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ABSTRACT: To perform computationally efficient concurrent multiscale
simulations of biological macromolecules in solution, where the all-atom (AT)
models are coupled to supramolecular coarse-grained (SCG) solvent models,
previous studies resorted to modified AT water models, such as the bundled-simple
point charge (SPC) models, that use semiharmonic springs to restrict the relative
movement of water molecules within a cluster. Those models can have a significant
impact on the simulated biomolecules and can lead, for example, to a partial
unfolding of a protein. In this work, we employ the recently developed alternative
approach with a dynamical clustering algorithm, SWINGER, which enables a direct
coupling of original unmodified AT and SCG water models. We perform an
adaptive resolution molecular dynamics simulation of a Trp-Cage miniprotein in
multiscale water, where the standard SPC water model is interfaced with the widely
used MARTINI SCG model, and demonstrate that, compared to the corresponding
full-blown AT simulations, the structural and dynamic properties of the solvated

protein and surrounding solvent are well reproduced by our approach.

1. INTRODUCTION

Dual-resolution molecular dynamics (MD) schemes,' > where
one part of the system is modeled at a high resolution atomistic
(AT) detail and the other part at a low coarse-grained (CG)
resolution level, continue to be an active research area due to
their possibility to provide the same level of accuracy as the AT
simulations at a fraction of their computational cost. In the
context of biomolecular simulations, it is typically the solvent
region that is treated on a simplified level as it is both
computationally the most cumbersome part and, furthermore,
not a region of a particular interest.

Based on whether the solvent molecules’” resolution is kept
fixed throughout the course of the simulation or is allowed to
change as the molecules move between predefined spatial
resolution regions, the dual-resolution methods can be split
into fixed resolution and concurrent schemes, respectively. The
fixed resolution methods face major challenges essentially
because the CG solvent models are, in general, not compatible
with the established AT force fields. One way of solving this
problem is to parametrize an AT force field for a particular CG
solvent, such as the PACE force field for proteins in MARTINI
solution.”” The other way is to use the existing force fields and
define the AT—CG interactions. The latter can be specified
and, if needed, reparametrized via mixing rules," ™ para-
metrization of interactions,'®™"> force matching,M’15 or indirect
definintion using the virtual sites.'°™"® Yet another way is to
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consider the distal solvent in an implicit manner, that is, with
the hybrid discrete/continuum solvent approaches.'”~**

In terms of reproducing the all-atom simulation results, many
of these methods have been quite successful. Nevertheless, in
situations where hydrogen-bonding interactions between water
and the biomolecule play a significant role, the treatment of
water on a CG level is still oversimplified.”> Moreover, direct
coupling with CG water can also lead to serious side effects,
such as complete unfolding of a protein.'® For these instances, a
layer of AT water around biomolecules is recommended.'®*°
Unfortunately, such a partitioning of the solvent requires
restrictions for holding the AT water in the vicinity of the
biomolecules, while keeping the CG water far away.'**°™>* As
these restrictions are nonphysical, they produce artifacts such as
too high density of the AT solvent™ and the overstabilization of
the biomolecule’s native structure.'®

These restraints can be avoided with concurrent multiscale
approaches™ > such as the Adaptive Resolution Scheme
(AdResS)***7* or its extensions, for example, Grand-Canon-
ical-like version (GC-AdResS),”’”*° Hamiltonian (H-
AdResS),"' ™" or Open Boundary Molecular Dynamics,"*~*’
but at the cost of an extra intermediate region that ensures a
smooth transition between resolution levels. AdResS or
AdResS-like methods can be also used for equilibration of
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Figure 1. Schematic representation of the simulated systems. The left and central panels present the protein embedded in the fully atomistic solvent
modeled with SPC** (red dots) and bundled-SPC** (red spheres) water model, respectively. The right panel depicts the multiscale solvation where
high resolution SPC model is used for the water molecules in a spherical layer surrounding the protein, which is embedded in a bulk solvent modeled

by the low resolution MARTINI model®* (blue spheres).

molecular or complex liquids by reverse mapping from the CG
to AT descriptions.***** So far, the AdResS has been applied
to several biomolecular systems, such as proteins’’ "> and
nucleic acids®*™” in multiscale solutions, where the AT solvent
models were coupled to either molecular CG models (1
molecule mapped to a CG bead) or supramolecular coarse-
grained (SCG) models (several molecules mapped to a SCG
bead). The latter offer greater speed increase and can
accommodate coupling to the well-established MARTINI
force field. On the other hand, this coupling is not
straightforward because the scheme uses a center-of-mass
(COM) based correspondence between low and high
resolution representations, which cannot be used as long as
the molecules diffuse far away from each other. Thus, it requires
the use of either artificial AT bundled water models®”**~" to
accommodate a constant mapping or the recently developed
dynamical mapping algorithm SWINGER® that redistributes
the molecules into CG beads on-the-fly.

In the present article, we report an AdResS MD simulation of
an atomistic protein in a multiscale simple point charge (SPC)/
MARTINI solution. From the surface of the protein to the
simulation box edges, the representation of water is initially
atomistic (standard SPC model) and then clustered with
SWINGER into groups (each containing 4 water molecules),
and finally each cluster is modeled as a MARTINI CG bead.
We consider a 20-residue protein Trp-Cage to be a good test
system since it is a fast folding and well-studied protein. Several
properties of the protein and the solvent are investigated. We
use the full-blown all-atom simulations as a reference to our
multiscale simulation. Additionally, to highlight the artifacts
that the bundled water models produce, we also perform all-
atom simulations employing the two currently existing
bundled-SPC water models.

2. METHODS AND COMPUTATIONAL DETAILS

We perform MD simulations of the Trp-Cage (pdb entry
1L2Y) protein in various water model solvents at ambient
conditions. Figure 1 shows schematic depictions of the
performed simulations. The protein is modeled on the AT
scale using the GROMOS 54a7 force field® The water is
modeled either with fully atomistic (SPC® or bundled-SPC**
model) or mixed AT/SCG resolution. For the bundled-SPC
solvation, we test two models; that is, models 1 and 2 defined in
ref 58. In the multiscale simulation, the solvent’s level of
representation dePends on the distance to the protein’s COM.
We use the SPC® and MARTINI®*®° water models for the AT
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(R < Ryp) and SCG (R > Rycg) domains, respectively. Thus,
the boundaries between the resolution domains are spherical.
We set the size of the atomistic sphere radius to Ry = 2.0 nm
to ensure a sufficient layer of all-atom solvent. Note that the
center of the AT region sphere moves along with the protein’s
COM. The MARTINI model treats 4 water molecules as a
single chargeless site. Thus, the mapping is 4-to-1. To facilitate
such coupling, we employ the SWINGER algorithm that
dynamically makes, breaks, and remakes clusters. The detailed
description of the algorithm is reported in ref 62. Here, we
briefly recapitulate its major algorithmic steps. The algorithm
breaks the clusters that have moved to the AT region and
makes or remakes clusters in a predefined “cluster formation”
region C (see Figure 2). In this work, the region C is 0.2 nm
thick, bordering the edge of the AT domain (Rg < R < Rup; R
= Ryr — 02 nm). The algorithm’s output is an optimal
grouping of water molecules into clusters, where each cluster
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Figure 2. (top) Schematic representation of the multiscale simulation
setup showcasing the employed models. In this work, we use the
“reverse” implementation of AdResS, where w = 0 and 1 in the AT and
SCG domains, respectively. Boundaries between the regions are
marked with dotted gray lines, whereas the region C, where the
clusters are formed, is framed with red lines. (middle) NDP (with
standard deviation denoted by the error bars) around the COM of the
protein for water oxygen atoms and MARTINI SCG beads. The
multiscale results are compared to all-atom SPC solvations. (bottom)
TD force that acts on bundles’ COM mainly in the HY region.
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contains exactly 4 water molecules. The optimal grouping is
achieved with the initial grouping in an orderly fashion and the
simulated annealing Monte Carlo-based refinement. Computa-
tional costs of the SWINGER algorithm depend on the size of
the clustering region. In particular, the algorithm’s complexity
scales linearly with the number of water molecules examined for
reclustering since the energy of the simulated annealing MC
involves only intracluster contributions. When the algorithm is
executed, the measured computational time of the MD time
step is increased by approximately 5%. However, we do not
initiate the SWINGER scheme at every time step but at every
Verlet list update because the typical time scale of waters’
tetrahedral cluster is on the order of a picosecond. Thus, the
overall increase in the computational load due to SWINGER
itself is negligible.”” When the clusters are formed a half-
harmonic spring interaction is added between the oxygen atoms
within a cluster. This bundled interaction is introduced
gradually to avoid any large forces due to bundling and
accommodate an easier reclustering as reported in ref 67.

The high and low resolution regimes are coupled via a force
interpolation scheme,”” where the total force acting on a cluster
ais

E, = ) {[1 - wR)w(Ry)IEA] + w(R,)w(RyEGE
p#a

- FP(R,) ()
The F‘;; and legc are the forces between cluster a and f
obtained from the AT and SCG potentials, respectively. The
F'™ is a thermodynamic (TD) force that compensates the
difference in the chemical potentials of the AT and SCG
resolutions’®*® (see section 3.1). A smooth transition from
high to low resolution regimes and vice versa is enabled with
the hybrid (HY) region (Ryr<R < Rgcg) by employing the
sigmoidal function w. It is equal to 0 and 1 in the AT and SCG
regions, respectively. Note that in the original implementation
of AdResS, a direct interaction among AT and HY molecules is
present up to one potential cutoff deep into the AT domain.
Therefore, SCG interaction sites in this part of the AT domain
need to be defined. This requires an additional AT region
where the water molecules in the clusters are constrained to
remain first neighbors as in, for example, the bundled-SPC
water model. From a computational point of view, such
implementation is not optimal as one would like to minimize
the computationally heavy AT region. Hence, in this work, we
resort to the “reverse” definition of w, as in ref 67.
Simulations are performed with the ESPResSo++ software
package.”” For the integration, we employ the standard velocity
Verlet with a time step of 1 fs. We use a cubic simulation box
with periodic boundary conditions and minimum image
convention. The simulation box size is 9.2 nm. The
temperature is maintained at 300 K with a local Langevin
thermostat,”® with the value of the friction constant equal to
5.0/ps. The geometry of the water molecules is constrained
with SETTLE.”' The cutoff distance for the nonbonded
interactions is 7, = 1.2 nm. The AT water—water nonbonded
interactions are capped for very short distances (at 0.17, 0.08,
and 0.14 nm, for the oxygen—oxygen, oxygen—hydrogen, and
hydrogen—hydrogen interactions, respectively), that is, at
distances where the corresponding radial distribution function
is still zero. The reaction field method”” is used for the
electrostatic interaction beyond the cutoff, with the dielectric
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permittivity of inner and outer regions equal to 1 and 80,
respectively.

Due to the long-range nature of the electrostatic interaction
an efficient treatment of electrostatics, for example, Ewald
summation,”” in molecular simulations is imperative.”””> The
Ewald-type summation techniques are somewhat difficult to
implement into the AdResS framework owing to the nonlocal
and long-range reciprocal part of the Ewald summation.”® Thus,
as a cutoff based alternative to Ewald summation one can use,
for example, the reaction field method” or the screening
fanctions,”> which are due to the short-range interactions easier
and more efficiently implemented into the domain-decom-
position approaches such as AdResS. So far, in the AdResS
framework, the reaction field method”® or the generalized
reaction field method”” have been used because they are both
pairwise and short-ranged.z’78 However, other methods, for
example, damped shifted force,”””**" can also be employed.

For the reaction field method to be accurate, it is necessary
that the charges within the cutoff are isotropically distributed.
In our multiscale simulations, this is not the case for the charges
in the HY region due to the chargeless particles in the
neighboring CG region. Hence, the reaction field method is not
accurate in the HY domain. But, owing to the resolution
change, the physical properties in the HY region are not
accurate, in any case. Here, we would like to emphasize once
again that our region of interest is the AT region, and the main
objective of the AdResS approach is to reproduce the full-
blown atomistic simulation properties mainly there. Contrary to
the HY region, the AT region is charge-homogeneous because
the HY region is in all AdResS applications at least a cutoff
distance wide.”* Our previous studies have shown that such a
size of the HY region is sufficient®™®' If some artifacts
nevertheless showed up in certain situations one could always
mitigate them by increasing the HY region. Thus, the reaction
field treatment is justified.

The starting configuration for all simulations is an
equilibrated configuration obtained after 5 ns of all-atom
simulation. The equilibration runs initiated from the starting
configuration are 1 ns, followed by 20 ns production runs.

3. RESULTS AND DISCUSSION

3.1. Multiscale Solvation. The AdResS scheme can couple
rather loosely connected molecular representations, that is, it
maintains two different models with, in general, different
thermodynamic properties like pressure and chemical potential
in therrnodgrnamic equilibrium. This is accomplished with a TD
force,*>*“®® which is calculated in an iterative manner as FLY =
F'® — CVp,(r). It compensates for the difference in the
chemical potential at different levels of resolution and
consequently removes the density undulations that are
observed if the force is not applied. Typically, there is a
preferential tendency of the molecules to migrate into the low
resolution region and change resolution in order to lower the
free energy of the system. The prefactor, C = %KT, where p,

0
and kp are the bulk density and isothermal compressibility,
respectively, is in practice empirically adjusted along the
process to prevent under- or overcorrection. To speed up the
iteration procedure, we run simultaneously at each iteration
step 6 simulations with different prefactors, and the best one is
chosen for the next iteration. The used prefactors are in range
[0.1—50] and decrease with increasing number of iterations.
The TD force used in this work that acts on bundles’ COMs in
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the HY region is shown in Figure 2. To validate that the solvent
density at larger distances from the protein is equal to the bulk
density, we examine the normalized density profile (NDP), that
is, the local density divided by the bulk density, as a function of
distance from the protein’s COM. The NDPs, shown in Figure
2, are computed for the water oxygen atoms and MARTINI
SCG beads. The AdResS and all-atom SPC NDPs for the water
oxygen atoms match well and display similar standard
deviations denoted by the error bars.

3.2. SPC versus Bundled-SPC versus SPC/MARTINI
Solvation. Previous papers®®®” have reported that the largest
discrepancies between the bundled-SPC water models
compared to the unrestrained SPC model are in the properties
of the water itself, while as a solvent, the bundled-SPC models
in most cases performed reasonably well.”® However, taken
together, small differences can have a substantial impact. For
example, it was shown that both bundled-SPC solvation models
can lead to the unfolding of a protein.*” Here, we examine the
structural and dynamic properties of the solvent near the
protein Trp-Cage and thus the collective solvent—solvent
interactions, the properties of the protein—solvent interface,
and the properties of the protein itself.

We compute the self and distinct parts of the Van Hove
function G(rt) to obtain the structural and dynamical
organization of water around the protein. In Figure 3, we
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Figure 3. Distinct part of the Van Hove function Gy(r,t)/p of water

oxygen atoms within the 1—2 hydration shells at times 0, 0.5, 1.0, and
3.0 ps. We compare the results of all-atom simulations with three
solvent models, that is, the SPC, bundled-SPC model 1 and 2, and the
AdResS (multiscale SPC/MARTINI) solvation.

first examine the distinct part, Gy(rt), which gives the
probability to find a different particle at position r at time f,
given that there was a particle at the origin at time t = 0. For
isotropic fluids, G4(r,t) = (4]1’7’2N)_12i#<5(r — lr(t) — rj(0)|)>,
where the double sum is performed over all pairs of N particles
in the system, r;;(t) is the position vector of the ijth atom at
time t, and the brackets (..) denote an average over time
origins. At t = 0, the Gy relates to the well-known radial
distribution function (RDF), that is, G4(r,0) = pg(r). We
calculated the Gy(r,t) for water oxygen atoms at four different
times: 0, 0.5, 1.0, and 3.0 ps. To make a relevant comparison
with the fully AT simulation, we average only over water
molecules that are located within a sphere, whose center
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coincides with the protein’s COM and has a radius of 1.6 nm.
We took into account the excluded volume due to the protein
and the limited region of averaging. Due to the changed
Lennard-Jones parameters and the added bundled interaction
in the bundled-SPC models, the RDFs are quite altered. In
particular, the distributions are shifted toward larger distances
especially in terms of the position of the second neighbors’
peak. At later times, the G4’s of the bundled-SPC models show
more time-persistent structural correlations compared to the
Gy’s of the SPC model. For AdResS simulation, the G4’s match
the reference all-atom SPC results within the line thickness thus
demonstrating that not only the structural part but also the
dynamical part of the water organization is fully preserved.
The self-part of the Van Hove function, Gy(rt) =
(47*N) 'Y (S8(r — Ir,(t) — r,(0)I)), probes the dynamics of a
single particle in terms of its displacement from an initial
position. Figure 4 shows the G(rt) for water oxygen atoms
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Figure 4. Self-part of the Van Hove function 47r°G(r,t) of water
oxygen atoms within the 1—2 hydration shells at times 0.5, 1.0, 2.0,
and 5.0 ps.

within the 1—2 hydration shells from 0.5 to S ps. Multiscale
solvation again gives very comparable results to the SPC,
whereas the profiles for the bundled-SPC solvation are shifted
toward smaller distances indicating the slowed diffusion of
water molecules.

To assess the perturbation of hydrogen bond network
connectivity of water due the bundles, we examine the
tetrahedrality order parameter, Q, (Figure S). Defined by
Errington and Debenedetti® as Q,(x) = (1 — 3/8
Yiidti(cos Oy + 1/3)%), it measures the degree of local
geometric tetrahedral order of the first solvation shell of a given
molecule. The sum runs over distinct pairs of the four closest
neighbors of the reference water molecule i, and 0y is the angle
between vectors r; and ry, with j and k being the nearest
neighbor molecules. In the two extremes of the perfect
tetrahedral geometry and an ideal disordered gas, the Q,
takes values of 1 and 0, respectively. Near the surface of the
protein, the tetrahedral order is disrupted as the water
molecules form hydrogen bonds not only with neighboring
water molecules but also with electronegative protein atoms.
With this in mind, we calculate Q, by actually considering the
four nearest neighbors irrespective of their identity, that is,
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Figure S. Tetrahedrality, Q, (top), and relative permittivities, €
(bottom), (with standard deviation denoted by the error bars) of water
as a function of distance to the protein’s COM. The dotted gray line
indicates the boundarie between the AT and HY region for multiscale
simulation.

whether they pertain to water molecules or indeed to protein
atoms. Compared to the SPC, the bundled-SPC has a factor of
2 lower order of tetrahedrality. In the AT region, the multiscale
and SPC solvations give similar Q, profiles.

Differences between the SPC and bundled-SPC solvations
are also found in the water’s local dielectric permittivity, €,
which we calculate within the Kirkwood theory where it is
related to the average vector sum of the dipole moments, y, of a
water molecule i centered in a spherical region S of volume V
embedded into a solvent continuum (egz = 80),”%** that is,

_ 1+ (pgi® /3eoksT][26p/ (2655 + ]
1= [pgﬂ2/3€0kBT][1/(2€RF +1)] ,
g=1+ <Z cos 6;);

jes

)

The dipole density p is calculated as (N;/(V — V,,,)), where N,
is the number of water molecules with indices j = 1, N; in the
Kirkwood sphere S around the reference water molecule i. ()
denotes an average over all water molecules in the set, 6; is the
angle between dipoles of water molecules i and j, kg is the
Boltzmann constant, T is the temperature, and V,,; is the
excluded volume due to protein atoms. The spatially varying
profile of € is then obtained with discretization of distances
from the protein molecule into bins and calculating the average
(), in eq 2, over water molecules that belong to a particular
bin. The profiles are shown in Figure 5. For all solvations, we
observe a decrease in the local dielectric response for water
proximal to protein due to immobilized water molecules in its
vicinity. In the bulk, € = 58, 71, 75, and 60 for the SPC,
bundled-SPC 1, bundled-SPC 2, and (AT region) AdResS
solvations, respectively. From the plotted standard deviations,
one can see that in the vicinity of the protein, € varies
substantially and depends on the current configuration of the
protein. Moreover, there the statistics is lower due to a smaller
number of water molecules. However, in the bulk water regime
(distances beyond 1.1 nm), the statistics is improved and the
average values of the AdResS and all-atom solvations match. In
the HY region, we observe deviations due to the added bundled
interaction and the switch-off of the electrostatic interactions,
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which freeze the rotational degrees of freedom of water
molecules and thus lower the dielectric constant. This effect
was observed also in the previous studies.”* An alternative route
to the dielectric permittivity computation is via fluctuations of
the total dipole moment. One could compute also the total
dipole moment fluctuations from water molecules residing in
spherical regions of growing radii centered at the protein’s
COM as in ref 85. However, here we are interested in the
perturbations induced by the resolution boundary. Thus, we
compute the local rather than the global dielectric permittivity
from which this effect cannot be discerned.

The properties of the protein—solvent interface are
investigated with the protein—water hydrogen bond network.
We employ the standard geometric criterion,”**” where the
acceptor and donor are hydrogen bonded if the distance
between the donor and acceptor is smaller than 0.35 nm and
the donor—hydrogen—acceptor angle is less than 30°. We
investigate the average total number, Ny, and lifetime of
hydrogen bonds, 7(Cy), formed between the protein and the
surrounding water molecules. The average lifetime can be
extracted from the relaxation of the correlation function Cp(t)
= (h(0)h(t))/(h*(0)), where h(t) has the value of 1 if a
particular pair is hydrogen bonded at time ¢, and 0 otherwise.
Additionally, we study the average occupancy and residence
time. The occupancy, N,, is an average number of water
molecules residing in the first hydration shell of protein atoms,
whereas the residence time gives the estimated rearrangement
time of the solvent shells around the protein. To this end, we
compute the residence autocorrelation function, C,(t) =
(n(0)n(t))/(n*(0)), where n(t) = 1 if at time t the water
molecule is located within a specified distance (0.35 nm in our
case) of the protein atom and O otherwise. C,(f) can be
integrated to yield the residence times, 7(C,). The hydrogen
bond and residential analyses are presented in Figure 6. Within
error bars, AdResS simulations match the reference SPC
solvation results. In comparison, the bundled-SPC solvations
results show some discrepancies, that is, the average number
and lifetime of hydrogen bonds is somewhat lower for the
bundled-SPC solvations, while the residence times are
increased.

all-atom SPC all-atom bundled-SPC 2
all-atom bundled-SPC 1 AdResS
40 ! T T ; . =
230 | E e 1
“hof T - ]
protein-water backbone-water side chain-water
z 8 T T T T T T
g S ER. ]
24 F 1
S 2f ]
= protein-water backbone-water side chain-water
o | e _—
D 1
0.2 + g
protein-water backbone-water side chain-water

backbone-water side chain-water

protein-water

Figure 6. Average total number, Ny, and lifetime, 7(Cy,), of hydrogen
bonds formed between the protein and the surrounding water
molecules. Average occupancy, N,, and residence time, 7(C,), of water
molecules in the first hydration shell of the protein atoms. The error
bars denote the standard deviation.
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For all investigated solvations, the protein remains in the
folded conformation throughout the simulation. To show this
point, we plot, in Figure 7, the radius of gyration, Ry, root-

— all-atom SPC all-atom bundled-SPC 2
g 11+ all-atom bundled-SPC 1 AdResS
I~ 0.9 - E
0.7 »m'm 3 v v R 3
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T o3 ‘ ]
s &%AW'MW
2]
= L a
= 0.1
0 10 50 60

0 30 4
backbone atom number

Figure 7. (top) Radius of gyration (Rg) as a function of the simulation
time. (middle and bottom) Root-mean-square deviation (RMSD) and
fluctuations (RMSF) of the backbone atoms with respect to the crystal
structure. The configuration snapshots were prior to RMSD
calculation superimposed on the initial crystal structure (1L2Y.pdb).
The error bars of RMSF denote the standard deviation computed by
block averaging.

mean-square deviation (RMSD), and root-mean-square fluctua-
tions (RMSF) of the protein’s backbone atoms with respect to
the crystal initial structure. We have chosen to test the Trp-
Cage miniprotein in our simulations because of the fast
dynamics of this protein,**~*° that is, at room tem?erature the
experimentally observed folding time is only 4 us.”" Moreover,
the temperature induced denaturation is even faster. For
example, it was reported that in MD simulations the Trzp-Cage
protein unfolds in the first few nanoseconds at 400 K.”* Thus,
other nontemperature perturbations, such as the multiscale or
bundled-SPC solvations, should be observed on the time scales
of our simulations. Here, we do not observe such an effect. For
the all-atom SPC and the multiscale solvations, unfolding is not
expected as the experimental denaturation temperature of the
Trp-Cage is about 315 K.>* For the bundled-SPC solvations,
which were shown to lead to the partial unfolding of the coiled-
coil dimer,*” the reason for unfolding not to be observed may
be because the modified water model does not affect the
stability of the Trp-Cage, due to the simulation length, or more
likely due to the overstabilizing protein force field. Namely, in
MD simulations, the observed melting temperatures are
significantly higher than experimental ones ranging from 360
to 450 K depending on the force field used.”” Nonetheless, the
primary goal of our work is not to uncover the (un)folding
process of the Trp-Cage protein but rather to demonstrate that
there are no unphysical artifacts due to the multiscale
simulations. The study of folding process is feasible also with
multiscale simulations; however, in that case, one should use
the flexible boundargf domains to adjust to the geometry of the
unfolded protein.”>”*

4. CONCLUSIONS

Solvent plays a vital role in biological processes, with hydration
water critically impacting the structure, stability, dynamics, and
function of biomolecules. The proper description of solution is
thus required in simulations of bioentities such as proteins. In
this work, we have demonstrated how the accuracy of the high
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resolution all-atom solution can still be maintained with the
computationally efficient multiscale simulations even when the
coupling is supramolecular. In particular, we achieved this by
applying AdResS in conjunction with the SWINGER algorithm
that assembles, disassembles, and reassembles clusters as
needed during the course of the simulation. Owing to
SWINGER, the standard AT water models can be used in
the region of interest, which are seamlessly coupled to the
supramolecular models. We found good agreement of the
multiscale results with the corresponding simulations using the
SPC model. This includes the structural and dynamic
properties of solution (i.e., spatiotemporal Van Hove functions,
tetrahedrality, and dielectric permittivity), the protein—solvent
interaction properties (i.e, the characteristics of hydrogen-
bonding, occupancy, and residence time), and the structural
properties of the protein (i.e., the root-mean-square deviation,
fluctuations, and the radius of gyration). Our approach is
general and can be applied to any standard atomistic force field
to be coupled with the MARTINI or any other supramolecular
CG force field.
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