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ABSTRACT: A parallel programming library for molecular dynamics (MD)
simulations is described and applied to the recently proposed split integration
symplectic method (SISM) for MD simulation. The results show that for a system of
1024 linear chain molecules with an integration step of 4.5 fs parallel execution of SISM
with the particle–particle interactions (PPIs) library on 32 computers gives efficiency of
95.6%. The results also show the parallel simulation of n particles is scalable with the
number of processors p and the time requirement is proportional to n2/p for n/p large
enough, which guarantees optimal speed-up. © 2003 Wiley Periodicals, Inc. Int J Quantum
Chem 96: 530–536, 2004
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1. Introduction

T he advent of computer technology initiated
new methods for the study of molecular sys-

tems. They provide us with data that are of inter-
mediate character between theory and experiment;
therefore, they are known as “computer experi-
ments.” From the theoretician’s point of view com-
puter experiments are important because essen-
tially they provide exact data on well-defined
models. The molecular dynamics (MD) method has
been long used with considerable success. In MD
the computer is used to solve numerically the clas-
sic equations of motion for an assembly of interact-

ing particles. The equations to be solved are cou-
pled second-order differential equations whose
number is equal to the number of degrees of free-
dom in the system.

The interparticle interactions, which determine
the microscopic behavior of the system, are deter-
mined by the corresponding force field. There are
several methods for calculating these interactions.
The simplest, particle–particle methods, iterate
through all pairs and directly compute the interac-
tions, leading to the time complexity of O(n2) for an
n-particle system. There are several simple and ef-
ficient parallel implementations of particle–particle
methods [1–3]. Indirect methods, such as particle–
mesh or the fast multipole methods, have asymp-
totically lower complexities but are harder to par-
allelize. For small to midsized systems (up to tensCorrespondence to: D. Janežic; e-mail: dusa@cmm.ki.si
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of thousands of atoms) the particle–particle meth-
ods are faster or at least competitive with indirect
methods [4, 5].

After computing all interparticle interactions, the
simulation evolves the system with the computed
interactions. The evolution of the system with time
complexity of O(n) is performed independently for
each particle, which makes it trivial to parallelize.

Several MD algorithms for solving Hamiltonian
systems have been proposed. The simplest and
most commonly used is the leapfrog Verlet (LFV)
algorithm [6]. Although simple to use it tends to
quickly become unstable as the integration time-
step is increased [7]. However, for studies of dy-
namics of large molecular systems larger time-steps
in the MD integration are needed [8]. The problem
of how to increase the time-step in the MD integra-
tion procedure can be overcome by use of symplec-
tic integration methods for Hamiltonian sys-
tems [9].

We recently introduced an efficient split integra-
tion symplectic method (SISM) [10–12] for MD in-
tegration. The method allows the use of a time-step
up to an order of magnitude larger than the com-
monly used LFV algorithm, which is of the same
order and computational complexity as SISM.

The structure of this article is as follows: In Sec-
tion 2 the basic concepts of the programming li-
brary for particle–particle interactions (PPIs) are
presented. The SISM algorithm is described in Sec-
tion 3 and programming SISM with the PPI library
is given in Section 4. Next, the measured parallel
performance of the SISM is given on clusters with
different numbers of computing nodes. The work
concludes with some comments on results and di-
rections for future work.

2. PPI Library

Particle simulations are often programmed ei-
ther for many similar systems or even for the same
system, but with different numerical methods. Typ-
ically, a new program is obtained by changing a
similar sequential program. Parallelizing a sequen-
tial program and debugging the parallel program is
not always an easy task and the effort is multiplied
in the case of several different programs.

When a parallel algorithm is selected, the prin-
ciple of parallelization is the same for all applica-
tions. To avoid repeating the same steps to paral-
lelize every program, we developed the universal
programming library PPI [13]. The library is object

oriented, written in C��, and uses the message
passing interface (MPI) [14] for communication. To
use the PPI library the user has to describe the
problem through writing a class representing a par-
ticle. The particle class must contain all attributes of
a particle and knowhow for the calculation of in-
teractions and new particle states and for reading or
writing particle attributes from/to a file. Such a
particle class together with the library class tem-
plate PPIWorld forms the required new simulation
class PPIWorld�particle class�. Figure 1 depicts the
schematic representation of a user-defined simula-
tion by PPI library.

Parallel algorithms for direct calculation of the
interactions can distribute either particles among
processors (particle decomposition), parts of the
N � N force matrix (force decomposition), or geo-
metric subdomains of the simulated system (do-
main decomposition) [15, 16]. The particle and force
decomposition methods always divide computa-
tions optimally, reducing the time complexity to
O(n2/p) on a p-processor system. Both can be im-
plemented on different network topologies. The
chosen method as well as topology affects the par-
allel performance.

The proposed PPI library implements the sys-
tolic loop particle decomposition [17]. In most ap-
plications the interaction between two particles is
symmetrical and no particle can interact with itself.
The sequential algorithm for n particles for each
time step is thus:

for (i � 0; i � n; i��)
for (j � i�1; j � n; j��)
calculateInteraction(i, j);

FIGURE 1. Structure of a parallel simulation program
using the PPI library.
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There are n(n � 1)/2 calculations of particle inter-
actions.

On a parallel system with p processors num-
bered as 0, 1, . . . , p � 1 and connected in a ring, the
particles are divided uniformly among processors.
All local particles on a processor are called self-
particles. The copies of self-particle attributes, being
transmitted to the neighboring ring processors, are
called guest-particles. Several variations of the al-
gorithm were tested. We describe here the fastest
variation only.

Each processor performs, within a particular
time-step, p/2 calculation passes using the follow-
ing rules:

1. Calculate the interactions between self-parti-
cles.

2. Send copies of self-particle attributes to the
right neighbor and receive guest-particle
(copies of self-particle) attributes from the left
neighbor. The interpretation of left and right
directions is arbitrary.

3. In the next pass calculate the interactions be-
tween all pairs: self-particle–guest-particle,
and accumulate the calculated interactions
with the self-particle and guest-particle at-
tributes.

4. Send guest-particles to the right neighbor and
receive new guest-particles from the left.

5. Repeat steps 3 and 4 until the particles are
moved halfway around the ring.

6. If the number of processors is odd, the same
pairs of particles are now on processors i and
i � p/2. Each processor therefore calculates
only half of the interactions in the last pass.

7. After all the interactions are calculated, but
not yet added to all particles, it is necessary to
return guest-particles halfway around the
ring to their original processors, which add all
the remaining interactions. On topologies
with more than two connections per proces-
sor, this step can be implemented directly
with a single point-to-point message for each
processor.

The systolic loop particle decomposition algo-
rithm requires more communication than some ver-
sions of the force decomposition algorithms. This is
a potential disadvantage on massively parallel com-
puters, but not as much on smaller computer sys-
tems. However, the force decomposition algorithm
must store all n particles on each processor, running

out of cache memory sooner than particle decom-
position algorithms, which only store 2n/p particles
on each processor [15].

3. SISM for MD Integration

To perform the MD simulation of a system with
a finite number of degrees of freedom the Hamilton
equations of motion

dpi

dt � �
�H
�qi

,
dqi

dt �
�H
�pi

, i � 1 . . . d (1)

are to be solved, where H is the Hamiltonian, qi and
pi are the coordinate and momentum, respectively,
and d is the number of degrees of freedom.

In terms of free Lie algebra, the Hamiltonian Eq.
(1) can be written in the form

dx
dt � �x, H	 � L̂Hx, (2)

where {x, H} denotes the Poisson bracket, L̂H is the
Poisson bracket operator, and x � (q, p) is a vector
of coordinates and momenta of all particles.

The formula

x�ti�
t � exp�
tL̂H�x�ti (3)

is the formal solution of the Hamilton equations
and represents the exact time–evolution of trajec-
tory in the phase space from ti to ti � 
t, where 
t
is the integration step [9].

The construction of an efficient algorithm rests
on the ability to separate the Hamiltonian into parts
that are themselves integrable and also efficiently
computable [18]. To derive the SISM [11] we have
split the MD Hamiltonian into

H � H0 � Hr, (4)

where H0 is the pure harmonic part and Hr is the
remaining part of the potential.

The following approximation for x�ti�
t was then
used:

x�ti�
t � exp�
t
2 L̂H0�exp�
tL̂Hr�exp�
t

2 L̂H0�x�ti, (5)

which prescribes how to propagate from one point
in phase space to another. First, the system is prop-
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agated for a half integration step by H0, then for a
whole step by Hr, and finally for another half step
by H0. This integration scheme defines the SISM, a
second-order symplectic integration algorithm for
MD integration. Knowing H0, the high-frequency
terms are treated analytically, i.e., independently of
the size of the integration step. This permits the
SISM to employ up to an order of magnitude larger
integration step size than can be used by other
methods of the same order and complexity. The
whole integration step thus combines the analytic
evolution of H0 with a correction arising from the
Hr performed by numerical integration. The motion
governed by H0 is resolved by diagonalizing the
Hessian, which is the root-mass-weighted second
derivative matrix of the bond stretching and angle
bending part of the potential function, to obtain the
vibrational frequencies and normal mode vectors of
H0 [19]. The Hessian depends only on constant
parameters of the simulation. Therefore, normal
modes are calculated only once, at the outset of the
calculation.

Schematically the SISM reads as follows [10]:

1. At the outset of calculation vibrational fre-
quencies and normal modes, represented by
normal coordinates P, Q, of H0 are deter-
mined.

2. Rotate the normal coordinates, Pj
0, Qj

0, in the
phase space by the corresponding vibrational
frequency �j for 
t/2:

� Pj
Qj
� � R�Pj

0

Qj
0�

R � � cos��j


t
2 � ��jsin��j


t
2 �

�1/�j�sin��j


t
2 � cos��j


t
2 � �.

For �j � 0 vibrations are taken into account
and for �j � 0 translations and rotations.
Equations

Pj � Pj
0

Qj � Pj
0


t
2 � Qj

0

describe translations and rotations in normal
coordinates.

3. Coordinate transformation from normal coor-
dinates Pj, Qj to Cartesian displacement coor-
dinates pi, qi.

4. Numerical integration of momenta (one force
calculation per integration step)

p �i � pi � 
t��Hr

�qi
�

qi�qi

.

5. Back transformation from Cartesian displace-
ment coordinates p�i, q�i to normal coordinates
P�j, Q�j.

6. Again, the rotation of normal coordinates in
the phase space by the corresponding vibra-
tional frequency �j for 
t/2:

� Pj

Qj
� � R�P�j

Q�j
�,

which concludes one SISM integration step.
7. Go to 2 until the desired number of integra-

tion steps is reached.

In the scheme the high-frequency terms are
treated analytically. This enables the SISM to use
much larger integration time-step 
t than the stan-
dard methods of the same order and complexity.
Hence, the SISM performs superiorly for systems in
which high-frequency motions can be treated ana-
lytically, e.g., systems with stiff internal degrees of
freedom.

To determine the parallel efficiency of the SISM
the system of linear molecules was used as a model
system. For this model system the MD Hamiltonian
[10] is

H � 	
i

pi
2

2mi
� 	

bonds

kb�b � b0�
2 � 	

angles

k��� � �0�
2

� 	
i�j

eiej

rij
� 	

i�j

4�ij���ij

rij
�12

� ��ij

rij
�6�, (6)

where i and j run over all atoms, mi is the mass of
the i-atom, b0 and �0 are reference values for bond
lengths and angles, respectively, kb and k� are cor-
responding force constants, ei denotes the charge on
the i-atom, rij is the distance between atoms i and j,
and �ij and �ij are the corresponding constants of
the Lennard–Jones potential.

Into the split part H0, which describes the vibra-
tional motion of the system as well as translation
and rotation of molecules, kinetic energy, and har-
monic part of the bond stretching and angle bend-
ing potential energy of the system are included,
while Hr is the remaining part.
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4. Programming the SISM with PPI
Library

The PPI library requires one to provide a particle
class following some guidelines [13], which in-
cludes methods that are called from PPIWorld:

clearInteraction()—resets the attributes
that represent interactions, e.g., force vectors.
interact()—calculates the interaction be-
tween two particles and writes the result into
both particles’ attributes.
preIteration()/postIteration()—do
whatever is necessary before and after calculat-
ing the interactions, e.g., propagate harmonic
part and convert to Cartesian coordinates.
createMPIType();—creates a description of
an MPI type that is used in communication. The
user would have to study the MPI documents
[14] at this step only. This method is necessary
provided that a heterogeneous parallel system
composed of different computer types is used.
However, on homogeneous computer clusters
leaving out this method will only result in min-
imal degradation of the communication perfor-
mance.

Once the particle class is written, the parallelization
is done automatically. In our case, we already had
the ButadiyneLFV class that implements LFV sim-
ulation of a butadiyne system. The object-oriented
design of PPI library enabled us to derive the
ButadiyneSISM class from ButadiyneLFV, over-
riding only the calculation of new atom coordinates
and momenta, which now includes the harmonic
part of the Hamiltonian. A pseudocode example for
ButadiyneLFV, ButadiyneSISM, and the main
program is given in Figure 2.

5. Parallel Performance of the SISM

The SISM was evaluated on the model system
composed of a different number of linear butadiyne
molecules, a six-atom molecule of the form
HO(OC'CO)2OH, at T � 300 K and 	 � 0.1
g/cm3. Potential parameters were the same as in
Ref. [12], and the periodic boundary conditions
were imposed to overcome the problem of surface
effects.

The simulation programs were tested on a clus-
ter of 16 dual-processor Athlon MP 1600� worksta-
tions running Linux, connected by a fast Ethernet
network through a switch. Network latencies were
38 
s between two processors in the same computer
and 80 
s between different computers. When ex-
ecuting the systolic loop communication scheme,
each of 32 processors achieved simultaneous in-
bound and outbound bandwidths of about 30
Mbps.

Figures 3 and 4 show the speed-ups of the SISM
for a various number of processors and molecules
as a function of p and n/p, respectively. The
speed-up is substantial already at 8 molecules per
processor (n/p � 8) and almost linear if n/p � 32,
which is reflected by almost horizontal lines in

FIGURE 2. Pseudocodes of particle classes
ButadiyneLFV and ButadiyneSISM, and program
main.
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Figure 4. In particular examples, it is even slightly
superlinear, which can be explained by cache ef-
fects, e.g., 1024 molecules do not fit into the cache
on a single processor but increasing the number of
processors increases the total amount of cache and
therefore the hit rate. The amount of total commu-

nication is on the order of O(n), independent of p.
The computation time is on the order of O(n2/p).
With larger p, the computation time decreases but
the communication time does not. Further, more
short messages increase the communication time.
These explain the poor speed-up for n/p � 4.

The results of comparison of the sequential and
parallel LFV and SISM are presented in Figure 5.
The integration steps of 1 fs for LFV and 4.5 fs for
SISM were used to compare computational perfor-
mances for the same level of accuracy for both
methods [10]. Total execution times are shown for a
simulation length of 1 ns. The sequential LFV scales
as O(n2), which is revealed by a straight line on the
logarithmic plot. The parallel LFV is 4 times faster
than the sequential LFV for values of n � 100 on 4
processors. For smaller systems, the parallelization
is less efficient. The calculation of the intermolecu-
lar interactions, the most time-consuming part of
the simulation, is the same for both methods [20].
The calculation complexity of transformations be-
tween different types of coordinates in the case of
SISM is linear, as opposed to quadratic complexity
of the intermolecular interactions calculation. For
smaller systems (n � 10), the sequential SISM is
only twice as fast as the sequential LFV. For larger
systems (n � 100), the quadratic complexity of the
intermolecular interactions calculation prevails.

FIGURE 3. Speed-up of the parallel PPI-based SISM
as a function of p for various system sizes.

FIGURE 4. Speed-up of the parallel PPI-based SISM
as a function of n/p for various number of processors.

FIGURE 5. Comparison of the sequential and parallel
LFV and SISM for different system sizes on four pro-
cessors.
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Therefore, the SISM is 4.5 times faster than the LFV
due to the larger integration step that can be used
by SISM. In the parallel example, the SISM achieves
better speed-ups for n/p � 32 because the addi-
tional work is optimally distributed among proces-
sors and requires no extra communication.

6. Conclusion

The present work examined the parallel library
PPI for particle interactions for developing various
MD simulation programs. The PPI library was ap-
plied to the recently proposed SISM for MD inte-
gration. For comparison, the PPI library was also
applied to the standard LFV method.

The performances of parallel and sequential LFV
and SISM programs are given and analyzed in de-
tail. It is shown that the SISM achieves approxi-
mately linear speed-ups for systems larger than 32
molecules per processor. For smaller systems, the
additional work required by the SISM contributes
significantly to the total execution times. However,
efficient parallelization compensates for this.

Further work lies primarily in the testing of the
PPI library on different parallel computer systems
[21] and also for more complex and realistic particle
systems [22, 23].
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