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Density–Nematic Coupling in Isotropic Linear Polymers:
Acoustic and Osmotic Birefringence

Aleksandar Popadíc, Daniel Svenšek,* Rudolf Podgornik, and Matej Praprotnik

Linear polymers and other connected “line liquids” exhibit a geometrical
coupling between density and equilibrium orientational order on the
macroscopic level that gives rise to a Meyer-de Gennes vectorial conservation
law for polar orientational order, or its amended version for apolar nematic
order when described as “recovered” polar order. They generally exhibit
fluctuations of orientational order, starting with its lowest moment, the polar
order, which in the isotropic phase is geometrically decoupled from density.
As a contrast, quadrupolar (nematic) orientational fluctuations are inherently
coupled to density fluctuations already in the isotropic system and not subject
to the existence of an orientational phase transition. To capture this, it takes
the tensorial description of the nematic order, leading to a geometrical
coupling between density and orientational order in the form of a tensorial
conservation law. This coupling implies that a spatial density variation will
induce nematic order and thereby an acoustic or osmotic optical birefringence
even in isotropic phase. The theory is validated by performing detailed Monte
Carlo simulations of isotropic melts and comparing the results with
macroscopic predictions. This also exposits a means of determining the
macroscopic parameters by microscopic simulations to yield realistic
continuum models of specific polymeric materials.
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1. Introduction

Isotropic liquids possess no macroscopic
preferred direction. Nevertheless, if they
consist of non-spherical microscopic ele-
mentary units like prolate, oblate, or more
complicated shapes, they do exhibit col-
lective fluctuations of orientational order
of these microscopic units. The fluctuat-
ing orientational order is systematically de-
scribed by fluctuating moments of the ori-
entational distribution function, starting
with its dipole moment characterizing po-
lar orientational order, quadrupole moment
describing the more common nematic ori-
entational order, octupole moment describ-
ing tetrahedratic order[1] and so on.
Governed by symmetry, orientational or-

der is generally coupled to other system
variables or external fields. However, in an
isotropic system such effects are macro-
scopically significant only when the system
is in the vicinity of an orientational phase
transition (if it exists) like the transition
from the isotropic to the nematic phase,

where orientational fluctuations become large and orientational
order gets more susceptible to the influence of external and other
internal variables.
In systems featuring a reduction of microscopic degrees of

freedom (e.g., the connectivity of a polymer chain presents a mi-
croscopic constraint reducing the configurational space of the
monomers in comparison with non-polymerized monomers),
however, the coupling of the orientational order to the displace-
ment field, in particular to density variations, is a geometric ne-
cessity and is not related to the proximity of an orientational
phase transition threshold or its very existence. Moreover, being
geometrical (unbreakable) rather than energetic, such constraint
is inherently robust and is hardly affected by any system variables
except those that enter the constraint explicitly. As such, the re-
sponse dictated by this constraint is well-defined, universal, and
remains unaltered when the system traverses its path in the pa-
rameter space.
It has been recognized several decades ago that a microscopic

geometric constraint of a continuous contour line in the case of
the so-called line liquids[2–4] — including magnetic flux lines as
a vortex liquid in type II superconductors, chains of particles in
ferro- and electrorheological fluids formed in an external field,
and chains of connected monomers in main-chain polymer
nematics — implies a constraint on macroscopic continuum
fields used to describe the coarse-grained configuration of
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such continuous contour lines. That is, even if we do not have
access to probing the microscopic structure directly, we can
nevertheless detect the presence of the microscopic continuity
constraint through a macroscopic response of the system.
In linear (main-chain) nematic polymers, the continuity con-

straint was derived in the form of the so-called vectorial conserva-
tion law for the “polymer current” density[5] that incorporates the
full orientational order vector a(r), |a| ≤ 1, as: ∇ · (ρl0a) = ρ±,
where ρ(r) is the volume density of arbitrary segments (e.g.,
monomers) of length l0. This generalizes the previously pro-
posed [2,6–13] Meyer–de Gennes continuity constraint ∇ · (ρsn) =
ρ±, coupling splay deformation of the nematic director n(r) with
variations of areal density of chains ρs (r) (i.e., “geometrical” flux
density of the chains, ρs = ρl0|a|). The consequence of the con-
tinuity constraint is that the density of long chains decreases as
they are splayed, since there are too few chain ends available that
would be able to populate the ensuing voids between the chains.
Shorter chains, on the other hand, provide more ends which can
fill the voids more easily. This distinction is captured by the vol-
ume density ρ±(r)= ρ+(r)− ρ−(r) of chain beginnings (+) and
endings (−), which then acts as a source in the continuity equa-
tion. Moreover, it is clear by construction[14] that in this conser-
vation law, a(r) = 〈t〉 is exactly the coarse-grained (mesoscopic)
polar orientational order of polymer chain tangents t. In its el-
ementary form, this conservation law thus rigorously applies to
(possible) polar orientational order of the polymer rather than its
nematic order.
In liquids, equilibrium polar order is rare. If they consist of po-

lar building blocks as they readily do, polar orientational fluctua-
tions are, however, inherent. In a homogeneous isotropic system,
we have ρ = ρ0, a = 0, and ρ± = 0 in equilibrium. Any deviation
δρ(r), δa(r) must satisfy the vectorial conservation law constraint
to the lowest order as: ρ0l0∇ · δa = δρ±, that does not involve the
density variation, which is thus unaffected by this constraint. In
other words, the polymer chain connectivity does not induce any
coupling of the density fluctuations and the polar orientational
order fluctuations in an isotropic polymeric liquid.
Nematic (quadrupolar) orientational order is, however, de-

scribed by the traceless nematic order tensor Qi j (r) = 3
2 (〈ti t j 〉 −

1
3 δi j ), where for linear polymers the averaging is again over chain
tangents in amesoscopic volume centered at r. A rigorous conser-
vation law can be derived not only for the polar order, but also for
the quadrupolar order of the chains, which, unlike the polar or-
der, is insensitive to the chain backfolding. [5,15] A completely gen-
eral form of this tensorial conservation law (see Section S1, Sup-
porting Information, for formal derivation) for arbitrary number
of chains with arbitrary length and flexibility is then

∂ j

[
ρ

(
Qi j + 1

2
δi j

)]
= 3

2
1
l0
gi + 3

2
ρki (1)

where the volume density g(r) of chain end tangents, defined
as pointing inward, and the average chain curvature vector k(r),
multiplied by the density, both play the role of the sources in this
continuity equation and can be furthermore considered as inde-
pendent for sufficiently long chains. The average chain curvature
vector source reflects the effect of the chain folds, which can fill
the voids created by splay in a similar way as chain ends do. The
stiffer and longer the chains, the more expensive are the sources

and the stronger is the constraint. Similarly to the vectorial case,
the tensorial analogue in Equation (1) is an exact macroscopic
implication of the microscopic polymer chain connectivity.
We have theoretically and numerically shown[14] that it is pos-

sible to amend the vectorial continuity equation by introducing
the “recovered” polar order, [14,15] such that it can be rigorously ap-
plied to the uniaxial nematic phase with general chain backfold-
ing. Nevertheless, a complete description of the nematic phase
should be based on the full nematicQ-tensor and the correspond-
ing continuity constraint (Equation (1)), which is needed if bi-
axiality is important or topological (half-integer) defects of the
nematic phase are considered. In the isotropic phase, however,
nematic fluctuations are inherently tensorial and cannot be de-
scribed otherwise than with the Q-tensor. Consequently, for a
consistent description the tensorial continuity equation must be
inevitably used in this case — a situation, which has not been
considered hitherto.
In equilibrium, Qi j = 0 and a deviation δQi j must satisfy the

constraint in Equation (1), that to the lowest order yields

ρ0 ∂ j δQi j + 1
2
∂iδρ = 3

2
1
l0

δgi + 3
2
ρ0δki (2)

Therefore, unlike the fluctuations of polar ordering, the fluctua-
tions of nematic (quadrupolar) ordering and density are generally
coupled to the first order even in an orientationally disordered,
isotropic phase (Figure 1). This situation is quite generic and ap-
plies in principle to any linear polymer melt/solution, for exam-
ple, DNA and other biopolymers, as well as synthetic polymers
like polyethylene, polyvinyls, polyamides, polyesters, polystyrene,
polycarbonates etc. The nematic order–density coupling is partic-
ularly strong in the case of long and stiff polymer chains, since
there the fluctuations of the r.h.s. of Equation (2) are costlier and
thus weaker. But as we will show, it can be significant already for
chains as short as a couple of units.
Thus, the tensorial constraint has profound implications al-

ready for the isotropic phase. A quick inspection of Equation (2)
shows that a fluctuation with the wave vector in zdirection (keep-
ing in mind that in the isotropic system all directions are equiv-
alent) couples δρ and δQzz. Hence, a spatial variation of density
or concentration will induce nematic order and thereby optical
anisotropy in an otherwise isotropic system. We will show that
this constraint gives rise to a class of interesting and unantici-
pated macroscopic phenomena in linear polymers, like acoustic
birefringence in polymer melts or osmotic birefringence in poly-
mer solutions.
Moreover, we also present a methodology that enables one to

determine the parameters of the continuum description of the
isotropic polymeric liquid employing microscopic simulations.
This bears some resemblance to well-established derivations of
coarse-grained potentials in molecular simulations, for example,
coarse-graining with the relative entropy. [16–18] By using known
atomistic or coarse-grained force fields of specific linear poly-
mers, it is possible to accurately extract from numerically calcu-
lated correlation functions realistic values of the macroscopic pa-
rameters that correspond to the specific polymeric material. In
this light, microscopic simulations of dense phases of DNA[19,20]

can fix the parameters of coarse-grained, continuumdescriptions
used, for example, to study the packing and ordering properties
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Figure 1. Middle: snapshot of the simulated isotropic polymer melt with 218 monomers (2048 chains with Ns = 128 segments) employing periodic
boundary conditions. Assuming for the monomer diameter the distance at which the repulsive potential is equal to kBT , we estimate the polymer
volume fraction to ≈ 0.11, corresponding to a polymer melt. The close-ups highlight a single chain in the ideally flexible (ε = 0, left) and semiflexible
(ε = 4.926 kBT , right) case.

of nano-confined DNA as in, for example, viral capsids[21,22] or
nanochannels. [23,24]

2. Correlation Functions of Collective Fluctuations:
Comparison with Microscopic Simulations

The complete set of Fourier-component correlators describing
the thermodynamic spatial correlations is derived as (see Sec-
tion S2, Supporting Information, for derivation)

〈|δQxy |2〉 = kBT
2

N0

ρ0

1
A+ Lq 2

(3)

〈|δQ{xz,yz}|2〉 = kBT
2

N0

ρ0

1
A+ (L + 1

2 G̃)q
2

(4)

〈|δQzz|2〉 = kBT
2

4N0

ρ0

[
3A+

(
3L + 8G̃ B̃

4B̃ + G̃q 2

)
q 2

]−1
(5)

〈|δρ̃|2〉 = kBT
2

8N0

ρ0

[
4B̃ + 3G̃(A+ Lq 2)q 2

3A+ (3L + 2G̃)q 2

]−1
(6)

〈δρ̃∗ δQzz + δρ̃ δQ∗
zz〉/2

= −kBT
2

N0

ρ0

8G̃q 2

12AB̃ + [12B̃L + (3A+ 8B̃)G̃]q 2 + 3G̃Lq 4
(7)

where B is the bulk modulus, ρ0 is the volume number den-
sity of monomers, A is the “nematic order stiffness,” B′ and L
(the nematic elastic constant) are penalizing ρ and Q gradients
and B̃ = B + B′q 2. The constraint due to the tensorial conserva-
tion law is taken into account by a quadratic potential penaliz-
ing its sources, where G( 23ρ0l0)

2 ≡ G̃ is the strength of the con-
straint connected with the free-energy cost of the sources (see
Section S2, Supporting Information, for details). Importantly,
since the system is isotropic there is no elastic anisotropy and
thus the difference between the fluctuations δQxy and δQ{xz,yz} is

a signature of the tensorial constraint alone. From the correlators
in Equations (3) and (4) one can efficiently determine the values
of the parameters A, L , and the coupling strength G̃, which we
will make use of in the following.
The coupling of the fluctuations δQzz and δρ̃ is reflected in a

nonzero cross-correlation, Equation (7). This negative correlation
is again the signature of the tensorial constraint and vanishes in
the absence of the constraint when δρ̃ and δQzz are decoupled.
To confirm the existence of the tensorial constraint, we em-

ploy Monte Carlo (MC) simulations of discrete worm-like chains
(WLC), and compare the simulated correlation functions of static
long wavelength fluctuations with Equations (3) to (7) follow-
ing from the continuum theory. Validating the predictions of
the macroscopic theory with molecular-level computer simula-
tions of polymers[25–28] is challenging, since such simulations
must i) address the long-wavelength limit and ii) realize differ-
ent regimes of chain backfolding (hairpin formation). Thus, it
is essential to consider large systems of preferably long polymer
chains, [29] where the samplingmust include statistically indepen-
dent (decorrelated) configurations. We fulfill these requirements
benefiting from a recently developed mesoscopic model[14,30] of
discrete WLCs. The modeled system contains Nc WLCs com-
prised of Ns linearly connected segments of fixed length l0. Con-
secutive segments are subjected to a standard angular potential
(see Section S3, Supporting Information) with strength ε control-
ling the WLC bending stiffness. Moreover, all segments possess
a non-bonded isotropic repulsive interaction with finite micro-
scopic range 2l0 and strength κ . See Section S3, Supporting In-
formation and ref. [14] for details of the numerical method and the
simulated mesoscopic WLC model.
We study large isotropic melt systems containing N0 =

NcNs = 218 segments. An example of the simulation snapshot
is shown in Figure 1 (middle). The configurations are equili-
brated through MC starting from a nematic phase, with the
chains stretched along the z axis of the laboratory frame and
their centers of mass randomly distributed in a cubic box with
periodic boundary conditions. The MC algorithm utilizes the
standard[31,32] slithering-snake moves, as well as volume fluctua-
tion moves at pressure Pl 30/(kBT ) = 2.87 resulting in simulation
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Figure 2. Nematic (δQi j ) fluctuations of stiffer (ε = 4.926 kBT , left) and
more flexible (ε = 1.642 kBT , right) chains with Ns = 128 (top) and Ns =
4 (bottom) segments, fitted with Equations (3) and (4) to extract the values
of the parameters A, L and G̃ . The 〈|δQzz|2〉 curves are not fitted but are
direct plots of the theoretical result in Equation (5).

box sides of length 〈L〉/ l0 ∼ 66 and system’s volume fluctuations
of∼ 0.1%.While working in the isothermal-isobaric ensemble is
computationally more expensive, it is useful when determining
the bulk modulus. The efficient soft model enables us to accu-
mulate large sequences of statistically decorrelated isotropic con-
figurations, which allow for direct validation of the macroscopic
theory via the correlations in Equations (3) to (7) (see Section S3,
Supporting Information, for details of their extraction from sim-
ulation data).
Figure 2 shows examples of normalized fluctuations 〈|δQi j |2〉

of the nematic ordering, calculated in simulations, for different
chain lengths (top, bottom) and different chain flexibilities (left,
right). While 〈|δQxz|2〉 and 〈|δQyz|2〉 coincide, it is confirmed that
they are different from the fluctuations 〈|δQxy |2〉, in accord with
the results in Equations (3) and (4). The difference grows with
the strength G̃ of the tensorial constraint, increasing with length
(Ns) and bending stiffness (ε) of the chains. The 〈|δQxy |2〉 points
are fitted with Equation (3), determining the parameters A and L .
With these parameters fixed, the 〈|δQxz|2〉 and 〈|δQyz|2〉 data are
then fitted with Equation (4) and the strength G̃ is determined.
It would be natural to determine the modulus B from the den-

sity autocorrelation (the structure factor) in Equation (6). It turns
out, however, that the theoretical Lorentzian profile of the struc-
ture factor in the continuum picture (Equation (6)) is completely
overridden by the influence of the discrete structure of the sim-
ulated WLCs even for the lowest q ’s that we can achieve with
our simulation box size. Therefore, we put B′ to zero and de-
termine B from fluctuations δV of the simulation box volume
V0, 〈δV 2〉 = V0kBT/B. This agrees with the structure factor in
Equation (6) for q = 0, recalling that for a homogeneous den-
sity variation, δV/V0 = −δρ/ρ0 and the Fourier component is
δρ(q = 0) = V0δρ.

Figure 3. Dimensionless density–nematic cross-correlations for chains
with length Ns = 128 and varying flexibility. The curves are plots of Equa-
tion (7) (no fitting). Inset: the dimensionless coupling strengthG vs. bend-
ing stiffness ε/(kBT ), determined from fits of the numerically calculated
fluctuations 〈|δQx y |2〉, 〈|δQx z|2〉, 〈|δQyz|2〉 (Figure 2).

A direct display of the density–nematic coupling is the cross-
correlation in Equation (7) between δρ̃ and δQzz, in theory di-
rectly proportional to the strength of the coupling G̃. In Figure 3,
the cross-correlation is shown for several chain flexibilities. Here,
the theoretical curves are not fitted, but correspond to the predic-
tion in Equation (7), using the values of the parameters A, L , G̃,
and B extracted from the fluctuations δQxy , δQxz, δQyz (Figure 2)
and δV . The same is valid for the 〈|δQzz|2〉 curves in Figure 2,
which are plots of Equation (5) with the same parameter values.
For sufficiently long chains, the coupling strength G extracted
from the simulation data (Figure 3, inset) clearly increases with
chain stiffness, as anticipated from the fact that the fluctuations
δk of the curvature source in Equation 2 get costlier. In the case of
very short chains,G becomes saturated already at lower stiffness,
since in this case the source δg, corresponding to the density of
chain end tangents, is dominant (next Section reveals that this is
only a partial reason).
Figure 3 thus presents direct evidence of the connection be-

tween density variations and the emergence of nematic orienta-
tional order in otherwise isotropic polymeric liquid, which is also
well described by the theoretical cross-correlation in Equation (7).
Moreover, the strength of this coupling increases for long and
stiff chains, as expected and empirically confirmed in the inset
of Figure 3.

3. Strength of the Tensorial Constraint

The coupling strength G corresponding to the tensorial con-
straint is derived within a minimalistic model of combined
sources (see Section S4, Supporting Information, for details) as

G = 3kBT
ρ±
0 + 2kBTρ0/ε

(8)

where ρ±
0 is the average (equilibrium) volume density of chain

ends (in the tensorial formulation, there is no distinction
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Figure 4. Dimensionless strength of the tensorial constraint G , deter-
mined in the simulations for several chain lengths Ns and bending stiff-
nesses ε, versus its dimensionless theoretical expression in Equation (8)
(solids circles with statistical error bars) — a direct result without fitted
parameters. The contribution of chain ends can be traced with the help
of the empty circles, the abscissae of which have ρ±

0 put to zero (three
rightmost Ns = 4 open circles fall outside the plot and are not shown).

between chain beginnings and endings — they are unified into
a single type of ends, see Section S1, Supporting Information),
and consistently crosses over from the chain-end- to the chain-
curvature-dominated strength of the constraint. Assuming
monodisperse chains with Ns monomers, such that ρ±

0 = 2ρ0/Ns,
we can rewrite Equation (8) as

G = 3
2
kBT
ρ0

1
1/Ns + l0/ξp

(9)

The crossover takes place at ξp = Nsl0, that is, when the
persistence length equals the length of the chain.
Hence, for sufficiently long chains, G will be dominated by

the curvature source for any finite value of the bending stiffness
ε, while the contribution of the end tangents will be less signif-
icant. In this case G ≈ (3/2)ε/ρ0 = (3/2)kBTξp/(ρ0l0) becomes
directly proportional to the bending stiffness, corresponding to
the semiflexible regime of severely bent chains. Throughout this
regime, which is the dominating one for long chains, G is set by
the chain curvature.
Figure 4 shows a plot of the dimensionless strength G of the

tensorial contraint, determined in the simulations, versus the di-
mensionless expression in Equation (8). According to thismodel,
the points should thus lie on the indicated straight line. For all
but shortest chains the agreement is remarkable, all the more so
since the theoretical prediction in Equation (8) is direct and in-
volves no fitted parameters. The problem with very short chains,
in particular if they are stiff, is the strong correlation between end
tangents of the chain and the in-between profile of its curvature
vector, in other words, a rather small number of internal config-
urational degrees of freedom of the chain, which is beyond the
regime of validity of the model leading to Equation (8).
For the longest chains (Ns = 128), the two contributions in

the denominator of Equation (8) are, in dimensionless form,
ρ±
0 l

3
0 ∼ 0.014 and 2ρ0l 30kBT/ε ∼ 0.37 (for ε = 4.926 kBT , and

larger for smaller ε). For the shortest chains (Ns = 4), the fig-
ures are ρ±

0 l
3
0 ∼ 0.44 and 2ρ0l 30kBT/ε ∼ 0.13 (for ε = 13.136 kBT ,

and larger for smaller ε). That is, in the examples shown in Fig-
ure 4 the coupling strength G is indeed determined predomi-
nantly by chain curvature, except for the stiffer cases of the short-
est chains. Regarding the above discussion, this is in accord with
Figure 1 (right), where one can see that the persistence length,
while clearly exceeding themonomer length, is still much shorter
than the chain.
Moreover, Figure 4 also reveals the relevance of the effective

source model: the abscissae of the additional points (empty cir-
cles) are obtained by omitting ρ±

0 in Equation (8). Without the
contribution of end tangents the agreement is clearly worse —
the differing slope of the Ns = {32, 64, 128} case is particularly
noteworthy. The improvement when including ρ±

0 is naturally
largest for the shortest chains, where the theory, however, breaks
down for the reason mentioned above.
As exhibited in Figure 4, for all considered cases the coupling

is somewhat weaker than predicted by Equation (8). Plausibly,
this slight overall weakening of the constraint is a signature of the
fact that the curvature source δk is not autonomous, as assumed
in the model, but is generally coupled to gradients of δρ and
δQi j . A systematic study to quantify all such symmetry-allowed
couplings as additions to the free-energy functional is a natural
next step. In this context, it may seem surprising that the theoret-
ical prediction of the average curvature in Figure S1, Section S5,
Supporting Information, which assumes independent pairs of
segments, is so accurate. In general, one would expect it to be
influenced by these couplings as well. It is, however, physically
reasonable that they affect the direction of the curvature fluctua-
tions δk significantly more than their magnitude. In other words,
the magnitude 〈|δk|2〉 is inertly fixed by the free-energy cost
whereas the direction of δk is not distinguished and is therefore
prone to other, weaker energy couplings. For increasingly stiff
chains, these become inferior compared to the increasing energy
cost of the curvature, which in Figure 4 seems to be the reason
for the improving agreement in the case of stiffer Ns = 128
chains.

4. Discussion

Once the coupling strength G̃ has been determined, for example,
from analysis of the fluctuations as shown, also the equilibrium
coupling of δρ and δQ is known. Through this coupling, density
or concentration inhomogeneities induce orientational order of
the polymer chains, which furthermore results in a uniaxial di-
electric tensor εi j = εδi j + 2

3εaδQi j with an anisotropy εzz − ε⊥ =
εaδQzz, where ε is the dielectric constant of the isotropic phase
and εa the dielectric anisotropy of a phase with perfect orienta-
tional order of the chains (maximum possible anisotropy of the
material).
The anisotropy of the dielectric constant implies birefringent

optical response. For example, a density (acoustic) plane wave
δρ̃(r, t) = δρ(r, t)/ρ0 with wave vector q = q êz induces uniaxial
nematic ordering along z (see Section S6, Supporting Informa-
tion). The ordering is oblate (δQzz < 0) in compressions and pro-
late (δQzz > 0) in rarefactions. The induced nematic order gives
rise to the dielectric anisotropy
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Figure 5. Schematic depiction of polymer concentration gradient, ∇δρ,
sustained by solvent osmotic pressure difference, 	p, between a pair of
bounding semipermeable membranes. If the chains are long and rather
rigid, they accommodate the concentration gradient primarily by pro-
late/oblate orientational ordering.

(εzz − ε⊥)(r, t) = −εa

2
G̃q 2

A+ (L + G̃)q 2
δρ̃(r, t) (10)

For a dynamic disturbance, G̃ is expected to increase substantially
above its static value determined from the static fluctuations, as
the inverse frequency becomes comparable to and falls below
a characteristic dynamic time of the sources of the continuity
equation (Equation (1)), where the disentanglement time[33–37] of
the polymer chains seems to play an important role. Acoustically
induced dielectric anisotropy, Equation (10), is nevertheless
small, as relative density variations due to acoustic excitations
are normally tiny. Note that an acoustic reorienting effect can
be substantial in conventional non-polymeric nematic liquid
crystals, [38] which is attributed to the coupling of density with the
symmetry variable (nematic director) rather than to the tensorial
(geometric) constraint for rod-like molecules acting as short
chains.
In polymers, a much stronger effect can be expected in poly-

mer solutions, where δρ represents polymer concentration varia-
tions rather than variations of the polymer melt density. Figure 5
presents a schematic situation, where a 1D polymer concentra-
tion gradient∇δρ = êz∂zδρ is sustained by a difference in solvent
osmotic pressure imposed by a pair of membranes at z = ±d/2,
permeable only to the solvent. Assuming that (∂zδρ)/ρ is small
and constant, and choosing that the system be isotropic in the
middle, δQzz(z = 0) = 0, we get an exponential profile of δQzz

(see Section S6, Supporting Information) and hence of the in-
duced dielectric anisotropy

(εzz − ε⊥)(z) ≈ −εa

4
G′ξρ ∂zδρ

L + G′ρ2

sinh(z/ξ )
cosh(d/(2ξ ))

(11)

where G′ = G( 23 l0)
2 and ξ ∼ √

L/A is the nematic correlation
length. That is, as a response to a constant concentration gra-
dient, the nematic order and dielectric tensors are modulated in
the boundary layers with characteristic thickness of the nematic
correlation length ξ . Quite generally it is thus expected that, in
the presence of a normal concentration gradient, any boundaries

are typically decorated with short-range uniaxial nematic order-
ing/dielectric anisotropy in the normal direction.
When the concentration gradient is not constant, however,

nematic ordering is induced globally. In lowest order, for the vari-
ation of the dielectric anisotropy, induced by ∂zδρ(z) that varies
slowly on the scale of ξ , we have (see Section S6, Supporting
Information)

∂2z (εzz − ε⊥) ≈ −εa

2
G′ρ

L + G′ρ2
∂2z δρ (12)

A meaningful example is that with spherical symmetry: consider
a spherical boundary of the solvent-rich side (the right boundary
in Figure 5, e.g., a membrane or an interface of a bubble, repre-
senting a spherical source of constant flux 
 of the solvent into
the surrounding bulk (let the other boundary be absent or far
away). Based on diffusion, it is reasonable to assume that for an
overall constant density the profile of the polymer concentration
at a sufficient distance r from the center of the bubble will be

ρ(r ) = ρ0 − 
/(4πDr ) (13)

with ρ0 its bulk concentration and D the diffusivity. Conse-
quently, for a system which is isotropic in the bulk we expect
that such spherical inhomogeneity will induce uniaxial ordering
of the chains in the radial direction (see Section S6, Supporting
Information). The corresponding dielectric anisotropy in the
limit of sufficiently large r is then

(εr r − ε⊥)(r ) ≈ −εa
G′ρ0

6L + G′ρ2
0




4πDr
(14)

Interestingly, in the considered regime the induced nematic
ordering is negative, that is, oblate, rather than prolate as
one might have naively guessed from the decreasing polymer
concentration. Note that in all of the in Equations (10) to (14) the
polymer density appears in the form of the product ρ(0)l0, that
is, the total length of the polymer per unit volume, which is the
relevant volume density for the coupling.
Such optical effects due to the dielectric anisotropy, resulting

from concentration variations in solutions of long linear poly-
mers with limited flexibility, should be observable, for example,
as an osmotic birefringence. The phenomenon is akin to shear flow-
induced birefringence in fluid polymers and stress-optic law in
elastic solid dielectric materials, that is, the direct coupling be-
tween the strain and the dielectric tensors. The key distinction
is, however, that the osmotic-stress-induced birefringence takes
place in a static liquid, where there exists no strain/strain rate
tensor that could couple to the dielectric tensor. In this case, the
coupling — which is a manifestation of the microscopic geomet-
rical constraint — is via the concentration gradient through the
tensorial continuity equation, Equation (1).
It is challenging to determine the macroscopic parameters of

real polymeric systems by conducting microscopic simulations
with known force fields, and fitting the extracted fluctuation am-
plitudes with theoretical expressions as we have done for our
model system. In this respect, DNA is of particular interest: a re-
cently developed open-boundary molecular dynamics of a DNA
molecule in explicit salt–hybrid explicit/implicit water solution[39]
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would enable DNA simulations at lower, physiological salt con-
centrations∼ 0.15m. At this stage, let us make an estimate of the
coupling strength for DNA, making use of the theoretical predic-
tion in Equation (9). Assuming a persistence length ξp ∼ 50 nm
and chains much longer than that, a sub-nematic DNA concen-
tration 5mgmL−1 (with the atomic mass of 650 dalton/base pair
and the length 0.33 nm/base pair this amounts to a total length
per unit volume of ρ0l0 ≈ 1.5mmμm−3) and temperature 300 K,
one gets G̃ = G( 23ρ0l0)

2 ≈ 2
3kBTξpρ0l0 ≈ 2× 10−13 N. This is ex-

pected to be at least comparable if notmuch larger than the elastic
constant L (in the case of the simulated Ns = 128 chains, we get
G̃/L ∼ 20). Consequently, the expected induced nematic order-
ing is of the same order of magnitude as the relative variation of
the polymer concentration.

5. Conclusions

We have established a tensorial description of coupled density–
nematic order fluctuations in the isotropic phase of linear poly-
mer melts/solutions. We have validated and confirmed the pro-
posed tensorial conservation law, which connects density and
orientational order, by running extensive Monte Carlo simula-
tions of isotropic polymer melts composed of worm-like chains
with variable length and flexibility. This coupling induces orien-
tational order as a consequence of density/concentration varia-
tions, which can be macroscopically relevant even in an other-
wise isotropic polymeric liquid. Our results show that these ef-
fects become increasingly important in particular as the chains
get stiffer. Rather surprisingly, the coupling is notable also for
extremely short chains (a few monomers). Moreover, we have al-
luded to the possible relevance of symmetry-allowed coupling be-
tween chain curvature and other system variables, and presented
means of its quantification. Our multiscale formalism is general
and robust and provides a way to construct bottom-up continuum
models of polymer melts/solutions, for example, dense ordered
DNA phases, by allowing us to extract the unknown parameters
of the continuum models from microscopic simulations or scat-
tering experiments. [40–42]

The average chain curvature as a macroscopic variable is not
normally encountered. Governing the strength of the density–
nematic coupling, it is, however, relevant for the static macro-
scopic response of line polymers and therewith accessible from
themacroscopic level. In this perspective, experimental detection
and characterization of the ensuing acoustic/osmotic birefrin-
gence represents an exciting scientific challenge to be pursued
in the future.

6. Methodology

Methods, including numerical simulation details, derivation of
the tensorial conservation law, free-energy functional and correla-
tion functions, theoretical models of the sources, and of the cou-
pling strength can be found in the Supporting Information.
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Supporting Information is available from the Wiley Online Library or from
the author.
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