clusters individ-
ual particles that are grouped into the effective DPD particles 𝛼
and 𝛽. The noise 𝜂𝛼𝛽 must satisfy ⟨𝜂𝛼𝛽⟩ = 0 and ⟨𝜂𝛼𝛽 (t)𝜂kl(t′)⟩ =
2(𝛿ik𝛿jl + 𝛿il𝛿kj)𝛿(t − t′). The𝜔D(R𝛼𝛽 ) and𝜔

R(R𝛼𝛽 ) areR-dependent
weight functions that vanish at a predefined cut-off radius. From
the fluctuation–dissipation theorem it follows that (𝜔R(R𝛼𝛽 ))

2 =
𝜔D(R𝛼𝛽 ). Equation (74) is written only for the CG region, as
they are analogous for the AT domain. Instead of a CG parti-
cle representing only a single solvent molecule, AdResS can be
also used to couple atomistic liquid models with supramolec-
ular models such as MARTINI and DPD, where several water
molecules are represented with a single CG bead. To this end, we
have developed a dynamic clustering algorithm SWINGER that
can concurrently assemble, disassemble, and reassemble water
bundles, consisting of several water molecules.[69,124,125,134] Thus,
it allows for a seamless coupling between standard atomistic and
supramolecular watermodels in adaptive resolution simulations.
Our multiscale approach paves the way for efficient multiscale
simulations of biomolecular systems without compromising the
accuracy of atomistic water models. This is essential for future
nanofluidics and nanomedical applications.[109,135–137]

3.2. Specific Examples of Adaptive Resolution
for MD/Continuum Coupling

The adaptive resolution technique naturally stimulates the idea
of extending the resolution interface beyond particle-basedmeth-
ods to the continuum. Here, we report a few recent hybrid
approaches toward technically interfacing MD and mesoscopic
hydrodynamics, which are either based on or adapt a simi-
lar coupling strategy as AdResS. In the approach of Petsev
et al.,[111,138–140] AdResS is used to couple MD to smoothed dis-
sipative particle dynamics (SDPD).[141] SDPD is a particle-based,
Lagrangian, continuum solver used to numerically, in an MD-
like fashion, solve Navier–Stokes equations. SDPD is a fluctuat-
ing extension of smoothed particle hydrodynamics (SPH),[142,143]

incorporating thermal fluctuations. On the other hand, Alkseeva
et al.[144] applied AdResS to link MD with multiparticle collision
dynamics (MPC).[145] MPC is a mesoscale simulation method for
fluid flows, where the fluid is modeled by particles with contin-
uous positions and velocities and stochastic interparticle inter-
actions. The fluid is discretized into cells with no restriction on
the number of particles in each cell.[145] MPC models hydrody-
namics on large length and times scales and locally conserves
mass, momentum, and energy. Another hybrid method has been
presented in refs. [113, 146–148]. A hybrid MD/continuum setup
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was introduced where the two fluid descriptions were considered
as two completelymiscible liquids , that is, one phase correspond-
ing to the MD and the other to FHD. Coupling between the two
models is carried out by allowing exchange of mass and momen-
tum between the two phases and introducing an order parameter
playing a similar role as the weighting function in AdResS that
quantifies the distribution of mass and momentum between the
MD and continuum phases.

3.3. Coupling MD with Computational Fluid Dynamics (CFD)

Concurrent coupling strategies that aim to couple atomistic and
continuum descriptions of liquids need to ensure that physical
quantities, for example, density, momentum, energy, and the cor-
responding fluxes, are continuous across the interface between
the two regimes where atomistic and continuum domains pro-
vide each other with boundary conditions. To impose boundary
conditions from the atomistic to continuum domain is rather
straightforward since it essentially deals with standard tempo-
ral and spatial averaging. But imposing the continuum boundary
conditions on the particle domain presents the major method-
ological issue to be dealt with. To that end, there have been two
kinds of schemes reported in the literature: methods that em-
ploy the state-variable coupling[107,109,149–153] and methods based
on flux-exchange.[6,154–157] The latter are especially convenient
for coupling MD to FHD.[155,158,159] For example, one can also
couple FHD directly to a single particle (a colloid) using a hy-
brid Eulerian–Lagrangian approach.[60,160–163] Another example
ofmethods that treat solvent using a continuumapproach and so-
lutes as particles is a hybrid method,[164] which couples MD with
the Lattice–Boltzmann method (LBM).[165] This hybrid approach
enables simulations of polymer-solvent systems, where the sol-
vent is modeled by LBM and polymers by MD. Furthermore, a
CFD solver can also be employed in the total simulation domain
and the MD is only used to provide fine details such as bound-
ary conditions or constitutive relationswherever required.[166] For
further reading on hybrid MD/CFD approaches, we refer the in-
terested reader to reviews such as refs. [6,167–171].
Let us conclude this section with two triple-scale ap-

proaches concurrently coupling atomistic, CG, and continuum
approaches. In the first one, combining AdResS and a flux-
exchange hybrid MD/CFD method,[155] insertion of complex
molecules to match the mass and momentum fluxes at the par-
ticle and continuum interface is made feasible by implement-
ing there a low resolution model (blob-molecules with soft effec-
tive interactions) and then using the AdResS to reintroduce the
atomistic degrees of freedom and further couple with the bulk
MD.[156,157] In the second one, coined the Triple-decker,[107,172] the
state-variable coupling approach with the “handshaking” of the
particle and continuum physical descriptions is used instead to
couple atomistic and mesoscopic hydrodynamics.

4. AdResS and Open Systems Models

The coupling of an atomistic MD to an FHD simulation con-
fronts us with the problem of a vast mismatch in the number of
determining degrees of freedom between the two mathematical

models. This problem is familiar from any computational mul-
tiscale approach and a range of methods have been proposed to
bridge this divide as summarized in Section 3 above. Here, we
discuss one more specific issue arising when atomistic MD is
coupled to FHD represented through finite volume or finite ele-
ment discretizations, as opposed to coarse-grained or dissipative
or other mesoscale particle-based representations.
In the context of the authors’ cooperation, we are interested

specifically in coupling a finite-volume discretization of FHD to
an atomistic thermostat-free Hamiltonian MD on a subdomain
that interfaces with one or more of the FHD control volumes.
In particular, we intend to allow for non-equilibrium situations
with persistent, possibly non-steady, fluxes of mass, momentum,
or energy through the atomistically resolved region maintained
by gradients in the surrounding flow state. In this situation,
each FHD control volume that interfaces with the AT region
comes with its own independent flow state. The coupling of
the two models should then be realized locally on each such
interface and it should amount to constraining the atomistic MD
simulation to concur with the FHD fluid state at the interface as
monitored from the side of the FHD grid. The FHD simulation,
in turn, should see interface-averaged mass, momentum, and
energy fluxes—including their fluctuations – compatible with
their particle-based analogues as determined from the MD side
of the interface. We discuss part of the problem of constraining
theMD simulation to match the FHD statistical moments in this
section.
The most straightforward setting arises when the FHD subdo-

main is in thermodynamic equilibrium so that, after a short time,
the MD domain should faithfully represent an “open molecular
system” in the thermodynamic sense adhering to Grand Canoni-
cal statistics.[6,7,104,105] MD particles should be able to traverse the
AT-domain’s interfaces in both directions thereby generating
mean fluxes, including their fluctuations, that are compatible
with the statistics of the outer equilibrium state. Two of the
authors have recently proposed a mathematical formalization of
this situation.[8] The goal in doing so was to highlight what is
the information mismatch between the MD and FHD represen-
tations of the flow state and to suggest related plausible closures.

4.1. The Bergmann–Lebowitz (1955) Model

4.1.1. Bergmann–Lebowitz Model Structure

The Bergmann–Lebowitz (BL) model of open system[173,174]

is based on the idea that the coupling between the system
and the reservoir/environment consists of an impulsive inter-
action at discrete points in time. Such an interaction, while
interfering with the physics of the system, leaves the reser-
voir statistically undisturbed. In other words the macroscopic
thermodynamic variables of the reservoir are not influenced
by the behaviour of the system and the particles which enter
into the system from the reservoir can only have velocities
consistent with the temperature of the reservoir in thermal
equilibrium. A suitable kernel , Knn′ (X

′
n′
, Xn), formalizes mathe-

matically such an interaction and corresponds to the probability
per unit time that the system at Xn makes a transition to
X ′
n′
, caused by the interaction between the system and the
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reservoir. The system-reservoir interaction is then reduced to:∑∞
n′=0 ∫ dX ′

n′
[Knn′ (Xn, X

′
n′
)fn′ (X

′
n′
, t) − Kn′n(X

′
n′
, Xn)fn(Xn, t)]. The

evolution in time of the phase-space probability of the system,
fn(Xn, t), leads to a standard Liouville equation for a closed
system, but augmented by the system-reservoir exchange term:

𝜕fn(Xn, t)
𝜕t

= {fn(Xn, t), H(Xn)}

+
∞∑

n′=0
∫ dX ′

n′ [Knn′ (Xn, X
′
n′ )fn′ (X

′
n′ , t) − Kn′n(X

′
n′ , Xn)fn(Xn, t)] (75)

In this context, the condition of flux balance expresses the con-
dition of equilibrium:

∞∑
n′=0

∫ dX ′
n′ [Knn′ (Xn, X

′
n′ )fn′ (X

′
n′ , t) − Kn′n(X

′
n′ , Xn)fn(Xn, t)] = 0 (76)

whose stationary solution for fn(Xn) corresponds to the Grand
Canonical probability density: fn(Xn) =

1
Q
e−𝛽Hn(Xn)+𝛽𝜇n where

𝛽 = 1∕kBT and 𝜇 the chemical potential.

4.1.2. Relation to the AdResS Scheme and Design of Mean-Field
Particle Reservoir

The AdResS scheme as an open system algorithm can be qualita-
tively mapped onto the BL model under the approximation that
the reservoir is large enough to not be influenced by the AT re-
gion and that the interaction energy between the particles in the
AT region and the particles in the reservoir (transition plus CG
region) is negligible compared to the interaction energy among
the particles of the atomistic region only.[5,7,175] In this context,
AdResS offers a technical platform for the numerical treatment
of open systems in a Grand Canonical-like fashion. Furthermore,
as discussed above, the BL model defines a Liouville operator of
a subsystem augmented by a stochastic kernel for describing the
proper exchange of energy and particles with a reservoir. A rele-
vant consequence is that such a mapping, despite being qualita-
tive, is useful in defining relevant physical quantities such as time
correlation functions of a subsystem embedded in a reservoir,
this means a physical definition which allows direct comparisons
with experimental data.[5,106,176,177] Within the setting of open sys-
tem simulations, the technical set up of AdResS can be simpli-
fied further, and the use of the switching function w for the cou-
pling can be removed, leading to a direct coupling and an abrupt
change of resolution (See panel (b) of Figure 1). One of the advan-
tages of such an approach would be to make FAdResS conservative
as in the Hamiltonian version of AdResS (H-AdresS)[103,178–182]

but without violating the linear momentum conservation.[7] We
have recently investigated ramifications of such a possibility in
ref. [183] and provide a brief summary here.
Let us define d, the cut-off distance of molecular interactions.

In the AT region, all molecules interact via the atomistic po-
tential: VAT =

∑
(𝛼,𝛽)∈AT V

AT (r𝛼 , r𝛽 ), with VAT (r𝛼 , r𝛽 ) the AT po-
tential between all the atoms r𝛼 , r𝛽 of molecule 𝛼 and molecule
𝛽. In the CG region, all molecules interact via a CG potential:
VCG =

∑
(𝛼,𝛽)∈CG V

CG(r𝛼 , r𝛽 ), with V
CG(r𝛼 , r𝛽 ) the CG potential be-

tween the centers of mass r𝛼 , r𝛽 of molecule 𝛼 and molecule 𝛽.

In the AT region next to the HY interface AT molecules interact
with CG molecules via the CG potential. Since CG molecules do
not have atomistic degrees of freedom there is no other way to
interact with AT molecules: Vcoupling

HY =
∑

𝛼∈Δ
∑

𝛽∈CG V
CG(r𝛼 ,R𝛽 ),

with r𝛼 the center of mass of the atomistic molecule 𝛼 and r𝛽
the center of mass of the CG molecule 𝛽. Effectively, the HY re-
gion acts similarly to the transition region of standard AdResS.
Thus, atomistic molecules closer to the CG region experience the
CG character of the interaction more than AT molecules located
at larger distance from the CG region; that is the passage from
one resolution to the other is not artificially smoothed via w(r)
as in standard AdResS, but it is implicitly gradual (i.e., function
of r, not strictly abrupt). As in the standard AdResS, in the HY
domain, we define FTD

𝛼
for the density balance.

Note that one of the aims of the switching functionw in combi-
nation with the repulsive force capping and the local thermostat
in the standard AdResS is to avoid fatal large forces due to po-
tential overlaps (or nonphysical short distances) between atoms
of neighboring molecules at the CG/HY interface. In the abrupt
version, the overlaps must be avoided in another way, for exam-
ple, by fixing the center of mass of a problematic molecule and
running a fewMD steps with a repulsive force capping to find an
energetically permissible orientation. In a Monte–Carlo simula-
tion, for example, this would be automatically taken care of by the
rejection criterion.[100] Conceptually, this should be equivalent to
the standard approach with the Heaviside step function used as
the switching function w supplemented with the molecular ori-
entation adjustment. The reason of the success of an abrupt ap-
proach lies in the fact that the formal criteria for defining an open
system are not violated in a significant manner by the abrupt
coupling and thus the method becomes more efficient.[175]

Finally, an even more drastic simplification of the model of
Krekeler et al.,[183] in closer connection to the idea of open
system embedded in a generic thermodynamic reservoir was
pursued recently.[123,184] Here, the CG region is substituted by a
reservoir of non-interacting point-particle (tracers). The AT
region exchanges particles and energy with the reservoir in an
adaptive manner as in the standard AdResS (see panel (c) of
Figure 1).
Another example of combining AdResS with a mass, mo-

mentum, and energy reservoir and imposing a local pressure
tensor and a heat flux across the boundaries,[185] thus enabling
Grand Canonical MD simulations, is provided by Open Bound-
ary Molecular Dynamics (OBMD) method.[6,70,115–117]

4.2. n-Particle Hierarchy of Open System Liouville Equations

4.2.1. A Formalization of the Notion of “Open System”

Figure 2 shows a sketch of an open system (OS) as part of the
“universe” (U). The environment of the open system (U∖OS) is
called the “outside world” below. We are interested in captur-
ing the dynamics of OS as faithfully as possible, including the
Hamiltonian nature of the detailed dynamics of the entire uni-
verse. Yet, by definition we have only limited statistical thermody-
namic information regarding the latter, and the best we can there-
fore expect to do with respect to describing the open system’s
evolution is to describe statistical features of its Hamiltonian
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Figure 2. Sketch of an open system (OS) and its environment, called the
“outside world.” The entire system, called “universe,” U, is supposed to
include at total ofN particles, to be closed in the far distance, and to be in
canonical statistical equilibrium. The degrees of freedom of the particle in
the universe are integrated out.

dynamics conditioned upon the canonical equilibrium statistics
of the outside world.
The time evolution of the statistical distribution of an ensem-

ble of universes under Hamiltonian dynamics, f (t,XN), is gov-
erned by the N-particle Liouville equation,

𝜕f (t,XN)
𝜕t

+
N∑
i=1

(
∇qi

⋅ (vif ) + ∇pi
⋅ (Fif )

)
(t,XN) = 0 (77)

Here, XN = [X1,… , XN ] = [(q1, p1),… (qN, pN)] is the N-particle
state of the system with (qi, pi) ∈ U ×ℝ3 the position and mo-
mentum of the ith particle. Furthermore, vi is ith particle’s ve-
locity, and Fi = −𝜕H∕𝜕qi the force acting upon it. In the defini-
tion of Fi, we are referring to the Hamiltonian, H(XN), of the
system. Note that we have consciously not adopted the standard
notation for this equation utilizing the Poisson bracket, that is,
ft = {f, H} = Hpfq −Hqfp, to emphasize the character of the equa-
tion of a hyperbolic advection equation in state space.
Only some n ≤ N particles reside inOS at any given time t, and

we are only interested in monitoring the probability distribution
for finding n particles near some state X n = (qn, pn) with qn ∈ Ωn

and Ω ⊂ ℝ3 being the spatial domain of the open system. More
specifically, we are interested in the marginal distributions

fn(t,X n) = B(n,N)∫
(Sc )N−n

f (t,X n,𝚵N−n) d
N−nΞ (78)

where Sc = Ωc ×ℝ3, Ωc = U∖Ω, and B(n,N) is the normalizing
binomial coefficient that is introduced to account for the indis-
tinguishability of the particles and that guarantees the normal-
ization condition

N∑
n=1

∫Sn
fn(t,X n) d

nX = 1 (79)

Considering the full Liouville equation separately for states fea-
turing 1, 2,… , n,… , N particles within the OS domain Ω, and
integrating the degrees of freedom of the remaining N − n parti-

cles, the following hierarchy of n-particle Liouville equations can
be derived,[8]

𝜕fn
𝜕t

+
n∑
i=1

(
∇qi

⋅
(
pifn

)
+ ∇pi

⋅
(
Fifn

))
= Φn+1

n + Ψn (80)

where the terms on the left correspond to the Liouville equation
for the Hamiltonian dynamics of n particles residing within the
OS domain alone. The terms on the right represent the coupling
of the (n + 1)- and n-particle distributions due to passage of par-
ticles across the interface of the OS domain,

Φn+1
n = (n + 1)∫

𝜕Ω
∫

(pi⋅n)>0

(
pi ⋅ n

) (
fn+1

(
t,X n, (qi, pi)

)
− fn

(
t,X n

)
f ◦1
(
qi,−pi

))
d3pi d𝜎i (81)

and the mean forcing of the particles inside the OS domain by
those in the outside world, that is, the ensemble averaged action
of the outside particles onto the particle inside,

Ψn = −
n∑
i=1

∇pi
⋅
(
Fav(qi)fn(t,X i−1, Xi,X n−i)

)
(82)

with

Fav(qi) = −∫
Sc

∇qi
V(qi − qj)f

◦
2 (Xj|Xi) dXj (83)

In Equation (81) the quantity f ◦1 (qi,−pi) is the single-particle dis-
tribution function of the outside world, while in Equation (83) the
quantity f ◦2 (Xj|Xi) is the outside world single-particle distribution
for particle j conditioned upon the state of the ith particle.
The manipulations leading from Equations (77) to (78)–(83)

are straightforward. In only two places it is necessary to imple-
ment closure assumptions or, equivalently, explicit modeling of
the properties of the outside world.[8] The first is manifest in
Equation (81) where, after integration of the physical space di-
vergence terms ∇qi

⋅ (pif ) over the outside world domain Ωc, we
have to distinguish which information regarding the probability
densities is transported into (pi ⋅ n < 0) and out of (pi ⋅ n > 0) the
open system. When a particle exits the open system, so that af-
terward there are n particles left inside, then it transports the cor-
responding (n + 1)-particle state space density (first term in the
integral). In contrast, the second term represents the net influx
of probability from the outside world equilibrium.
In formulating this latter term it was assumed that the outside

world single-particle marginal density f ◦1 is independent of the
current state in the open system.[8] A similar assumption was
introduced tomodel the net forcing of particles inside the system
by those residing outside of it. Alternative physically meaningful
closures are conceivable and will be at the focus of future work,
especially in the context of non-equilibrium dynamics, where the
statistical closure assumptions will have to have a local character
depending on the position along the open system’s interface.
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Figure 3. Sketch of an open system modelled by the AdResS approach.
The hybrid region shields the particles inside the open system from the de-
tailed properties of those in the outside world. As a consequence, the latter
can be treated as non-interacting point-particles embedded in amean-field
(tracers) with the technical convenience of not requiring a process of in-
sertion and deletion in the high resolution region.

4.2.2. Relation to the AdResS Scheme

The open system description of the previous section is concep-
tually very close to the AdResS model paradigm. In fact, inside
the atomistically resolved region AT (see Figure 3) the model im-
poses Hamiltonian dynamics of the particles. It couples the AT
region to thermostatted and externally forced atomistic Hamil-
tonian dynamics in the HY. The latter, in turn, communicates
with the outside world. Forcings and interactions in the hybrid
region are designed to prepare the statistics of particles near the
AT-HY-interface to closely approximate a local statistical equilib-
rium. Particles exiting or entering the AT region therefore carry
approximately the internal or externally prepared statistics across
the interface, respectively, as expressed by the particle exchange
term Φn+1

n from Equation (81).
Particles residing next to the interface but inside the AT do-

main “feel” the potential interaction force from close-by particles
in the HY. With these being forced to adhere to an externally de-
termined statistics, they exert in the temporal mean a mean-field
force similar to that implied by the momentum forcing term Ψn
in Equation (82).
The modeling of an open system in non-equilibrium would

be modeled analogously, yet the statistical information imposed
along the boundary of the OS domain would be determined by
the hydrodynamic states within grid boxes of a finite volume
FHD simulation that are intersected by that surface as sketched
in Figure 4.

5. Discussion about Scaling Regimes
and Derivation of Coupling Strategies

In the construction of an MD-FHD hybrid model, several is-
sues of “scaling” need to be addressed. FHD is intended to
represent mesoscopic scales that are small enough for ther-
mal fluctuations to play a significant role in the dynamics
while being large enough for fluctuations to be representable

Figure 4. Sketch of an open non-equilibrium system modelled by the
AdResS approach coupled to a grid-based fluctuating hydrodynamics
code.

by a Markovian approximation with Gaussian noise. The ob-
served covariance of fluctuations in a fluid scales inversely with
the volume used to measure the covariance.[47] The smaller
the region over which the variance is computed, the larger the
variance. In finite volume-based FHD computational models,
this is reflected in how the stochastic fluxes scale with cell
volume.[186] (In finite volume FHD stochastic fluxes are scaled
by 1∕

√
ΔtV to match the space-time integration of 𝛿 correlated

noise over the space-time discretization element.) Assuming the
fluctuations can be represented with a Markovian approximation
with Gaussian noise implicitly assumes a separation of scales
between the FHD representation and molecular scales. This
can most easily be thought of in terms of number of molecules
per cell. If the number of molecules per cell becomes too
small, one expects the assumptions underlying FHD to begin to
break down. Fluxes will no longer be accurately represented by
Gaussians and memory effects may become important.
Bian et al.[62] study deviations from the continuum limit at

meso-scales for time correlations obtained from detailed MD,
from a heuristic and a Mori–Zwanzig CG version of DPD, and
from linearized FHD. Quantitative estimates are provided for a
specific star-polymer melt system. The authors find convincing
agreement for time correlations of spatial Fourier modes of mass
fluxes of all models at sufficiently large scales, i.e., in the contin-
uum limit. Good quantitative agreement was achieved at wave-
lengths corresponding to just 5 to 10 times the averagemolecular
distance or 125 to 1000 molecules in a box of that length scale.
At meso-scales, that is, below a typical number of 125 molecules
in a cube results from linearized FHD deviate substantially from
those obtained byMDand coarse-grainedDPD. All reducedmod-
els are Markovian, however, so that even at the considered meso-
scales, memory effects seem unimportant. As particle numbers
of 125 to 1000 are well within reach of MD simulations, it seems
reasonable on the basis of these observations to aim for a direct
coupling of MD and FHD as discussed in this report.
Considerations of fluctuation amplitude scaling yield an ad-

ditional argument for direct MD-FHD coupling without an
intermediate CG model. The central point of a CG model is a
reduction of the number of effective degrees of freedom. As a
consequence of the fluctuation scaling with the particle number
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per grid box a CG model will, for a given grid resolution, imply
larger fluctuation amplitudes on the side of the FHD model to
which it is coupled than would its atomistic counterpart. It ap-
pears not clear a priori that two FHD models whose parameters
are adjusted to match an atomistic and a coarse-grained model
of the same fluid will automatically lead to identical statistics re-
garding the large fluctuations that they will singularly generate.
The FHD equations proposed by Landau and Lifshitz[35] and

more elaborate nonlinear versions introduced subsequently[11]

all involve terms representing divergences of stochastic spatially
decorrelated fluxes. Mathematically speaking, such terms are
meaningless when interpreted in the sense of sums of partial
derivatives of the flux fields as the spatial decorreleation contra-
dicts the existence of the appropriate limits of finite differences.
This does not imply, however, that there should not be an
interpretation of these terms in the sense of distributions. The
search for a conceptually meaningful interpretation of these
aspects has recently stimulated intense mathematical research
at the forefront of stochastic analysis of partial differential
equations.[187,188] Satisfactory answers to these questions are still
pending, however.

6. Current and Future Representative Examples
of Application

In this section, we briefly describe some examples of numeri-
cal applications from current and future research projects that
highlight how the theoretical apparatus described above can be
translated into relevant computational tools. The examples are
taken from materials science (star polymer melt under shear),
nanotechnology (charge transport), and physical chemistry (ionic
liquids). In each case, there is across-scale information flow
such that coupling of specific local chemistry to the meso and
macroscales is required.

6.1. Star Polymer Melt under Shear

OBMD mentioned earlier allows for equilibrium MD simula-
tions in theGrandCanonical ensemble aswell as nonequilibrium
fluid flow simulations by introducing the flow via an external
boundary condition while the equations of motion for the bulk
remain unaltered. One example for which the OBMDmethod ex-
cels, is a star polymermelt under shear.[6, 115–117] It is a representa-
tive OBMD system that sees molecules freely flow inward or out-
ward of the simulation box according to the externally imposed
thermo-mechanical state. The simulation box is composed of a
central MD domain sandwiched between two buffer domains.
The latter allow the central box to exchange mass, momentum,
and energy through two of its boundaries with the buffers. The
system is opened in this direction and star polymers freely move
between different domains. Additionally, in the buffers, a change
of resolution takes place from the fine (next to the central MD
domain) to the coarser resolution (at the outer boundaries of the
simulation box). In the CG parts of the buffers, a given molecule
is represented by only one soft CG bead. The idea behind the res-
olution change in the buffers is that AdResS allows the insertion
of molecules of arbitrary size into the system. The CG domains

of the buffers act as a mass reservoir into which large molecules
can be easily inserted due to weak effective interactions among
the soft beads. As the molecules move toward the MD domain,
they gain the fine-grained details according to the AdResS strat-
egy. Molecules are deleted once they leave the outer boundary
of a given buffer and new molecules are inserted to achieve the
mass balance.

6.2. From Quantum Chemistry to Continuum: Charge Transport
and Ionic Liquids

A frontier in the development of across-scale coupling schemes
in molecular science concerns computational treatments from
quantum up to hydrodynamic scales. Some examples were men-
tioned in Section 1. A typical example is the flow of electrons
through a junction that connects two electrodes. This is a clas-
sical example of a multiscale problem in which the local chem-
istry of the junction, usually a molecule, is intimately linked to
the local chemistry of the surface of the electrode to which the
molecule is attached, and to the global arrangement of the large
scale structure of the electrode in the bulk. Typically, the bulk of
the electrode is treated as a continuum representing a reservoir
fromwhich electrons flow into the junction whose specific chem-
ical properties in turn determine the electronic characteristics,
that is, the technological quality, of the device.
The injection of electrons into the chemically resolved junc-

tion molecule occurs through a hopping matrix derived by
its electronic states through quantum calculations of such a
subsystem. The hopping matrix is used to determine at each
step whether an electron is injected into the junction or is
adsorbed by the bulk of the second electrode, and this creates a
net electron current. Latest developments involve more directly
the full electron dynamics by treating the Liouville equation
for the Density Matrix of the electronic states of the junction.
The environment/bulk (reservoir) is treated very closely to the
methods of hydrodynamics reported here and the description of
the subsystem of interest makes use of the projection operator
formalism of section 2.3.4. Details of such an approach can be
found in ref. [189] (and references therein).
Further examples of linking the macro, meso, atomistic, and

electronic scale arise in physical chemistry when, at a microscale,
one might be interested in the local solvation properties of a liq-
uid, whereas at a macroscale one considers the thermodynamic
properties of such a liquid. Technological applications include
lubrication and electronic transport in electrolytes. The field of
ionic liquids is a further example. Ionic liquids are composed
of cations and anions which keep neutrality globally but locally
exhibit all characteristics of ionic solutions. This field of study
is continuously growing because the rational on demand design
of molecules with particular properties has led to substances
with properties of high technological interest, although the
scientific understanding of links between the specific chemistry
of the molecules and their hydrodynamic properties remains
limited today.[190] In fact, while at the electronic-atomistic scales
simulations are already possible through the so-called QM/MM
methods,[191] which consider a quantum subsystem embedded
in an atomistic environment, studies that connect the micro-
scopic scale with the hydrodynamic scale are part of future
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research projects. In this perspective, the AdResS methodology
has already and successfully treated ionic liquids at classical
level[192–194] and thus a next step in the direction of the hydro-
dynamic scale would be to link the tracer region of AdResS to a
continuum description. In the other direction, that is from
the atomistic to the electronic scale, the latest development
of AdResS, el-QM-AdResS, which describe a Grand Canonical
electronic system embedded in a classical atomistic reservoir,[195]

represents a tool for simulating local specific electronic prop-
erties in a larger atomistic environment. Thus, in principle
the required technology to span simultaneously all the scales
involved is available and future projects will hopefully realize
their sound coupling and exploitation.

7. Conclusions

The coupling of particle-based approaches to the continuum tech-
nique has been discussed by summarizing the state of the art in
the field and by organizing it in such a way that physical models
are followed by the corresponding mathematical formalization
which in turn leads to numerical implementations and finally
to applications in which atomistic-scale processes are crucially
influenced by large-scale fluid properties and vice versa. Ad-
vantages and limitations of the physical models and/or approx-
imations which allow for feasible mathematical derivations of
equations that govern physical observables as a function of the
degrees of freedom of the problem, have been discussed and put
in perspective; open problems are proposed as potential research
projects for the next years.
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