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Multiscale methods are the most efficient way to address the interlinked spatiotemporal scales encoun-
tered in soft matter and molecular liquids. In the literature reported hybrid approaches span from
quantum to atomistic, coarse-grained, and continuum length scales. In this article, we present the
hybrid coupling of the molecular dynamics (MD) and dissipative particle dynamics (DPD) methods,
bridging the micro- and mesoscopic descriptions. The interfacing is performed within the adap-
tive resolution scheme (AdResS), which is a linear momentum conserving coupling technique. Our
methodology is hence suitable to simulate fluids on the micro/mesoscopic scale, where hydrodynam-
ics plays an important role. The presented approach is showcased for water at ambient conditions.
The supramolecular coupling is enabled by a recently developed clustering algorithm SWINGER
that assembles, disassembles, and reassembles clusters as needed during the course of the simulation.
This allows for a seamless coupling between standard atomistic MD and DPD models. The developed
framework can be readily applied to various applications in the fields of materials and life sciences,
e.g., simulations of phospholipids and polymer melts, or to study the red blood cells behavior in
normal and disease states. Published by AIP Publishing. https://doi.org/10.1063/1.4986916

I. INTRODUCTION

Proper treatment of hydrodynamics is a highly desirable
if not imperative feature in simulations of many physical pro-
cesses of interest, especially those pertaining to systems under
flow and/or non-equilibrium conditions. Consequently, var-
ious simulation techniques have been proposed that uphold
the hydrodynamic conservation laws. On the mesoscopic
(e.g., coarse-grained) level, the particle-based methods are, for
example, the dissipative particle dynamics (DPD) method,1–8

the multiparticle collision dynamics (MPC),9 and smoothed
dissipative particle dynamics (SDPD).10,11 In the DPD, lumps
of atoms/molecules are grouped to form soft beads that interact
via explicit soft conservative, random, and dissipative forces
to simulate fluids on a mesoscopic scale with correct hydrody-
namics interactions. In the SDPD, the Navier-Stokes equations
are numerically solved with a formalism that is reminiscent of
molecular dynamics (MD), whereas in the MPC, the system is
modeled by particles with continuous positions and velocities
and stochastic interparticle interactions.

One can also view the DPD as a local linear momentum-
preserving thermostat to MD12,13 for application to “hard”
atomistic systems, where the forces from a corresponding
MD force field are used as conservative forces in the DPD
instead of soft linear repulsive forces between soft particles in
its original formulation. In general, the dynamics observed
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with mesoscopic models is faster compared with atomistic
MD due to much smoother energy landscapes. In the for-
mal derivation of equations of motion for the coarse-grained
degrees of freedom guaranteeing the proper dynamics, one
resorts to Mori-Zwanzig formalism14–19 resulting in the gen-
eralized Langevin equation. Unfortunately, the latter is usually
numerically unsolvable and one has to make several approxi-
mations, e.g., memory effects are usually neglected. Transport
properties can then be tuned by changing the friction coeffi-
cients of the thermostat.13,20

The micro- and mesoscopic approaches often lead to
trade-offs, i.e., the reduced computational load gained in
mesoscopic methods, which facilitates accessibility to larger
spatiotemporal scales, comes at the expense of the elimina-
tion of some degrees of freedom present in the microscopic
approaches.21,22 Contrarily, the combined micro-meso simu-
lation framework can leverage the advantages from both. This
reasoning led to the development of recent hybrid approaches,
where the system is spatially decomposed into a region of
interest, modeled with MD and the rest of the system mod-
eled with a mesoscopic approach.23–29 The interfacing of
simulation techniques has to be constructed in such a way
that the linear momentum is preserved across all domains.
Hence, the approaches so far are either based on or adopt a
similar coupling strategy as the adaptive resolution scheme
(AdResS).23,24,30 For example, using AdResS Petsev et al.31

coupled the MD to SDPD, whereas Alekseeva et al.32 linked
the MD with MPC. The robustness of both hybrid approaches
was demonstrated on a Lennard-Jones fluid.
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The on-the-fly coupling of the MD and DPD methods has
not been demonstrated yet and is the purpose of this work.
In particular, we consider bulk water at ambient conditions
employing the multimolecular mapping, i.e., multiple water
molecules are modeled as soft beads in the DPD domain. Such
coupling requires two considerations. First, there is an upper
limit (maximum number of molecules Nmax

m representing one
DPD particle) on the level of coarse-graining at which the
physical properties can still be modeled in an efficient man-
ner. This issue was examined in significant detail by Pivkin
and Karniadakis33 where Nmax

m was found to be below 20.
Second, special consideration has to be put forth regarding
the coupling of free-particle groups (multimolecular map-
ping) as opposed to bound particles of multi-site molecules
(monomolecular mapping). Namely, molecules in the MD
domain naturally diffuse in time (in the case of water the clus-
ters are reformed on a picosecond timescale). Thus, if one
wishes to map more than one molecule always to the same DPD
bead, the motion of those molecules with respect to the DPD
site must be restricted.34,35 While these shortcuts simplify the
supramolecular coupling, they also cause in certain situations
spurious artifacts, such as partial unfolding of biomolecules.36

To overcome this limitation, we have developed a clustering
algorithm SWINGER37 that redistributes molecules into clus-
ters on-the-fly thus allowing a seamless coupling between
standard atomistic and supramolecular water models. The
algorithm was first applied to connect the atomistic and the
well-established MARTINI coarse-grained force field38–40 and
paved the way for efficient MD simulations of biomolecular
systems.

In this work, we employ SWINGER in conjunction with
AdResS to couple MD and DPD regimes thus breaking ground
for future hydrodynamics studies. We test two supramolecular
couplings, i.e., the 4-to-1 mapping aimed at future applica-
tions to phospholipids41 and 8-to-1 mapping aimed at future
applications to polymer melts.42 The adequateness of the
MD/DPD coupling is demonstrated on the reproducibility of
several equilibrium structural and dynamical properties of the
monoscale simulations.

II. MODELS AND METHODS

In this section, we introduce the on-the-fly coupling
of atomistic MD and DPD water models via the multi-
scale scheme AdResS and clustering algorithm SWINGER
(Fig. 1). We perform all our simulations in thermodynamical
equilibrium, i.e., no fluid flows are present.

A. Molecular dynamics (MD) domain

In the MD region, we employ the three-site SPC water
model,43 with the Lennard-Jones (LJ) interaction between
oxygen atoms and intermolecular electrostatic interactions.
The force between atoms i and j at positions ri and rj is given
by

FMD,C
ij (rij) = −

∂UMD

∂rij
, (1)

where rij = ri � rj. The geometry of the water molecules
is constrained with SETTLE.44 The cutoff distance for the
nonbonded interactions is rc = 0.9 nm. They are capped for

FIG. 1. Coupling of MD and DPD methods via AdResS interfacing and
dynamic clustering algorithm SWINGER. The coupling is concurrent, i.e.,
the molecules change their representation on-the-fly as they diffuse through
different domains in the system.

very short distances (at 0.17, 0.08, and 0.14 nm, for the oxygen-
oxygen, oxygen-hydrogen, and hydrogen-hydrogen interac-
tions, respectively), i.e., at distances where the corresponding
radial distribution function is still zero. The reaction field
method45 is used for the electrostatic interaction beyond the
cutoff, with the dielectric permittivity of the inner and outer
region equal to 1 and 80, respectively. The temperature is
maintained at 300 K with a local linear momentum preserving
DPD thermostat12 with a coupling constant of 0.125 a.u./ps
and a cutoff radius equal to the cutoff radius of non-bonded
interactions.

B. Dissipative particle dynamics (DPD) domain

In the particle-based mesoscopic DPD method,1 the par-
ticles α and β interact via short-ranged repulsive forces
(FDPD,C
αβ ), random forces (FDPD,R

αβ ), and dissipative forces

(FDPD,D
αβ ) defined as follows:

FDPD,C
αβ (Rαβ) = aαβ(1 − Rαβ/Rc)R̂αβ ,

FDPD,R
αβ (Rαβ) =

√
2γαβkBT (1 − Rαβ/Rc)ζijR̂αβ ,

FDPD,D
αβ (Rαβ) = −γαβ(1 − Rij/Rc)2(R̂αβ · Vαβ)R̂αβ .

(2)

Here, the vectors Rαβ =Rα − Rβ and Vαβ =Vα − Vβ are,
respectively, the position and velocity differences between par-
ticles α and β. The parameters γαβ are the friction coefficients
and ζαβ are symmetric Gaussian random variables with zero
mean and unit variance. The particles interact only for sep-
aration distances Rαβ < Rc, where the Rc is the diameter of
the particles. The DPD force, as defined by Eq. (2), satis-
fies Newton’s third law and hence conserves the local linear
momentum.

In this work, we use 4-to-1 and 8-to-1 mapping schemes.
Therefore, each DPD particle has a mass M and effective vol-
ume comparable to Nm water molecules, where Nm is either
4 or 8. The effective diameter Rc (in nm) of DPD particles is
set by Rc = 0.3107 3

√
ρ̄Nm/ρw(T ), where ρ̄ is the DPD number

density defined as the number of beads contained in a cube
of volume R3

c and ρw(T ) is the mass density of liquid water
(in g cm�3) at the temperature T. For ρ̄= 3 and Nm = 4 and
8 this gives Rc = 0.71 and 0.896 nm, respectively. The repul-
sion strengths aij are usually defined by a= (Nmκ

−1 − 1)/2αρ̄
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(in units of kbT /Rc) to reproduce the compressibility κ of the
system.1 Liquid water at room temperature has a compress-
ibility of κ−1

exp ≈ 16. By substituting the values Nm = 4, 8 and
α = 0.101, one finds a ≈ 10041 and 200,42 respectively. The
friction coefficient is set with γ = 4.5

√
MkbT/Rc.42

As already mentioned in the Introduction, we could
use another conservative force instead of a linear function
for FDPD,C

αβ . For example, soft effective coarse-grained pair-
wise interactions between soft blobs can be obtained by the
Boltzmann iteration procedure46,47 to reproduce the radial
distribution functions from reference all-atom MD simula-
tions as has been done in Refs. 48–50 for a star-polymer
melt. This would correspond to a situation where DPD is
used as a thermostat to MD.12,13 However, our very aim in
this work is to couple atomistic water with the original DPD
water model using the linear conservative force as described
above.

C. Adaptive resolution scheme (AdResS)

The MD and DPD domains are coupled via a force inter-
polation scheme, which is linear momentum conservative as
it upholds Newton’s third law.23,24 The force acting between
DPD particles, which are a coarser representation of Nm water
molecules clusters, α and β is

Fαβ =
[
1 − w(Xα)w(Xβ)

]
FMD,C
αβ + w(Xα)w(Xβ)FDPD,C

αβ . (3)

The FMD,C
αβ and FDPD,C

αβ are the conservative forces between

particles α and β defined by Eqs. (1) and (2) and FMD,C
αβ

=
∑

iα,jβ FMD,C
iαjβ , where the sum runs over all pair interac-

tions between explicit atoms (denoted by the running index
iα) of the DPD particle α and explicit atoms (denoted by the
running index j β) of the DPD particle β. The Xα,β is the dis-
tance of DPD particle α, β to the center of the MD region.
In the MD domain, where the DPD particles do not exist, the
forces are purely atomistic as in the standard all-atom MD
simulation.

To achieve a smooth coupling between resolution
domains, we introduce a weighting function w ∈ [0, 1], which
depends on the position of the DPD particle. In the MD and
DPD domains, w takes the extreme values of 0 and 1, respec-
tively. The intermediate values correspond to the HY region
(XMD < X < XDPD) where w has the following form:

w(X) = cos2
[
π(XDPD − X)

2(XDPD − XMD)

]
. (4)

Note, that in the standard AdResS scheme, a reversed defi-
nition of w function is used, i.e., it is equal to 1 in the high
resolution domain and 0 in the low resolution domain. Our
methodology can, therefore, be coined a “reverse” AdResS
scheme. In the standard scheme, a direct interaction among all-
atom and hybrid molecules is present up to one potential cutoff
deep into the MD domain. Therefore, it requires a definition
of the DPD interaction sites in this part of the MD domain. In
other words, the original implementation of AdResS requires
an enlarged MD region where the water molecules in the clus-
ters are constrained to remain first neighbors as in, for example,
bundled-SPC water model. From a computational point of
view, such implementation is not optimal as one would like

FIG. 2. Original (top) and “reverse” (bottom) weighting functions used to
smoothly couple the MD and DPD methods. In this work, we use the “reverse”
version, wherew = 0 and 1 in the MD and DPD domains, respectively. Bound-
aries between the regions are marked with dotted gray lines, whereas the region
C, where the clusters are formed, is framed with red lines.

to minimize the computationally heavy MD region. Hence, in
this work, we resort to the reverse AdResS. The comparison
of both schemes is shown in Fig. 2 where we schematically
depict half of the simulation box with the MD region located
at the center of the simulation box. At equal size of the MD
region with unconstrained water molecules, the reverse imple-
mentation allows one to shift the HY region closer to the MD
domain. Consequently, the ratio between the sizes of DPD and
MD region is enlarged, which results in higher computational
speed-up.

To compensate the difference in the chemical potentials
of the MD and DPD resolutions, we employ a thermodynamic
(TD) force FTD,51,52 so that the total force acting on a given
DPD particle α reads as

Fα =
∑
β,α

{[
1 − w(Xα)w(Xβ)

]
FMD,C
αβ

+ w(Xα)w(Xβ)FDPD,C
αβ

}
− FTD

α (Xα). (5)

FTD is applied on DPD particles with mass M in the HY region
and it is calculated in an iterative manner as

FTD
i+1 = FTD

i −
M

ρ2
0κT
∇ρi(r), (6)

where κT is the isothermal compressibility, ρ0, the system
density, and ρ(r) is the nonuniform density to which the system
would adjust itself to without applying an external force. From
relation (∂µ/∂ρ)V ,T = 1/ρ2

0κT , we see that the TD force is
compensating for the differences in the chemical potential at
different levels of resolution. For further details, we refer the
reader to Refs. 25 and 51–55.

Applying an external force to the system changes the lin-
ear momentum. Due to the TD force, the linear momentum
is not conserved on the local atomistic level. However, in
the derivation of the TD force (which acts on the centers of
mass of DPD particles), there is a switch from a molecular
(particle-based) to a field description. For example, center-of-
mass density field is defined as ρ(X) = Mα

∑
α δ(X − Xα) and
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similarly, one defines also the pressure and chemical potential
density fields, see, e.g., Refs. 54–56. Although the TD is not
pairwise, it conserves local linear momentum on this (fluctu-
ating hydrodynamics) level of description; see also Sec. III.
Besides, FTD = 0 in the region of interest, i.e., in the MD
region. The local linear momentum conservation guarantees
that we correctly reproduce momentum propagation, which
is essential for the correct reproduction of hydrodynamic
behavior.12

D. SWINGER

The coupling is supramolecular, i.e., 4-to-1 and 8-to-1.
To facilitate such coupling, we employ the SWINGER algo-
rithm that dynamically makes, breaks, and remakes clusters
of water molecules that form DPD particles. The detailed

description of the algorithm is reported in Ref. 37. Here, we
briefly summarize it for completeness. The algorithm breaks
the clusters that have moved to the MD region and makes or
remakes clusters in a predefined “cluster formation” region
C (see Fig. 2). In this work, the region C is Xskin = 0.2, 0.4 nm
(for Nm = 4 and 8, respectively) thick layer bordering the edge
of the MD domain (XB = XMD � Xskin). The algorithm’s out-
put is an optimal grouping of water molecules into clusters,
where each cluster contains exactly 4 or 8 water molecules.
The optimal grouping is achieved with the initial grouping in
an orderly fashion and the simulated annealing Monte Carlo
(MC) based refinement. Since the typical timescale of waters’
tetrahedral clusters is on the order of a ps, the SWINGER
scheme is not initiated at every MD step but only at every Ver-
let list update. When the clusters are formed a half-harmonic
spring interaction, given by

UB(rij, X) =




1
2

k(rij − r0)2, rij > r0; X > XDPD

1
2

k(rij − r0)2 cos

(
π(XDPD − X)
2(XDPD − XB)

)
, rij > r0; XB < X < XDPD

0, otherwise

(7)

is added between the oxygen atoms within a cluster. The force-
constant k is 1000 kJ mol�1 nm�2 and rij and r0 = 0.3 nm are
the current and equilibrium distance between oxygen atoms,
respectively. For 4-to-1 mapping, all water molecules in the
cluster are nearest neighbors and the half-harmonic spring
interaction acts between all oxygen pairs. However, for the
8-to-1 mapping clusters contain also the second neighbors.
Here, for each oxygen, the interaction is added between its 4
nearest oxygens and additionally to oxygen atoms within 0.35
nm, thus ensuring that only nearest neighbors are connected
and that the cluster is well interconnected, i.e., it does not
form, for example, 2 separate clusters with 4 water molecules.
The bundled interaction is introduced gradually to avoid any
large forces due to bundling and to accommodate an easier
reclustering.

The computational cost of the SWINGER algorithm
depends on the size of the clustering region. In particular, the
algorithm’s complexity scales linearly with M as the energy of
the simulated annealing MC involves only intracluster contri-
butions. When the algorithm is executed, the measured compu-
tational time of the MD time step is increased by approximately
5%. However, since the algorithm is, as mentioned before,
not initiated at every time step, the overall increase in the
computational load due to SWINGER itself is negligible.37

E. Simulation details

Simulations are performed with the ESPResSo++ soft-
ware package.57 For the integration, we use the standard veloc-
ity Verlet with a time step of 1 fs. We use cubic simulation
box (11.2 × 2.8 × 2.8 nm3) with periodic boundary condi-
tions and minimum image convention. The AdResS method
allows the use of different geometric boundaries between res-
olution regions. Here, we split the system along the x-axis so

that a 2XMD = 4.8 nm-wide MD region is at the center of the
simulation box. Two HY regions, of a width of 0.9 nm each,
flank the MD region. The initial system is obtained with the
SWINGER algorithm, which is much more convenient than
the alternative way, where the atomistic simulations are run
and semi-harmonic springs are gradually added until all the
clusters were formed. Production runs for all simulations are
40 ns, whereas the equilibration runs are 5 ns. As a reference,
we use the conventional fully MD and DPD simulations.

III. RESULTS AND DISCUSSION

We couple the MD model of water to two DPD mod-
els with different resolutions, i.e., representing 4 and 8 water
molecules. For convenience, we label these multiscale simu-
lations AdResS 4-to-1 and AdResS 8-to-1, respectively. Addi-
tional pure atomistic MD and pure DPD simulations are
labeled with MD, DPD 4, and DPD 8. The latter two cor-
respond to the two DPD models used. In this section, we
show that the structural and dynamical properties of the sim-
ulated system are well reproduced by the AdResS multiscale
simulation.

First, it is known that coupling of different representa-
tions with different chemical potentials can induce density
artifacts. Usually, there is a preferential tendency of molecules
to migrate from high to low resolution region and change
their representation in order to lower the free energy of the
system. However, with the appropriate TD force, such undu-
lations are removed. As can be observed from Fig. 3, the force
profile shapes are similar for both couplings while the mag-
nitude differs. As foreseen, larger magnitude is required for
the AdResS 8-to-1 case. The TD forces have a complicated
form and therefore cannot be described with simple analytical
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FIG. 3. Thermodynamical (TD) force applied to the DPD particles in the HY
region. Vertical lines mark the domains of MD and DPD methods.

functions. Instead, we use an iterative procedure [Eq. (6)],
where the correction to the force is inversely proportional to the
density gradient along the direction of resolution change.51,52

In practice, the prefactor C = M/(ρ2
0κT ) in Eq. (6) is deter-

mined empirically. To speed up the iteration procedure several
simulations with different factors C are performed simultane-
ously at each step and the best one is used for the next iteration.
Additionally, the TD force is extended into the cluster forma-
tion and DPD regions to obtain a smoother density profile. Sim-
ilar extensions were used also in previous applications.35 The
convergence was obtained after 25 iterative steps. To validate
the homogeneous density across different resolution regions
we plot, in Fig. 4, the normalized density profile (NDP), i.e.,
the local density divided by the bulk density, as a function of
x-position (the direction of resolution change) in the simulation
box. We compute the NDPs for the water oxygen atoms and
DPD particles and compare each of them with the appropriate
reference MD/DPD simulation to point out that the system-
atic variations in the density distribution in the HY domain
are well within the error bars and thus do not present any
concerns.

FIG. 4. Normalized density profiles (NDPs) with standard deviations for
water oxygen atoms (top) and DPD beads (bottom). The multiscale AdResS
simulations results match well the conventional MD and DPD simulations.
Vertical lines mark the domains of MD and DPD methods.

FIG. 5. Top: Total linear momentum Ptotal as a function of time. For compar-
ison, the results are also shown for the case when the TD force is applied to
pure DPD simulations. Bottom: Local total linear momentum Px with standard
deviations as a function of position in the simulation box computed for atoms
(MD) and DPD particles in the relevant domains. Both linear momentums are
in units of nm/ps and scaled with the system’s total mass.

One of the advantages of coupling to DPD method is
the conservation of the linear momentum, that is in gen-
eral not conserved using global (such as Nosé-Hoover58)
or local, e.g., Langevin,59 thermostats. The magnitude of
the total momentum, computed as a center-of-mass veloc-
ity Ptotal =

(∑
i∈MD mivi +

∑
α∈DPD,HY MαVα

) /
(
∑

i∈MD mi

+
∑
α∈DPD,HY Mα

)
, is shown in Fig. 5. Note that the system

is symmetric over the center of simulation box, i.e., we have
two HY regions and thus the applied TD force is symmet-
ric over the center of simulation box center, too. Hence, the
total momentum is preserved owing to the translational invari-
ance achieved by periodic boundary conditions. To further
demonstrate this point, we also show the results where the
TD force is applied to the pure DPD simulations. As already
mentioned above, the AdResS force coupling scheme strictly
conserves the local linear momentum [Eq. (3)]. However, the
extended coupling scheme with the TD force [Eq. (5)] con-
serves the linear momentum locally only on the fluctuating
hydrodynamics level. To validate this statement, we show,
in Fig. 5, the x component of the local linear momentum
Px after binning the particles (either atoms or DPD par-
ticles) according to their position along the x-axis, where
Px(x) =

∑
i mivx,iδ(xi − x)/

∑
i miδ(xi − x) in the MD domain

and Px(x) =
∑
α MαVx,αδ(Xα−x)/

∑
α Mαδ(Xα−x) in the DPD

domain. The local linear momentum is zero (corresponding to
no momentum flux) with some deviations in the cluster for-
mation region due to external TD force that violates Newton’s
third law. However, these deviations are smaller than the error
bars. This result demonstrates that our multiscale approach
conserves also the local linear momentum.

Information about the equilibrium structural and dynam-
ical organization of water can be extracted from the Van Hove
function G(r, t), which is a correlation function of position and
time defined for homogeneous medium as

G(r, t) = N−1
∑
i,j

〈δ(r + rj(0) − ri(t))〉. (8)

The double sum is performed over all pairs of N particles in
the system, ri,j(t) is the position vector of the i, j-th particle
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FIG. 6. Distinct part of the Van Hove function
Gd (r, t)/ρ at times 0.0 (top) and 0.5 ps (bottom) for
the oxygen-oxygen (OW-OW), oxygen-hydrogen (OW-
HW), hydrogen-hydrogen (HW-HW), and DPD-DPD
case.

at time t, and the brackets 〈. . . 〉 denote an average over time
origins. By differentiating between the cases i = j and i , j,
the G(r, t) can be separated into two terms, usually referred to
as the self and distinct parts, respectively. In Fig. 6, we first
examine the distinct part Gd , which gives the probability to
find a different particle at position r at time t, given that there
was a particle at the origin at time t = 0. For isotropic fluids,
the Gd depends only on the scalar quantity r and can thus be
computed as

Gd(r, t) = (4πr2N)−1
∑
i,j

〈δ(r − |ri(t) − rj(0)|)〉. (9)

At t = 0 the Gd relates to the well-known radial distribu-
tion function Gd(r, 0)= ρg(r). We calculated the distinct part
of Van Hove function for water oxygen-oxygen, oxygen-
hydrogen, hydrogen-hydrogen, and DPD-DPD at two different

times: 0 and 0.5 ps (Fig. 6 top and bottom plots, respectively).
To make a relevant comparison with the reference simulations,
the Gds are computed locally for the multiscale simulations,
i.e., we only consider the molecules either in the MD or DPD
domain. We then compare the Gds from the MD domain of
the AdResS setup with the corresponding Gds from fully
MD simulations, whereas the Gds from the DPD domain of
the AdResS setup are compared with the corresponding ones
from fully DPD simulations. For both AdResS simulations, all
Gd match the reference results within the line thickness thus
demonstrating that, in equilibrium, not only the structural part
but also the dynamical part of the water organization is fully
preserved in both domains.

The self part of the Van Hove function Gs(r, t) for water
oxygen atoms and DPD particles is shown in Fig. 7 from 0.5
to 5 ps. The Gs(r, t), given by

FIG. 7. Self part of the Van Hove function 4πr2Gs(r, t)
for water oxygen (OW) atoms and DPD particles at times
0.5, 1.0, 2.0, and 5.0 ps.
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Gs(r, t) = (4πr2N)−1
∑

i

〈δ(r − |ri(t) − ri(0)|)〉, (10)

probes the equilibrium dynamics of a single particle in terms
of its displacement from an initial position. AdResS simu-
lations again give very comparable results to the reference
simulations.

Next, we analyze the behavior of four different order
parameters. We report, in Fig. 8, the first two η1,2 that probe
the orientational distribution of water molecules. We define
them as ηl(x)= 〈Pl(µ̂n̂)〉, where Pl is the Legendre polyno-
mial of the order l, µ̂ is the unit vector along the water’s dipole
moment, and n̂ is the unit vector pointing in the x direction.
The brackets 〈. . . 〉 denote averaging over the trajectory and
water molecules that are located in a bin centered around x.
A random orientation of water molecules, corresponding to
η1,2 = 0, is observed in the MD region, whereas some pref-
erential orientation is observed in the HY region. With the
third order parameter η3, we explore the water quadrupo-
lar moment in the x direction defined by η3(x)= 〈

∑
i qiriri〉,

where the index i runs over the water hydrogens with charge
qi and at distance ri in the x direction with respect to
the position of the oxygen atom of the considered water
molecule.

The profile of the fourth order parameter Q4(x) = 〈1
− 3/8

∑3
i=1

∑4
j=i+1

(
cos θijk + 1/3

)2
〉, water’s tetrahedrality, is

shown Fig. 9. The sum runs over distinct pairs of the four clos-
est neighbors of the reference water molecule i and θijk is the
angle between vectors rij and rik with j and k being the near-
est neighbor molecules. This parameter measures the degree
of tetrahedral order, with Q4 = 1 corresponding to the perfect
tetrahedral arrangement and Q4 = 0 to an ideal gas. In the MD
region, the bulk value Qbulk

4 = 0.6 is well reproduced. In the HY
region, the presence of half-harmonic bonds between oxygen
atoms, as expected, distorts the local structure of water. In addi-
tion, the MD interactions are gradually switched off, which
affects the hydrogen bonding. Thus, we observe a continuous
decrease of the Q4 parameter as we move away from the MD

FIG. 8. Order parameters η1,2,3 of water molecules as a function of position
in the simulation box. The error bars represent the standard deviation of the
measurements. The results are shown for the AdResS and MD simulations.
Vertical lines mark the boundary between the MD and HY domains.

FIG. 9. Local tetrahedral order parameter Q4 (top) and dielectric permittivity
(bottom) as a function of x coordinate of the simulation box.

region. Due to the same reasons, deviations from the bulk are
also observed in the water’s dielectric permittivity, which we
calculate within the Kirkwood theory where it is related to the
average vector sum of the dipole moments of a water molecule
centered in a spherical region embedded into a solvent
continuum.30

We analyze the reorientation dynamics of water by means
of autocorrelation functions of the single water molecule
dipole moment defined by Cl

µ(t)= 〈Pl[µ̂(0)µ̂(t)]〉, where µ̂(t)
is the unit dipole vector at time t, Pl are the Legen-
dre polynomials, while the brackets 〈. . . 〉 indicate average
over time origins and water molecules. The obtained auto-
correlation functions for the first Legendre polynomial are
reported in Fig. 10. Additionally, we report the velocity
autocorrelation functions for oxygen atoms and DPD parti-
cles. The AdResS simulations agree very well with the ref-
erence fully MD simulation, whereas some deviations are
observed in the agreement with the DPD simulations for the

FIG. 10. Top: Single water molecule reorientation measured by the normal-
ized dipole autocorrelation function. Middle and bottom: Velocity autocor-
relation function for oxygen atoms and DPD particles, respectively. For the
AdResS simulations, we average over molecules that are at time t = 0 located
within the relevant region.60
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DPD velocity autocorrelation functions as further discussed
below.

Finally, we compute the diffusion via mean square dis-
placements (MSD). Figure 11 shows MSDs for MD and DPD
monoscale simulations computed for oxygen atoms and DPD
beads, respectively. The diffusion constants D of the DPD
models are higher than the MD counterparts due to softer inter-
action potentials. The value of D is ≈1.7 times higher for the
DPD simulations with 4-to-1 mapping compared with the 8-
to-1 mapping. This result is in accordance with Ref. 33, where
D was systematically investigated for a number of mappings
Nm. There, D was found to gradually decrease with Nm with
a scaling factor of ≈1.8 between Nm = 4 and 8. For compari-
son, the value of D for the MARTINI water model, which is
using a 4-to-1 mapping, is 1.92 × 10�9 m2 s�1,61 while for
the DPD at the same mapping we obtain (7.7 ± 0.2) × 10�9

m2 s�1. This difference by a factor of 4 is due to stiffer inter-
actions used in the MARTINI model, i.e., the Lennard-Jones
interaction.17 If we wanted to match the DPD diffusion con-
stants to MD ones we would have to resort to the transverse
DPD thermostat strategy.13 In AdResS simulations, the water
atoms and DPD beads are only defined in a certain region.
Thus, special consideration is needed to compute the MSDs
in our case.60 In particular, to compute the MSD of oxygen
atoms we average only over oxygen that were within a given
time scale (50 ps) always located within the MD region. Simi-
larly, the MSDs for DPD particles are averaged only over DPD
particles continuously residing in the DPD region. For oxy-
gen, the diffusion coefficient of AdResS simulations agrees
well with monoscale MD result and with the one reported
in the literature.62 For DPD particles, we observe somewhat
lower diffusion in the AdResS simulations compared with
monoscale DPD simulation due to the coupling to the MD
region and consequent additional friction felt by DPD parti-
cles at the HY/DPD boundary. Note, that the same effect can
be seen from velocity autocorrelation functions in Fig. 10. The
diffusion coefficient for the oxygen obtained from the veloc-
ity autocorrelation functions are (4.5 ± 0.2) (4.1 ± 0.2), and

FIG. 11. Diffusion coefficients, i.e., mean square displacements (MSD)
divided by 6t, computed for oxygen atoms (top) and DPD beads (bottom).
For the AdResS simulations, we average only over particles that are located
within the specific region (MD for oxygen atoms and DPD for DPD particles)
continuously within 50 ps.

(4.4 ± 1.4) × 10−9 m2 s�1 for the MD, AdResS 4-to-1, and
AdResS 8-to-1 simulations, respectively. For the DPD diffu-
sion, we obtain (8.5±0.3) (8.4±0.5), (5.2±0.2), and (3.2±1)
× 10−9 m2 s�1 for the DPD 4, DPD 8, AdResS 4-to-1, and
AdResS 8-to-1 simulations, respectively. The values of D from
MSDs and velocity autocorrelation functions approximately
match.

IV. CONCLUSIONS AND OUTLOOK

We have presented the coupling of MD and DPD simula-
tion techniques and validated our approach by demonstrat-
ing that the multiscale systems can in respective domains
fully reproduce the statistical properties of the conven-
tional monoscale simulations. Both coupled methods, i.e., the
MD with the DPD thermostat and the DPD, and the cou-
pling algorithm AdResS guarantee by construction the local
linear momentum conservation. In the extended version of
AdResS with the TD force, which is needed to compensate
the chemical potential differences of the coupled models, the
local linear momentum is no longer conserved on the micro-
scopic level. However, it is locally conserved on the fluctuating
hydrodynamics level and, therefore, our approach neverthe-
less properly reproduces momentum propagation, which is
necessary for correct reproduction of hydrodynamic behav-
ior.12 As a benchmark system, we used bulk water employ-
ing a supramolecular coupling, where either 4 or 8 water
molecules are represented as soft blobs in the DPD domain.
For the 8-to-1 mapping, we extended our previous methodol-
ogy to the supramolecular coupling of beyond nearest neighbor
molecules. The employed methodology is general and can
be applied to any N-to-1 mapping, with N going up to 20
(the upper limit is imposed by the DPD model). Furthermore,
we considered the reversed definition of the weighting func-
tion, which enabled the elimination of the additional atomistic
region of bundled water. To facilitate future applications, we
used DPD water models that had been previously employed
in simulations of phospholipid membranes41 and polymer
melts,42 thus making the multiscale models applicable to bio-
physical as well as technological applications. The frame-
work could also be used in the important studies of abnormal
rheological and biomechanical properties of red blood cells
encountered in disease states.63–67 In our future work, we will
apply the presented multiscale methodology to fluid flow simu-
lations (see for example Refs. 68–70) to explore its advantages
and limitations to properly capture hydrodynamics. Further-
more, we will open up the boundaries of a molecular system
and allow for the exchange of matter with its surrounding
using Open Boundary Molecular Dynamics (OBMD).48–50 In
doing so, we will be able to validate whether the fluctuating
details, e.g., relative mass fluctuations, are preserved across
the MD-DPD interface.
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