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A series of molecular dynamicssMDd simulations of nonlinear molecules has been performed to test
the efficiency of newly introduced semianalytical second-order symplectic time-reversible MD
integrators that combine MD and the standard theory of molecular vibrations. The simulation results
indicate that for the same level of accuracy, the new algorithms allow significantly longer
integration time steps than the standard second-order symplectic leap-frog Verlet method. Since the
computation cost per integration step using new MD integrators with longer time steps is
approximately the same as for the standard method, a significant speed-up in MD simulation is
achieved. ©2005 American Institute of Physics. fDOI: 10.1063/1.1884608g

I. INTRODUCTION

In the preceding paper,1 new semianalytical second-
order symplectic integrators are presented, developed by
combining the molecular dynamicssMDd integration2 and
the standard theory of molecular vibrations.3–6 The unique
feature of the new integrators is in that the standard theory of
molecular vibrations, which is a very efficient tool to analyze
the dynamics of the studied system from computed
trajectories,7–12 is used not to analyze, but to compute trajec-
tories of molecular systems. Information about the energy
distribution of normal modes and the energy transfer be-
tween them is thus obtained without additional computa-
tions.

The key property of a good MD integrator is the conser-
vation of the system’s total energy over a long time interval.
Backward error analysis13 has indicated that symplectic nu-
merical integration methods approximately conserve the total
energy of a system over time periods that are exponentially
long in the size of the integration time step. Long-time con-
servation of the total energy by new integrators using long
integration time steps is achieved by the analytical treatment
of high-frequency molecular vibrations within the frame-
work of the symplectic decomposition schemes.13–16

In this paper the new integration methods are employed
to perform MD simulations of systems of nonlinear mol-
ecules with one equilibrium configuration and no internal
rotation. The new integrators are superior to the standard
leap-frog VerletsLFVd method17 because they allow longer
integration time steps to be used for the same computational
accuracy with nearly the same computational cost per inte-
gration step.

II. METHODS

The Hamilton equations, which are solved for each atom
of the system in MD integration, can be written in terms of
Lie operators as13

dh

dt
= hh,Hj = L̂Hh, s1d

whereL̂H is the Lie operatorh,j is the Poisson bracket,18 and
h=sq ,pd is a vector of the coordinates and their conjugate
momenta of all the particles.

The formal solution of the Hamiltonian systems1d is

uhutk+Dt = expsDtL̂Hduhutk s2d

and it represents the exact time evolution of a trajectory in
phase space composed of coordinates and momenta of all the
particles fromtk to tk+Dt, whereDt is the integration time
step.18

A. Split integration symplectic method „SISM…

In developing new MD integration method1 we first de-
compose the HamiltonianH of a system into two parts

H = H0 + Hr , s3d

whereH0 is the pure harmonic part of the Hamiltonian and
Hr is the remaining part.19

Next, a second-order approximation for Eq.s2d, known
as the generalized leap-frog scheme,14,15 is used

uhutk+1
= expSDt

2
L̂H0

DexpsDtL̂Hr
dexpSDt

2
L̂H0

Duhutk

+ OsDt3d, s4d

which defines the split integration symplectic method

sSISMd.1,20–22The propagation by exp(sDt /2dL̂H0
) is solved

analytically using the normal modes of an isolated

molecule,5 while the propagation by expsDtL̂Hr
d is solved

numerically in the same way as in the standard LFV
method.17 The SISM differs from other decomposition MD
integration methods in that it uses the standard theory of
molecular vibrations, in particular, the concept of the Eckart
frame, to define the translating and rotating internal coordi-
nate system of a molecule for the time propagation. The
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method is described in full detail in the preceding paper.1

B. Multiple time stepping SISM „SISM-MTS…

First, we split the HamiltonianH of the system as1

H = H1 + H2, s5d

H1 = Vnb, s6d

H2 = H0 + Vah, s7d

whereH0 is the pure harmonic part of the Hamiltonian,Vnb

is the sum of the Coulomb and Lennard-Jones potential, and
Vah is the anharmonic vibrational potential of higher terms
scubic, quartic, etc.d defined in terms of the displacements of
atoms from their equilibrium positions.1

The propagator expsDtL̂Hd is then approximated as

expsDtL̂Hd = expSDt

2
L̂Vnb

D
3FexpSdt

2
L̂H0

DexpsdtL̂Vah
dexpSdt

2
L̂H0

DGn

3expSDt

2
L̂Vnb

D + OsDt3d, s8d

which is used to derive the multiple time stepping SISM
sSISM-MTSd. Here Dt is the integration time step anddt
=Dt /n is the smaller integration time step that corresponds to
the time scale of high-frequency interactions defined byVah.

The propagation by exp(sdt /2dL̂H0
) is performed analytically

in the same way as in the SISM.1

C. Equilibrium SISM „SISM-EQ…

In the equilibrium SISM sSISM-EQd, the numerical
scheme of the SISM given by Eq.s4d is used to propagate the
coordinates and momenta of the atoms; the potential of the
slow nonbonded forces is computed with the equilibrium po-
sitions of atoms1,23–25

Vnbsqd → Vnbfdsqdg, s9d

Fnbsqd →JT ·Fnbfdsqdg, s10d

where Vnb is the sum of the Coulomb and van der Waals
potentials, Fnb=−]Vnb/]q is the corresponding force,
] /]q=s] /]X1,] /]Y1,] /]Z1, . . . ,] /]Xn,] /]Yn,] /]Znd, q
=sq1, . . . ,q3nd=sX1,Y1,Z1, . . . ,Xn,Yn,Znd are the Cartesian
coordinates of all atoms in the system andn is the number of
atoms in the system, anddsqdPR3n are the equilibrium po-
sitions of atoms in all molecules of the system, given by the
standard theory of molecular vibrations.1,3,5,6

When the scheme of the SISM-MTS, defined by Eq.s8d,
is used to propagate the coordinates and momenta of the
atoms, it gives rise to the equilibrium SISM-MTSsSISM-
MTS-EQd method.1 This method conserves the following
quantity:

H = Tspd + Vvibsqd + Vnbfdsqdg. s11d

D. Leap-frog Verlet „LFV and LFV-EQ …

To demonstrate the effectiveness of the new methods, we
compared the computational performances for the same level
of accuracy with the standard second-order symplectic LFV
algorithm17 in which the Hamiltonian is split into the kinetic
and potential energy,

H = T + V, s12d

using second-order generalized leap-frog scheme15,26

uhutk+1
= expSDt

2
L̂TDexpsDtL̂VdexpSDt

2
L̂TDuhutk + OsDt3d.

s13d

Equations13d is explicitly written as

qk8 = qk + M −1 ·pk
Dt

2
,

pk+1 = pk − Dt
]V

]q
sqk8d,

qk+1 = qk8 + M −1 ·pk+1
Dt

2
, s14d

whereM PR3n33n is a diagonal mass matrix. The diagonal
elements areM11=m1, M22=m1, M33=m1, . . . ,M3n−2,3n−2

=mn, M3n−1,3n−1=mn, M3n,3n=mn, wheremi is the mass of the
ith atom.

When the numerical scheme of the LFV defined by Eq.
s13d is used to propagate the coordinates and momenta of the
atoms, and the potential of the long-range electrostatic and
van der Waals potential is calculated with the equilibrium
positions of the atoms in each molecule in the same way as
for the SISM-EQ and SISM-MTS-EQ,1 then this gives rise to
the equilibrium LFVsLFV-EQd method.

III. COMPUTATIONAL DETAILS

The applicability of the SISM for MD integration is, at
present, limited to systems of molecules with one equilib-
rium configuration and no internal rotation, and in which the
displacements of atoms from their equilibrium positions are
sufficiently small that we can use the dynamical molecular
model6 to describe molecular vibrations. A four-atom mol-
ecule, the hydrogen peroxidesH2O2d, schematically shown
in Fig. 1, has been chosen as an example of a nonlinear and
nonplanar molecule.

A. Model potential development

For this class of molecules we first develop an appropri-
ate model potential to be used in MD simulations of liquid
H2O2 by the SISM. The H2O2 molecule, which has no center
of symmetry, is one of the simplest molecules with a hin-
dered internal rotation of the hydrogen atoms around the
bond between the oxygen atoms. It has two equivalent stable
equilibrium configurationssat ±f0d and two transition states,
cis sf0=0°d and transsf0=180°d.27,28 The experimental
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value off0 is 119.8° ±3° for the gas phase.29 The value for
f0 determined fromab initio calculations of an isolated
H2O2 molecule is 112.46°.27 The torsional potential, also de-
termined fromab initio calculations,27 can be fitted with the
function of the harmonic cosine form

Vsfd = 1
2V0scosf − cosf0d2, s15d

with V0=2Vb/ s1−cosf0d2, Vb=7.28 kcal/mol,f0=112.46°,
and minima

fmin = 2np ± f0. s16d

From the torsional potential, shown in Fig. 2sad, it can be
observed that there are two potential barriers surrounding the
minimum at 112.46°, which corresponds to the equilibrium
configuration. The high 7.28 kcal/mol potential barrier cor-
responds to the cis transition state whereas the low
1.08 kcal/mol potential barrier corresponds to the trans tran-
sition state.

The equilibrium configuration of the H2O2 molecule in
the gas state, however, does not correspond to the corre-
sponding structure in the liquid state. The value off0 in the
liquid state, which is the most interesting physical system for

testing the efficiency of different numerical integrators for
MD simulation, is therefore different from the corresponding
value in the gas state.30 Because, at present state of develop-
ment, the SISM is efficiently applicable only to systems of
molecules with one equilibrium configuration and with no
internal rotation, we have taken the experimentally deter-
mined structure in the solid state30 with f0=90.2° for the
equilibrium configuration of the H2O2 molecule instead of
the corresponding structure in the liquid state and we have
set the height of potential barriers, which surround the mini-
mum at f0=90.2°, artificially high atV0=140 kcal/mol to
ensure that the displacements of the hydrogens atoms are
sufficiently small so that they can be considered as torsional
vibrations. The corresponding torsional potentials15d is de-
picted in Fig. 2sbd from which it can be observed that the
heights of the potential barrier for the trans and cis transition
states are equal. An H2O2 molecule with the equilibrium con-
figuration determined by these parameters can therefore be
considered as a molecule with one equilibrium configuration
and no internal rotation. Hence, we have used it as an ex-
ample of the class of nonlinear and nonplanar molecules in
MD simulation by the SISM.

The model Hamiltonian, which we have developed for
MD simulation of the liquid H2O2, is

FIG. 1. Description of the positions of atoms in the equilibrium configura-
tion of hydrogen peroxide.sad Definition of angles.sbd View along the bond
between atoms 2 and 3.

FIG. 2. sad The torsional potential defined by Eq.s15d with f0=112.46°,
V0=2Vb/ s1−cosf0d2, and Vb=7.28 kcal/mol corresponding to isolated
molecule.sbd The torsional potential defined by Eq.s15d with f0=90.2° and
V0=140 kcal/mol defining a molecule with one equilibrium configuration
and no internal rotation.
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H = o
i

pi
2

2mi
+

1

2 o
bonds

kbsb − b0d2 +
1

2 o
angles

kusu − u0d2

+
1

2 o
torsions

V0scosf − cosf0d2 + o
i. j

eiej

4pe0r ij

+ o
i. j

4«i jFSsi j

r i j
D12

− Ssi j

r i j
D6G , s17d

where i and j run over all atoms,mi is the mass of theith
atom,pi is the linear momentum of theith atom,b0 andu0

are reference values for the bond lengths and angles, respec-
tively, kb andku are the corresponding force constants,f0 is
the reference value for the torsional angle,V0 is the corre-
sponding barrier height,ei denotes the charge on theith
atom,e0 is the dielectric constant in vacuum,r ij is the dis-
tance between theith and j th atoms, and«i j andsi j are the
corresponding constants of the Lennard-Jones potential, and
the Lorentz–Berthelot mixing rules are used.2 The van der
Waals and Coulomb interactions between hydrogen atoms of
the same molecule are explicitly taken into account. For the
reference values of the bonds, angles, and torsional angles
we have taken the experimental values from Ref. 30. For the
constants of the Lennard-Jones potential we have taken the
corresponding values of flexible TIP3P water model31,32 and
the partial charges of the atoms were calculated from theab
initio calculated dipole moment33 and the corresponding
structure of an isolated H2O2 molecule.27 The force constants
for bond stretching and angle bending were determined by
fitting the normal mode frequencies calculated by normal
mode analysis1 to the experimental frequencies in the IR and
Raman spectrum of liquid H2O2.

34–36 The parameters of the
Hamiltonian s17d are reported in Table I. The experimental
and calculated normal mode frequencies for the H2O2 mol-
ecule using these parameters are reported in Table II.

B. Vibrational potential energy and internal
coordinate system

The vibrational potential energy is the sum of the vibra-
tional potential energies of all of the molecules in the system,

Vvib = o
k=1

m

Vvibk
=

1

2 o
bonds

kbsb − b0d2 +
1

2 o
angles

kusu − u0d2

+
1

2 o
torsions

V0scosf − cosf0d2, s18d

whereVvibk
is the vibrational potential energy of thekth mol-

ecule in the system andm is the number of molecules in the
system.

In the SISM, the propagation by exp(sDt /2dL̂H0
) is inte-

grated analytically using the normal coordinates to describe
the vibrational, rotational, and translational degrees of free-
dom of each molecule in the system. For the transformation
of Cartesian coordinates and momenta into the normal coor-
dinates, the relative Cartesian displacement coordinates are
required. To determine the vibrational frequencies and nor-
mal modes of vibration of thekth molecule in the system, the
mass-weighted HessianM −1/2·Hk·M −1/2PR3N33N has to be
diagonalized. The matrixHk is a symmetric matrix with the
elements

Hkij
= Hkji

= S ]2Vharmk

]Dqi]Dqj
D

0
s19d

and M is a diagonal mass matrix with the elementsM11

=m1, M22=m1, M33=m1, . . . ,M3N−2,3N−2=mN, M3N−1,3N−1

=mN, M3N,3N=mN, whereN is the number of all of the atoms
in the kth molecule. The harmonic vibrational potential en-
ergy Vharmk

for the kth molecule is defined as

Vharmk
=

1

2 o
i,j=1

3N S ]2Vvibk

]Dqi]Dqj
D

0
DqiDqj

=
1

2 o
i,j=1

3N S ]2Vharmk

]Dqi]Dqj
D

0
DqiDqj

=
1

2 o
i,j=1

3N

Hkij
DqiDqj =

1

2
Dq ·Hk · Dq, s20d

whereDq=sDx1,Dy1,Dz1, . . . ,DxN,DyN,DzNd is a vector of

TABLE I. Parameters of the Hamiltonian defined by Eq.s17d for the H2O2

molecule. The quantitye0 is the elementary charge.

Parameter Value

bOH0
=b10

=b30
0.988Å

bOO0
=b20

1.453Å
u10

102.7°
u20

102.7°
f0 90.2°

c0=f0−90° 0.2°
kbOH

=kb1
=kb3

900.0 kcal/mol/Å2

kbOO
=kb2

580.0 kcal/mol/Å2

ku1
140.0 kcal/mol/ radian2

ku2
140.0 kcal/mol/ radian2

V0 140.0 kcal/mol
eH 0.350 53e0

eO −0.350 53e0

sHH 0.40Å

sOO 3.1507Å

«HH 0.045 98 kcal/mol
«OO 0.152 073 kcal/mol

TABLE II. Experimental vibration frequenciessRefs. 34–36d of liquid H2O2

and normal mode frequencies of the H2O2 molecule determined by normal
mode analysis using the parameters from Table I.

Normal mode
1/l scm−1d

sexperimentda
1/l scm−1d

stheorydb

Antisymmetric O–H stretch 3360 3358
Symmetric O–H stretch 3360 3357

Symmetric angle bending 1421 1410
Antisymmetric angle bending 1350 1386

O–O stretch 878 880
Torsional oscillation 635 1965

aExperimental vibration frequencies.
bNormal mode frequencies.
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the relative Cartesian displacement coordinates.1 The Hes-
sianHk as well as the functional form ofVharmk

are equal for
every molecule in the system and therefore the indexk is
omitted.

The harmonic potentialVharm is then expressed as

Vharm= Vstretch+ Vbend+ Vtorsion, s21d

whereVstretch, Vbend, andVtorsion are the bond stretching, angle
bending, and torsional potentials, respectively, expressed as a
quadratic forms in terms of relative Cartesian displacement
coordinates.

The equilibrium configuration of the H2O2 molecule is
shown in Fig. 1 where atom 1 is the first hydrogen atom,

atoms 2 and 3 are oxygen atoms, and atom 4 is the second
hydrogen atom, respectively. The definitions of the angles
u10

, u20
, andc0 are evident from Fig. 1sad, and the distances

are b10
=b30

=bOH0
and b20

=bOO0
. The unit vector pointing

from atom 2 to atom 1 is then scosu10
,

−sinc0 sinu10
,cosc0 sinu10

d, the unit vector pointing from
atom 2 to atom 3 iss1, 0, 0d, and the unit vector pointing
from atom 3 to atom 4 iss−cosu20

,sinu20
,0d. The expres-

sion for Vstretch in terms of the relative Cartesian coordinates
is obtained by projecting the difference of the displacements
of the atoms onto the unit vectors, which point along the
bonds between atoms.37 Then

Vstretch=
1
2kb1

fsDx1 − Dx2,Dy1 − Dy2,Dz1 − Dz2d · scosu10
,− sinc0 sinu10

,cosc0 sinu10
dTg2 + 1

2kb2
fsDx3 − Dx2,Dy3

− Dy2,Dz3 − Dz2d · s1,0,0dTg2 + 1
2kb3

fsDx4 − Dx3,Dy4 − Dy3,Dz4 − Dz3d · s− cosu20
,sinu20

,0dTg2

= 1
2kb1

fsDx1 − Dx2dcosu10
− sDy1 − Dy2dsinc0 sinu10

+ sDz1 − Dz2dcosc0 sinu10
g2 + 1

2kb2
sDx3 − Dx2d2

+ 1
2kb3

f− sDx4 − Dx3dcosu20
+ sDy4 − Dy3dsinu20

g2, s22d

where · denotes the dot product of two vectors,kb1
=kb3

=kbOH
, andkb2

=kbOO
.

Similarly, the expression forVbend in terms of the relative Cartesian coordinates are obtained by taking the components of
the difference of the displacements of the atoms perpendicular to the bonds between the atoms.37 Therefore

Vbend=
1

2
ku1F 1

b10

sDx1 − Dx2,Dy1 − Dy2,Dz1 − Dz2d · s− sinu10
,− sinc0 cosu10

,cosc0 cosu10
dT +

1

b20

sDx3 − Dx2,Dy3

− Dy2,Dz3 − Dz2d · s0,sinc0,− cosc0dTG2

+
1

2
ku2F 1

b20

sDx2 − Dx3,Dy2 − Dy3,Dz2 − Dz3d · s0,− 1,0dT

+
1

b30

sDx4 − Dx3,Dy4 − Dy3,Dz4 − Dz3d · ssinu20
,cosu20

,0dTG2

=
1

2
ku1F 1

b10

f− sDx1 − Dx2dsinu10
− sDy1 − Dy2dsinc0 cosu10

+ sDz1 − Dz2dcosc0 cosu10
g

+
1

b20

fsDy3 − Dy2dsinc0 − sDz3 − Dz2dcosc0gG2

+
1

2
ku2F−

1

b20

sDy2 − Dy3d +
1

b30

fsDx4 − Dx3dsinu20
+ sDy4 − Dy3dcosu20

gG2

, s23d

whereku1
=ku2

=kuOOH
.

To express the torsional anglef in terms of the relative
Cartesian coordinates we define

a12 = − s− b10
cosu10

+ Dx2 − Dx1,b10
sinc0 sinu10

+ Dy2 − Dy1,− b10
cosc0 sinu10

+ Dz2 − Dz1d, s24d

a23 = − sb20
+ Dx3 − Dx2,Dy3 − Dx2,Dz3 − Dz2d, s25d

a34 = − s− b30
cosu20

+ Dx4 − Dx3,b30
sinu20

+ Dy4

− Dy3,Dz4 − Dz3d, s26d

where aab=aa+ra−sab+rbd, ra=sDxa ,Dya ,Dzad, a ,b
=1, . . . ,4, and

a1 = sb10
cosu10

,− b10
sinc0 sinu10

,b10
cosc0 sinu10

d,

s27d

a2 = s0,0,0d, s28d
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a3 = sb20
,0,0d, s29d

a4 = sb20
− b30

cosu20
,b30

sinu20
,0d. s30d

cosf is then obtained as2

cosf =
sa12 3 a23d · sa23 3 a34d

ua12 3 a23uua23 3 a34u
, s31d

whereu·u denotes the vector norm. In Eq.s31d we only keep
the linear and quadratic terms in relative Cartesian displace-
ment coordinates.

Then

Vtorsion=
1

2
V0F−

1

b10
sinu10

sDy2 − Dy1d

+
1

b20

f− 2 sinc0sDx3 − Dx2d − scotu10

+ sinc0 cotu20
dsDy3 − Dy2d + cosc0

3cotu20
sDz3 − Dz2dg

+
1

b30
sinu20

fcosc0sDz4 − Dz3d

− sinc0sDy4 − Dy3dgG2

. s32d

The elements of the HessianH are determined by Eq.
s19d. The dimension of the mass-weighted Hessian
M −1/2·H ·M −1/2 is 12312 in the case of the H2O2 molecule.
The 3N−6=6 vibrational normal mode frequencies for the
H2O2 molecule are given in Table II. The mass-weighted
HessianM −1/2·H ·M −1/2 was diagonalized using subroutines
TRED2 andTQLI taken from Ref. 38. These subroutines were
also used to diagonalize the symmetric positive definite
Gram matrixF.1

The translating and rotating internal coordinate system is
defined by the right-handed triad of unit vectorsf i, i
=1,2,3, where f j ·fk=d jk, with the origin in the center of
mass of a molecule. The constant equilibrium distances of
the atoms from the molecule’s center of massci

a, i =1,2,3.1

which are required for defining of the internal coordinate
system1 are then obtained from vectorsca, a=1, . . . ,4, de-
termined as

ca = aa − R = o
i=1

3

ci
af i = sc1

a,c2
a,c3

ad, s33d

whereR is

R =
oa

maaa

oa
ma

=
1

m1 + m2 + m3 + m4
fm1b10

cosu10

+ m3b20
+ m4sb20

− b30
cosu20

d,

− m1b10
sinc0 sinu10

+ m4b30
sinu20

,

m1b10
cosc0 sinu10

g. s34d

The matrixF−1/2, which is required to determine the
unit vectors of the internal coordinate system of a molecule
in the SISM1, is calculated as

F−1/2 = P ·D−1/2 ·PT, s35d

where D−1/2 is a diagonal matrix with the elementsDii
−1/2

=1/Îli andli are the eigenvalues of the symmetric positive
definite Gram matrixF. The columns of the transition ma-
trix P are the eigenvectors ofF andPT is the transpose ofP.

C. Simulation protocol

We have carried out MD simulation of a system of 256
H2O2 molecules with the densityr=1.4425 g/cm3 at T
=298 K corresponding to the liquid state.39 The correspond-
ing size of the simulation box wasa=21.6Å. Periodic
boundary conditions were imposed to overcome the problem
of surface effects; the minimum image convention was
used.2 The Coulomb interactions were truncated using the
force-shifted potential40 with a cutoff distancerof f=8.5 Å.41

The Lennard-Jones interactions were shifted by adding the
termCij r ij

6 +Dij to the potential, whereCij andDij were cho-
sen such that the potential and force are zero atr ij =rof f.

32

The initial positions and velocities of the atoms were chosen
at random. The system was then equilibrated for 50 ps where
the velocities were scaled every 500 integration time steps,
followed by an additional 50 ps of equilibration at constant
energy of the system to ensure that the velocities assume the
Maxwell distribution atT=298 K. To obtain physically and
numerically relevant initial conditions to perform the MD
simulation of a system of flexible molecules, the equilibra-
tion was also monitored using the Vieillard–Baron rotational
order parameter.22,42

IV. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the SISM, in all our
numerical experiments we compared the computational per-
formances for the same level of accuracy with the standard
second-order LFV algorithm using an integration time step
small enough to accurately describe the high-frequency mo-
lecular vibrations. In this way it is assured that the physical
properties of the system determined from the trajectories
computed by new integrators using long integration time
steps are reliable.

For that purpose the error in total energyDE/E defined
as

DE

E
=

1

M
o
k=1

M UE0 − Ek

E0
U , s36d

whereE0 is the initial energy,Ek is the total energy of the
system at the integration stepk, andM is the total number of
integration steps, was monitored for all methods and was
used as a measure of the efficiency and accuracy of numeri-
cal integrators for MD simulation.

The speed-up of the new methods due to a prolongation
of the integration time step can be determined from the error
in total energy, which is depicted in Fig. 3sad for the system
of 256 H2O2 molecules for the LFV, SISM, and SISM-MTS.
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The period for the antisymmetric stretching of the bond be-
tween the oxygen and the hydrogen atom in the H2O2 mol-
ecule is 9.9 fssTable IId. We estimate that the maximal ac-
ceptable size of the integration time step for the LFV to be
0.5 fs. From results in Fig. 3sad we conclude that the error in
total energy for a 1.25 fs integration time step in the case of
the SISM corresponds to the error in the total energy using a
0.5 fs integration time step in the case of the LFV. This
means that the SISM allows the use of an up to a two and a
half times longer time step than the LFV for the same level
of accuracy.

For the system of H2O2 molecules, a high amount of
anharmonic forces derived fromVah is expected due to the
strong anharmonic potential describing the interactions in the
system. Surprisingly enough the SISM-MTS, which employs
dt=0.5 fs for the integration of motions generated by high-
frequency anharmonic interactions is less accurate than the
SISM fFig. 3sadg. This can be explained by the fact that the
large amount of anharmonic forces stems from the strong
electrostatic and van der Waals interactions and not from the
high-frequency anharmonic interactions defined byVah. Due
to strong intermolecular forces we expect good performance
of the SISM-EQ and SISM-MTS-EQ integrators. This is
confirmed by the results in Fig. 3sbd in which the error in
total energy for the LFV-EQ, SISM-EQ, and SISM-MTS-EQ
is shown. The total energy in this case equals expression

s11d. Since the vibrational potentialVvib taken into account in
the LFV-EQ is the same as in the LFV, the estimated value of
the maximal acceptable time step for the LFV-EQ is 0.5 fs.

From Fig. 3sbd we can determine that the error in total
energy for the LFV-EQ with a 0.5 fs integration time step
corresponds to the error in the case of the SISM-EQ using a
1.5 fs integration time step or 2.0 fs in the case of the SISM-
MTS-EQ. The SISM-EQ therefore allows the use of a three
times longer integration time step than the LFV-EQ for the
same level of accuracy, whereas the SISM-MTS-EQ allows
the use of even up to a four times longer time step as the
LFV-EQ. We can also conclude that the SISM becomes un-
stable for integration time steps longer than 3.75 fs whereas
no drift occurs in total energy using the SISM-MTS-EQ with
integration time steps shorter than 5.0 fs. Using longer time
steps results in a drift in the total energy, which is consistent
with the conclusions in Ref. 25 where a linear numerical
instability is predicted for the integration time step size cor-
responding to around half of the period of the fastest normal
mode.

The prolongation of the maximal acceptable integration
time step by the SISM-EQ and SISM-MTS-EQ in compari-
son to the LFV-EQ comes from the fact that the maximal
acceptable integration time step is limited by the atoms’ mo-
tion generated by the intermolecular forces in the case of the
SISM-EQ and SISM-MTS-EQ.22 The maximal integration
time step allowed by the LFV-EQ method, however, is lim-
ited by the intramolecular high-frequency vibrations that are
on the considerably smaller time scale.

We can also report resonances occurring in the error in
total energy when the size of the integration time step corre-
sponds to a multiple of the period of the fastest normal mode
of a moleculesnot shown in Figs. 3sad and 3sbd where only
physically meaningful integration time step sizes are consid-
eredd as in the case of the Verlet-I/r-RESPA method.26,43The
Lennard-Jones and electrostatic interactions represent the ex-
ternal driving forces on the internal motion of the molecules
and resonance always occurs if the frequency of the driving
force corresponds to a multiple of the oscillator frequency,
regardless of whether the high-frequency molecular vibra-
tions are integrated numerically, as in the case of the Verlet-
I/r-RESPA method, or analytically, as in the case of the SISM
and its derivatives, which are also not stable in these reso-
nances. Since the period of the fastest motion is 9.9 fs, we
can draw the conclusion that the size of the maximal integra-
tion time step of the new methods is also limited in this case
by the nonlinear instabilities at a third or fourth of the period
of the fastest motion and by linear instabilities at half of the
period of the fastest motion, as found for the Verlet-I/r-
RESPA method.25,44

The actual speed-up of the new methods is confirmed by
measuring the CPU time spent by the methods per integra-
tion step. The CPU times for the three methodssthe SISM,
SISM-MTS, and LFVd for 1000 MD steps measured on an
AMD Athlon XP 1600+ processor for different system sizes
smd and equal time stepss1 fsd are given in Table III.

The results indicate that the computation cost per inte-
gration step is slightly larger for the SISM and SISM-MTS
than for the LFV. However, for larger systems consisting of

FIG. 3. sad The error in the total energy of the system of 256H2O2 molecules
with r=1.4425g/cm3 at T=298 K using the LFV, SISM, and SISM-MTS
for M =1000. sbd The error in the total energy of the system of 256H2O2

molecules withr=1.4425 g/cm3 at T=298 K using the LFV-EQ, SISM-EQ,
and SISM-MTS-EQ forM =1000.
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more than 100 molecules the cost of computation per inte-
gration step becomes approximately the same for all methods
because the computation of long-range forces, which is the
same for all methods, prevails over the computation of extra
transformations required by the SISM and SISM-MTS.
Therefore the significant speed-up of the SISM and SISM-
MTS over the LFV is due to the larger integration time step
allowed by the SISM and SISM-MTS.

The applied rotational barrier of 140 kcal/mol is much
higher than the estimated experimental value of
<4 kcal/mol for the potential barrier in the trans transition
state.34 For efficient performance of the SISM in the case of
the realistic rotational barrier, the normal mode associated
with the torsional oscillation should be treated as the internal
rotation and should be therefore excluded from the descrip-
tion by the normal coordinates.4,5 In addition, an additional
internal coordinate system should be introduced to describe
the internal rotation of the molecule.45–49

Further verification that the new integrators yield correct
trajectories using long integration time step can be obtained
by computing various statistical properties of a molecular
system, e.g., radial distribution functions, diffusion coeffi-
cients, orientational correlation times, vibrational spectra, for
different integration time step sizes. We have performed this
for a system of liquid water at ambient conditions. The re-
sults are presented in the next paper of this series50 where we
give further evidence that correct dynamics is achieved by
the new integrators.

V. CONCLUSIONS

In the present paper we have tested the efficiency of
newly introduced semianalytical symplectic integration
methods for MD simulation on systems of nonlinear and
nonplanar hydrogen peroxide molecules. The new integra-
tion methods are also stable even when using integration
time steps several times longer than the standard LFV
method. The numerical results show that the new integration
methods allow the use of up to four times longer integration
time step than the standard LFV method for the same level of
accuracy. The results also indicate that the computation cost
per integration time step of newly developed MD integrators
is basically the same as that of the standard method. There-
fore the up to a fourfold simulation speed up of new sym-
plectic integrators is due to the larger time step they allow to
use. However, much work remains to be done in the devel-
opment of this approach to explore its advantages and limi-
tations.
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