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Multiscale Molecular Modeling

Matej Praprotnik and Luigi Delle Site

Abstract

We review the basic theoretical principles of the adaptive resolution simulation scheme (AdResS). This
method allows to change molecular resolution on-the-fly during a simulation by changing the number of
degrees of freedom in specific regions of space where the required resolution is higher than in the rest of the
system. We also report about recent extensions of the method to the continuum and quantum regimes.
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1. Introduction

Many problems in condensedmatter, material science, and chemistry
are multiscale in nature, meaning that the interplay between differ-
ent scales plays a fundamental role. An exhaustive description of the
related physical phenomena requires, from a theoretical or compu-
tational point of view, the simultaneous treatment of all the scales
involved. This is a prohibitive task not only because of the large
computational resources required but above all because the large
amount of data produced would mostly contain information not
essential to the problem analyzed; actually theymay overshadow the
underlying fundamental physics or chemistry of the system. A solu-
tion to this problem is that of treating the problems via multiscale
approaches. In this case one simplifies the model of the physical
system to the largest extent possible while keeping all the necessary
details of the systemwhere this is required.Multiscale methods have
been developed and successfully applied to study solid state systems,
where the atomistic models were either combined with the finite
elements method (1–5) or linked to a quantum mechanical model
(6, 7). In particular, for some systems (e.g., the solvation of a
molecule) some regions (the first two or three solvation shells
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around the solute) require a higher resolution than the rest, but at
the same time, because of the large fluctuations, an open boundary
between the regions is required so that there is free exchange of
particles. For that one requires adaptive resolution simulation
schemes (see Fig. 1) which allow molecules to change resolution
according to the region where they are instantaneously located.
From a technical point of view, this means that the space is parti-
tioned in regions characterized by different molecular resolutions
where molecules can freely diffuse, changing their representation
while keeping the overall thermodynamic equilibrium of the system
(11, 12). The aim of this chapter is to review an adaptive simulation
method, the adaptive resolution simulation (AdResS) method (9,
13), which has been shown to be particularly robust in coupling
scales from the quantum to the classical atomistic up to the contin-
uum (8, 14, 15).

2. Adaptive
Resolution
Simulation

2.1. Theoretical

Framework

In this section we report the basic theoretical principles employed
in the development of the AdResS. Let us consider a liquid of N
molecules in a simulation box with a volume V , which is divided
into two equally large domains A and B. In the domain A, we
represent molecules on a low-resolution level, while the domain B
is described using a higher resolution representation, for example,
all-atom resolution. The number n of degrees of freedom (DOFs)

L
en

gt
h

Time

quantum to classical

atomistic to coarse−grained

particle−based to continuum

Fig. 1. Multiscale modeling: concurrent couplings. At the smallest scale the coupling is between the quantum and the
classical (or coarse-grained) molecular resolution. The quantum resolution is here represented by the path-integral/polymer-
ring representation of atoms (8). Going to a larger scale, one goes from the atomistic to the coarse-grained resolution(9) and
finally at mesoscopic/macroscopic scales one couples particle-based representations to the continuum(10).
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per molecule, which we explicitly treat in our description, is hence
lower in the coarse-grained domain A and higher in the all-atom
domain B. The two domains are in thermodynamic equilibrium and
freely exchanging molecules, that is, the liquid is homogeneous
across the whole simulation box. The necessary boundary condi-
tion for the thermodynamic equilibrium between the two repre-
sentations is

mA ¼ mB; pA ¼ pB; TA ¼ T B; (1)

where mA, pA, and TA, and mB, pB, and TB are the chemical potentials,
pressures, and temperatures of the liquid in the both domains, respec-
tively (9, 11, 16). The question that arises at this point is how to
achieve that the condition (1) is satisfied within amolecular dynamics
simulation where the liquid has the same structure on both sides if
analyzed on the lower resolution level. In an attempt to answer this
question, we plot in Fig. 2 the free-energy density F ¼ F(x) profile of
the system associated to the DOFs that we explicitly consider in the
simulation. Since the free energy is an extensive quantity, its value is
lower in the domainA because the number ofDOFs nA is lower than
in the domain B. For a smooth transition between the two resolu-
tions, we introduce a transition regime D (9) at the interface where
the molecules slowly change their representation. In this regime they
are in equilibriumwith their actual surrounding and change continu-
ously until the region of the new representation is reached. The
molecules “arrive” fully equilibrated into the surrounding described
by the new representation. The number of explicitly treated DOFs is
n ¼ n(x) with nA ¼ constA; nB ¼ constB; and nD ¼ n(x). The sys-
tem is in equilibriumwhich implies limx!d� @FAðxÞ

@x ¼ limx!dþ @FBðxÞ
@x ¼0

¼)limx!d� @nAðxÞ
@x ¼ limx!dþ

@nBðxÞ
@x ¼ 0, and @FA=@NA þ f ¼ mA

and @FB=@NB ¼ mB, where f is the free energy per molecule asso-
ciated with the integrated out DOFs. In the adaptive resolution
scheme presented here, we do not book-keep the integrated out
DOFs in the coarse-grained models. Rather, we reduce the many-
body potential of the higher resolution representation into a reduced
effective potential and keep only two-body terms. We do not treat
explicitly the one-body terms, which depend only on the temperature
(17), and hence do not contribute to the intermolecular forces.
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Fig. 2. Free energy density profile across the simulation box.
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Instead, they can be viewed, in the adaptive scheme, as the equivalent
of a latent heat. As explained later, in our model this part of the free
energy is supplied or removed by a local thermostat. Of course, if we
explicitly book-kept the one-body terms (three-body and higher
terms are also omitted for numerical efficiency) in the effective poten-
tial, the free-energy profile would be flat across the whole simulation
box (the dashed line in Fig. 2) (17) (P. Espaňol, 2010, private com-
munication). The free-energy density profile allows us to define a
weighting function which has certain similarities with an order
parameter (9). The weighting function w that determines the level
of resolution across the system is presented in Fig. 3. It is introduced
in such a way that w ¼ 1 and w ¼ 0 correspond to the high- and
low-resolution regions, respectively, while the values 0 < w < 1 cor-
respond to the transition regime. Thus, crossing the transition
regime, the number of DOFs changes in a continuous manner.
The change of resolution can be seen as a change in the dimension-
ality of the phase space of the switching DOF. If the particular DOF
is fully considered (w ¼ 1), then the phase space has its full
dimensionality. On the other hand, if it is completely switched off
(w ¼ 0), it does not contribute to any statistical average, and thus,
its dimensionality is zero. In the transition regime, the partially
switched-on DOF contributes to statistical averages according to
its weight w. To properly mathematically describe the continuous
change of the phase space dimensionality and define thermodynamic
properties, for example, temperature, in the transition regime, we
resort to fractional calculus (18–22) and divide the transition regime
into thin slabs, each with the different values w between 0 and 1.

For the fractional quadratic DOF p with the weight w, we can
then write the partition function as

x/a
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Fig. 3. The weighting function.
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expð�bFpÞ ¼ C

Z
expð�bp2=2Þ dV w

¼ 2C

Z 1

0

expð�bp2=2Þ jpjw�1 dp

GðwÞ

¼ 2w=2CGðw=2Þ
GðwÞ b�w=2 � b�w=2; (2)

where we introduced the infinitesimal volume element of the frac-

tional configurational space defined as dV w ¼ jpjw�1dp=GðwÞ ¼
dpw=ðwGðwÞÞ. Here G is the gamma function (16). It directly

follows hKwi ¼ dðbFpÞ
db ¼ w

2b ¼ wkBT
2 , where hKwi is the average

kinetic energy per fractional quadratic DOF with the weight w.
This is a generalization of the equipartition principle to non-integer
quadratic DOFs (16, 23). In equilibrium TA ¼ T B ¼ T D ¼ T , and
thus, nw � w. Using this framework the temperature in the transi-
tion region is correctly defined. This enables us to employ the local
thermostat to control the free-energy difference between the two
levels of resolution (24). The corresponding free energy for a
generic quadratic switchable DOF p is (12)

Fp ¼ mkinp ðwÞ ¼ �kT log

Z
e�bp2dwp

� �
; (3)

and hence, the total explicit contribution of the entire set of switch-
able DOFs per molecule is

mkinðwÞ ¼
X
DOF

mkinp ðwÞ: (4)

The kinetic component to f, that is, the latent heat (in principle
one could also include the quadratic intramolecular potential terms
(17)), is1

fðwÞkin ¼ mkinB � mkinðwÞ: (5)

The analytical solution of Eq. 3 is:

mkinp ðwÞ � CkT
w

2

� �
logðT Þ (6)

where C is a constant, k the Boltzmann constant, and T is the
temperature. Equation 6 is the ideal gas kinetic contribution to the
chemical potential coming from the internal DOFs. Usually in a
simulation with single-resolution representation of the molecules,
this contribution to the chemical potential is ignored being only a
trivial constant depending only on temperature (17). In our case,
where theDOFsof interestmight continuously change in going from

1As defined by Eqs. 3 and 4, mkin(0) 6¼mA
kin. In fact, mkinA ¼ mkinð0Þ þ fð0Þkin ¼ mkinB . mkin(w) represents only the

contribution of the switched-on DOFs to the kinetic part of chemical potential. The rest is included in f(w)kin.
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one representation to another, each DOF in the transition region
contributes differently according to the corresponding value of w(x).
Thus, the latent heat defined by Eq. 5 is crucial for keeping the
thermodynamic equilibrium between two levels of resolution in the
adaptive resolution simulations. The kinetic part of the free energy
depends in the first order linearly on w, which determines the slope
of the free-energy density profile in the transition regime in Fig. 2.

Next, we shall couple the two levels of resolution in a molecular
dynamics approach: AdResS is built on a force-based approach
(11). The interpolation formula for the pair force between mole-
cules a and b writes as

Fab ¼ wðX aÞwðX bÞFB
ab þ ½1� wðX aÞwðX bÞ�FA

ab (7)

where Fab
A is the force obtained from the potential of representa-

tionA, and Fab
B, the one obtained from the potential of representa-

tion B; w(X) is the switching function and depends on the center of
mass positions Xa and Xb, of the two interacting molecules. The
basic idea of the scheme given by Eq. 7 is to enable the molecule to
find its correct orientation in the liquid once it is given a random
orientation at the low-resolution/transition regime boundary (9).
Even though there might be some overlaps with neighboring mole-
cules, the atomistic interactions are turned off (w ¼ 0) at that
boundary. As the molecule approaches to the high-resolution
regime, the atomistic interactions are gradually turned on, and the
molecule on-the-fly finds its proper orientation. As it turns out, it is
important to interpolate the forces and not the interaction poten-
tials in order to satisfyNewton’s third law (16, 23, 25). This is crucial
for the local linear momentum conservation and proper diffusion of
molecules across the transition regime. Each time a molecule leaves
(or enters) the coarse-grained region, it gradually gains (or loses) its
vibrational and rotational DOFs while retaining its linear momen-
tum. The change in resolution carried out by AdResS is not time
reversible as a given molecule in the low-resolution domainA corre-
sponds tomanyorientations and configurations of the corresponding
molecule in the high-resolution domain B (15). Since time revers-
ibility is essential for energy conservation (26), AdResS does not
conserve energy. In particular, the force in Eq. 7 is in general not
conservative in the transition region (i.e., in general ∮Fab � dr6¼0)
(23, 25). Hence, to supply or remove the latent heat associated with
the switch of resolution (see Eq. 5), we use a DPD thermostat
(24, 27). The thermostat forces do not enter into the AdResS inter-
polating scheme, Eq. 7, instead they are added to the AdResS (9).

Using properly derived effective pair interactions Fab
A (see

Sect. 2), the boundary conditions as given by Eq. 1 are satisfied.
The AdResS scheme (7) has been successfully applied to a liquid of
tetrahedral molecules (9, 13), a generic macromolecule in solvent
(28), and liquid water (14, 29). As already stated, to perform
adaptive resolution simulations requires equilibrium between the
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different regimes, which is facilitated by a transition zone. How-
ever, the necessary condition for thermodynamic equilibrium
between two different representations as well as the transition
zone, that is, the chemical potential, pressure, and temperature
equivalence, can in some complex systems not be assured by a
mere derivation of the effective pair interactions between coarse-
grained molecules. Furthermore, one can also consider situations
where we interface different molecular models at the same level
of resolution (e.g., flexible and rigid atomistic water) with free,
unhindered exchange of molecules among the regions of different
molecular representation. A barrier free exchange of molecules over
the border lines of molecular resolution is required to properly
account for fluctuations. The number of DOFs in such cases
remains the same, but forces acting on each atom are different in
the different regions. To treat these scenarios, we recently intro-
duced a generalization of AdResS (12), which allows to couple
rather loosely connected molecular representations, that is, it
maintains two different representations with, in general, different
chemical potentials (mA6¼mB) in thermodynamic equilibrium. In the
generalized approach, we extend the original scheme, Eq. 7, by
subtracting a thermodynamic force FTD. The total, force on mole-
cule a is after subtracting a thermodynamic force FTD,

Fa ¼
X
b 6¼a

wðX aÞwðX bÞFB
abþ½1�wðX aÞwðX bÞ�FA

ab

� �
�FTDðXaÞ (8)

where FTD
x ¼ � @mexc

@x and mexc is the excess chemical potential due to
the intermolecular interactions (12). AdResS is a nonconservative
scheme, and hence, the potential is not defined in the transition
regime. Therefore, to calculate numerically the excess chemical
potential, we proceed as follows. We divide the simulation box into
regions of force fields A and B and the transition region in between.
The region A is characterized by the value of the switching function
w0 ¼ 0. The region B is characterized by the value of the switching
function wNþ1 ¼ 1. In the transition regime, the value of w in the
actual simulations varies continuously. Here we approximate this by
discretizingw intoN stepsw1,w2,. . .,wN�1,wN. For any fixed value of
w2, the energy function is well-defined, and the excess chemical
potential then is defined as mexcðxiÞ ¼ mexcwi

, where the mexcwi
is the

chemical potential of the molecules in a bulk system of the specific
representation of wi. To calculate numerically each mexc(wi), one can
use standard particle insertion methods. Repeating this procedure
with all values of wi leads to a position-dependent excess chemical
potential mexc(x), which represent the second contribution to f (12).

2This is the value that one obtains by using the insertion methods in a hybrid system exclusively composed of
hybrid molecules with a fixed level of resolution 0 � w ¼ wðxÞ ¼ const : � 1 corresponding to a fixed bulk value
mw(x).
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As a test case, we applied the above generalized scheme to a
liquid of tetrahedral molecules (12). An intrinsic, though numeri-
cally negligible, problem in the original formulation of AdResS was
the fact that we found some evident (but small) density variations
through the transition regime due to the linear interpolation of
forces in AdResS (13).We showed that employing the above derived
scheme and introducing the corresponding thermodynamic force
this problem can be solved. Figure 4 shows mexc. The system is set up
in such a way that the equation of state is the same in both the
coarse-grained and all atom regimes at the temperature and density
of the current simulation. Because of that, mexc(x) is the same for
w ¼ 1 and for w ¼ 0. The resulting Fx

TD and the density profile are
depicted in Fig. 5. The application of the thermodynamic force
flattens the artificial density fluctuations by preserving the thermo-
dynamic equilibrium between the two levels of resolution.

2.2. Mapping

of Structural

Properties

As discussed in the previous section, we have tomap the structure of
the low-resolution representation as close as possible to the refer-
ence high-resolution counterpart. This is necessary because wewant
themolecules to adapt, when they enter the high-resolution domain
from the low-resolution region (through the transition one), as
quickly as possible to the new environment. To this end, we reduce
the many-body potential of the higher resolution representation
into a reduced effective potential (30) using any of the standard
methods, for example, iterative Boltzmann inversion (31–33), an
iterative inverse statistical mechanics approach (34), force-matching
scheme (35, 36), extended ensemble approach (37, 38). For more
details of these methods, we refer the reader to the chapter by
WilliamG.Noid. Note that due to numerical efficiency, we consider
only pair effective interactions and omit the higher or one-body
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Fig. 4. The excess chemical potential. Reprinted with permission from (12). Copyright
2010, American Institute of Physics.
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terms (see the Section 1). Another issue is also whether tomatch the
pressure or compressibility of the models. One can namely not
match both (39). We need pressure equality to satisfy equilibrium
condition (1), but on the other hand, the models should have the
same compressibility in order to have the same thermodynamic
fluctuations. To circumvent this problem, we resort here to the
generalized AdResS scheme, Eq. 8, where via the effective potential
we assure the same compressibility of the models while using the
thermodynamic force we guarantee the equilibrium between the
two levels of resolution.

As it turns out, AdResS is quite robust against the details of the
low-resolution model, and we do not need to map the radial
distribution functions exactly to the linethickness. This was demon-
strated in the case of liquid water (15) where a non-perfect effective
potential was deliberately used to study the robustness of the
method, as depicted in Fig. 6.

2.3. Mapping

of Dynamical

Properties

Having mapped the structural properties via the effective potential
derivation, one typically loses the control over dynamical properties
of coarse-grained models. Due to soft effective interactions, the
transport coefficient of the coarse-grained models differs quite
substantially from the reference atomistic values, that is, diffusion
constants and viscosities are too high/low, respectively. In our
approach in order to match the dynamics of both levels of resolu-
tion, we slow down the dynamics of coarse-grained models using
position-dependent local thermostats, as described below.

2.3.1. Position Dependent

Langevin Thermostat

If one is not concerned about hydrodynamics, one can use the
stochastic Langevin thermostat where the transport coefficient is
tuned by changing the strength of the coupling with the

x∗/a

F
a

1.00.80.60.40.20.0

10

0

–10

Symmetric fit
Numerical data

EXHYBCG

x∗

ρ
∗ /

ρ
∗ 0

35302520151050

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Numerical force corrected
No force

a b

Fig. 5. Application of the thermodynamic force—reducing the density fluctuations in the transition regime. Reprinted with
permission from (12). Copyright 2010, American Institute of Physics. (a) Thermodynamic force (b) Density across the
simulation box.
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thermostat. The Langevin equation with a position dependent
coefficient G(x) can be written as (29)

midvi=dt ¼ F i �miGðxÞvi þRiðx; tÞ (9)

where Ri(x, t) is

hRiðx; tÞi ¼ 0; (10)

hRiðx; t1ÞRj ðx; t2Þi ¼ 2GðxÞmikT dðt1 � t2Þdij (11)

GðwÞ ¼ Gcg if w � 0:6

aw þ b if 0:6 < w � 1:0:

(
(12)

This choice provides a simple interpolation between the two limit
values of Gð0:6Þ ¼ Gð0Þ ¼ Gcg ¼ 15 ps�1 and Gð1Þ ¼ Gall�atom ¼
5 ps�1. The parameters a and b are � 25 ps�1 and 30 ps � 1, respec-
tively. In the adaptive resolution simulations, the force Fi is defined
by the AdResS scheme. The results depicted in Fig. 7 clearly show
that by employing our position dependent Langevin thermostat,
we effectively slow down the dynamics of the coarse-grained mod-
els to be equal to the reference atomistic one.

2.3.2. Transverse

DPD Thermostat

We have shown in the previous example that the coarse-grained
dynamics can be slowed down by increasing the effective friction in
the coarse-grained system using the position-dependent Langevin
thermostat. However, it is well-known that the Langevin thermostat
does not reproduce the correct hydrodynamics, that is, the hydrody-
namic interactions are nonphysically screened. To correctly describe
hydrodynamic interactions, one has to resort to the dissipative parti-
cle dynamics (DPD) thermostat. For tuning the transport coefficient
of liquids, we extended the standardDPD thermostat (27) by includ-
ing the damping of the transverse components of the relative velocity,
yet keeping the advantages of conservingGalilei invariance andwithin
our error bar also hydrodynamics (24).
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Fig. 6. RDFs and corresponding effective pair potential for water. Reprinted with permis-
sion from (15). Copyright 2009, American Institute of Physics.
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The Transverse DPD thermostat is introduced as follows (24):

_~pi ¼ ~FC
i þ~FD

i þ ~FR
i ; (13)

where the first, second, and third term on the RHS denote conser-
vative, damping, and random forces, respectively (40). The damping
and random forces are expressed as:

~FD
ij ¼ �zwDðrij ÞPij

$
ð~rij Þ~vij ; (14)

~FR
ij ¼ swRðrij ÞPij

$
ð~rij Þ~yij ; (15)

where z and s are the friction constant and the noise strength,

respectively. Here Pij

$
ð~rij Þ is a projection operator

P
$

¼ PT
$

¼ P2
$

; (16)

which is symmetric in the particle indices ( Pij

$
¼ Pji

$
).

The noise vector~yij

h~yij ðtÞ �~yklðt 0Þi ¼ 2 I
$

ðdikdjl � dildjkÞdðt � t 0Þ (17)

is antisymmetric in the particle indices (~yij ¼ �~yji). The fluctuation-
dissipation theorem is thus satisfied. If we choose the projector along

the interatomic axis between particle i and j Pij

$
ð~rijÞ ¼ r̂ ij � r̂ ij , we

Fig. 7. Diffusion constant profile using the standard and position dependent Langevin
thermostats. Reprinted with permission from (29). Copyright 2008, American Institute of
Physics.
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obtain the standard DPD thermostat, whereas Pij
$

ð~rijÞ ¼ I
$

�
r̂ ij � r̂ ij yields the Transverse DPD thermostat.

As it turns out, the transport coefficient is rather insensitive to
the value of the friction constant for damping the central relative
velocities using the standard DPD thermostat. However, they are
very sensitive to the value of the friction constant for damping the
transverse relative velocities with the Transverse DPD thermostat as
Fig. 8 shows (24).

3. AdResS:
Technical
Implementation

Very recently the AdResS scheme has been included into an open-
source package ESPResSo for soft matter simulations (41, 42). This
flexible implementation of AdResS will allow the simulation com-
munity to easily adapt the AdResS setup for their particular pro-
blems of interest. We hope and envisage that this will further boost
the usage of AdResS.

4. Extension
to Continuum
Resolution

Recently, we have extended the AdResS scheme with the continuum
description of a liquid modeled by the Navier-Stokes equation
(10, 15). The triple-scale scheme was derived by combining two
dual-scale schemes: AdResS, which couples the atomic and coarse-
grained scales within a molecular dynamics (MD) simulation
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Fig. 8. Tuning the transport coefficients using transverse DPD thermostat. The figure is taken from (24). Reproduced by
permission of The Royal Society of Chemistry. (a) Diffusion constant (b) Shear viscosity.
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framework, and a hybrid flux-exchange based continuum-MD
scheme (HybridMD) developed by Delgado-Buscalioni et al. (43).
The resulting triple-scale model consists of a particle-based micro-
mesoscale MD region, which is divided into a central atomistic and a
surroundingmesoscopic domain, and amacroscopic regionmodeled
on the hydrodynamic continuum level as presented in Fig. 9 for
liquidwater. The central idea of the triple-scalemethod is to gradually
increase the resolution as one approaches to the region of interest,
that is, the atomistic region. The continuum and MD domains
exchange information via mass and momentum fluxes. These fluxes
are conserved across the interface between continuum and MD
regions. The triple-scale approach is designed for molecular simula-
tions of open domains with relatively large molecules, either in the
grand canonical ensemble or under nonequilibrium conditions.

5. Extension
to Quantum Level

A special treatment deserves the conceptual extension of AdResS to
quantum problems. In general an adaptive approach that allows to
pass from a quantum to a classical description and vice versa would
require more than the mere change of number of DOFs. It requires
the smooth passage from different kinds of physical principles. In
fact while classical mechanics is governed by a deterministic evolu-
tion, quantum mechanics is characterized by the probabilistic
character. For systems where electrons are explicitly treated, a
classical-quantum adaptive scheme properly based on the Schrö-
dinger equation would lead to the problem of variable number of
particles, that is a varying particle normalization condition as the
system evolves. So far schemes that treat electrons adaptively are
based on practical solutions and not on a complete and consistent
theoretical framework (6, 44). Instead if the quantum particles are
the atoms (without considering explicitly the electrons), then the
quantum problem, for some properties, can be mapped on an
effective classical one. In this case, as a matter of fact, the adaptive
coupling occurs between classical descriptions. The idea of

Fig. 9. The triple-scale model of liquid water (15).
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quantum atoms is based on the path-integral description (45); this
latter describes the quantum atoms as classical polymer rings; in this
context, the beads of a polymer ring are fictitious classical particles,
as presented in Fig. 10. The simulation can then be performed
adaptively so that one can have an atomistic or coarse-grained
resolution in one region and a path-integral resolution, where
each atom is represented by a polymer ring, in another with free
exchange between the two regions. In this situation, the principles
of AdResS apply straightforwardly as to the case of two classical
regions characterized by different numbers of DOFs. The applica-
tion to study the equilibrium statistical properties of a liquid of
tetrahedral molecules has shown that indeed this idea is rather
robust both conceptually and numerically (8) (see “quantum to
classical” part of Fig. 1).

Fig. 10. Pictorial representation of the idea of path integral description of atoms. Two
atoms, a and b interacting in the classical approach as a rigid spheres become two
polymer rings whose interatomic classical interaction is distributed over pairs of bead
aibi. The neighboring beads i, i + 1 (and i, i � 1) are kept together by an elastic potential
whose constant depends on the temperature of the system. The delocalization of the
atoms onto several beads characterizes its quantum nature.
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6. Conclusions
and Outlook

The development of AdResSs is a subject of growing interest
within the community of condensed matter, material science,
and chemical physics. The interest in this kind of approach rises
from the fact that, as discussed in this chapter, it may efficiently
tackle the problem of interplay between different scales. This
occurs by properly treating, simultaneously, all the relevant molec-
ular DOF in each region of the simulation box and, because of the
free diffusion of molecules from one region to another, properly
accounting for density fluctuations. The practical consequences
are an optimal employment of computational resources and an
efficient analysis of the simulation data. In fact it allows for the
reduction of computational costs by treating high-resolution
models, which are computationally demanding, only in restricted
regions and at the same time assures that details not relevant for
the problem are not processed in regions where high resolution is
not required. These last aspects allow in turn to derive a clear
understanding of the basic physical features characterizing a given
problem, avoiding that an excess of details overshadows the essen-
tial physics. In this sense, multiscale approaches as AdResS will
allow not only to treat problem that before were prohibitive but
also understand how the different scales, expressed by the molec-
ular resolutions interfaced, are connected to each other. For
example, in the solvation of a molecule, one may be interested
to understand to which extend the local hydrogen bond network
in the hydration shell is influenced by that of the bulk. To this aim
one may employ AdResS as an analysis tool and perform simula-
tions with varying sizes of the atomistic region interfaced with a
coarse-grained region or even with the continuum where hydro-
gen bonds are not present. Depending on the minimum size of
the atomistic region required to properly reproduce hydration
properties, one can then comment on the extension of the influ-
ence of the hydrogen bond network on the hydration shell (46).
In a similar spirit, one may think of the capture or release of a
proton from a solvated molecule; in this case the quantum
mechanical behavior of the proton passage would be described
by, for example, the path-integral approach in a small region,
while the large surrounding of bulk water can be represented
with a coarser resolution. By further extending the AdResS meth-
odology to continuum, one can go beyond equilibrium molecular
dynamics simulations using periodic boundary conditions and
study nonequilibrium processes, for example, fluid flows relevant
for nanofluidics applications.
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