
PHYSICAL REVIEW B 105, 224317 (2022)

Suspension of discrete microscopic oscillators as a model of an ultrasonic metafluid
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We present a model of ultrasonic metafluids—acoustic metamaterials in the form of suspensions of discrete
microscopic oscillators coupled to the embedding fluid. Contrary to a common assumption about metamaterials,
and as already established in the field of metafluids, the metafluid concept need not be based on position
periodicity or correlation of the suspended micro-oscillators, and in this case not even on ideally designed
micro-oscillators. For the speculation that metafluids may one day be produced as solutions of macromolecules,
it is essential that the micro-oscillators be allowed to be randomly distributed in the host fluid and generally have
irregular (modal) shapes. We formulate the detailed operating principle of such a metafluid model, give explicit
formulas for its effective dynamic moduli in terms of the modal structure of the micro-oscillators, and discuss
basic practical issues of performance optimization in terms of their mass and size.
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I. INTRODUCTION

This work builds on the fascination that suspensions of
irregular, possibly macromolecular or microprinted entities
that act as micro-oscillators could function as ultrasonic meta-
materials in certain frequency windows.

Mechanical acoustic metamaterials [1–3] realized in prac-
tice are based on principles of waveguides with cavity and
membrane resonators [4–11], perforated plates [12], coiled-up
space in two- and three-dimensional labyrinths [13,14], and
various synthetic (elasto)mechanical unit cells [1,3]. These
are all artificial, elaborately constructed, spatially ordered sys-
tems that can induce negative phase velocity of airborne or
structure-borne sound waves, resulting in unusual wave prop-
agation characteristics such as negative refracion. In addition,
active acoustic metamaterials with electromechanical sensing
and transducing units have been realized [15–17], where any
desired response of the units is driven and controlled by tai-
lored electronic signals. Remarkably, a physiological acoustic
metamaterial has also been recently reported [18]—moth
wings are found to act as metamaterial ultrasound absorbers.

In soft materials, various models have been investigated,
mainly theoretically, from bubbles [19–25] and elastic spheres
[26–29] suspended in liquids or soft solids, periodic fluid-
solid [30,31], or hard sphere–soft matrix [32] composites.
Scattering by monopolar resonances of single bubbles or pairs
of bubbles has been rigorously treated in Ref. [19], and a
pair of spherical bubbles subject to general axisymmetric
shape oscillations in Ref. [33]. Acoustic metafluid with neg-
ative index over a wide frequency range around 0.1 MHz
based on Mie resonances in suspended porous microbeads
has been practically realized [34] and compared against
multiple scattering modeling. An absorption metascreen in

*daniel.svensek@fmf.uni-lj.si

the form of a two-dimensional bubble array with coupled
monopolar resonances has been presented both theoretically
and experimentally [22,24]. Multiple scattering by monopolar
resonances of a large number of disordered bubbles was com-
putationally modeled [23], including the dipole response for
smaller bubble spacing [20].

In liquid systems, the dynamic bulk modulus is rela-
tively easily affected by bubble- or vesiclelike inclusions. In
medical ultrasound imaging, for example, such objects, e.g.,
encapsulated microbubbles injected into the blood stream, are
specifically used as contrast agents because of their strong
scattering at monopolar resonances. These contrast agents
are typically 1–10 μm in diameter and comprised of a bio-
logically inert gas, e.g., air or high molecular weight gases
(perfluorocarbon, sulfur hexafluoride, or nitrogen), stabilized
within a lipid, protein, or polymer shell [35–38]. Creating
resonances that would affect the dynamic density of the fluid,
on the other hand, is a more difficult task. In order to affect
the density, the inclusions must exert a force on the fluid, and
therefore the corresponding resonances must have a vectorial,
i.e., dipolar angular symmetry. Unlike mechanical systems
supported by a structure or frame, in fluid environments there
is no external reaction force on the wave-carrying medium,
i.e., recoil from the structure as, e.g., in the case of mem-
branes, is not possible. Thus the lowest dipolar modes of the
inclusions are rigid translations with zero frequency. There-
fore, one must reckon with dipolar modes of higher radial
order [34,39], in which, for example, the central part of the
object moves in the opposite direction to the outer regions. If
the object is to effectively recoil from the embedding fluid and
thus exert a force on the fluid, the central part must be hidden,
i.e., effectively inaccessible to the fluid.

We should note that bubbles (unlike droplets, for example)
have no such dipolar modes at all. Their undulations are
completely described by an angle-dependent radial displace-
ment from the spherical equilibrium shape and the normal
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modes are scalar spherical harmonics. From their orthogo-
nality it follows that there is only one dipolar mode, i.e.,
trivial translation with zero frequency, and only one breath-
ing (volume-changing) mode. All higher modes are strictly
volume-preserving and do not shift the center of mass of
the surrounding fluid. Some elasticity of the bubble shell
is additionally required to obtain higher modes with dipolar
symmetry, which could, at least in principle, shift the center
of mass of the surrounding fluid.

Therefore, to avoid the need for dipolar modes, the concept
of dipolar resonances of dimers arising from multiple scatter-
ing was invoked, with a very illustrative demonstration using
two-dimensional lattices of soda cans as Helmholtz resonators
[40]. In the case of bubbles, this effect was theoretically
exploited in Ref. [21], showing that multiple scattering due
to monopolar resonances of disordered but positionally pair-
correlated bubbles can lead to simultaneously negative values
of the dynamic mass density and compressibility. However,
the design of a disordered medium with pairwise spatial cor-
relations between the monopolar resonators is a prerequisite
to ensure the effectiveness of this pairwise coupling.

Higher dipolar modes that shift the center of mass of the
surrounding fluid are certainly present in droplets and similar
full objects with radial degrees of freedom. When excited,
they represent the source of the hidden force on the fluid [39].
However, to obtain such higher modes in the objects, which
should be much smaller than the wavelength in the host fluid,
they must have a much lower speed of sound than the host
fluid. For objects made of continuous media, this is a serious
limiting factor. One way out is to use heterogeneous, highly
porous inclusions [34] in which the speed of sound can be
reduced by more than an order of magnitude due to the high
compressibility of the air in the pores, while maintaining the
high mass density due to the skeleton.

With this work, we take a different approach and model
ultrasonic metafluids in the form of suspensions of discrete
microscopic oscillators with specific and inherently irregular
modal shapes. The model oscillator, described in Sec. III, is
represented by a quasispherical collection of point masses
interacting with harmonic springs. Because of the possibility
of specific and locally very different interactions between
the particles in this discrete network, which do not oc-
cur in a continuum—one of these features is the topology,
the coordination number of important connections between
particles—the normal modes cannot be categorized in ad-
vance and are susceptible to qualitative changes resulting from
changes in the local connection rules. However, the main
difference from the continuum is the so-called floppy or soft
modes [41–45] with unusually low frequencies, known also in
semirigid elastic networks used in modeling proteins [43–48].
They arise from low-energy internal bond-rotational degrees
of freedom that typically form in the underconstrained regions
of the structure. Such anomalous floppy modes could poten-
tially extend the lower frequency end of macromolecules, such
as large proteins, into the supersonic range.

With this motivation in mind, we model the metamaterial
behavior as a generic phenomenon that is not restricted to
regular objects such as bubbles or elastic spheres, nor to a
regular organization in the sense of a particular spatial peri-
odicity or correlation. For a potential metafluid without fully

controlled design, these aspects are essential. Moreover,
modal irregularity opens up more possibilities for the re-
alization of negative dynamic density, while preserving the
convenient breathing resonances of bubbles and vesicles.
Practically, such a metafluid could also consist of two
components—the somewhat simpler bubble- or vesiclelike
component that affects the dynamic compressibility and an-
other, more complex component that affects the dynamic
density. Possible candidates for the latter are globular macro-
molecular structures, such as large globular proteins, protein
bubbles, multilamellar vesicles below the bilayer gel-to-liquid
transition, and other microscopic structures without strong
inherent damping. The possibility that some of them could
even be synthesized via a biological pathway is very tanta-
lizing. Today, microscopic oscillators with sufficient dynamic
functionality could be also microprinted in large numbers to
obtain an artificial acoustic suspension.

Acoustic response is not readily associated with the mi-
croscopic or even macromolecular world, and not so much
with soft matter in general. The aforementioned applications
of encapsulated microbubbles [35–38] in MHz-range medical
ultrasound imaging show, however, that this is a real option.
The scaling ω ∝ 1/

√
m of molecular normal mode frequen-

cies ω with molecular mass m suggests that sufficiently large
macromolecules can exhibit acoustically relevant frequencies.
Indeed, breathing mode frequencies of large proteins extend
down to ∼1 GHz, where the attenuation length of ultrasound
in water is still about 50 μm [49] and would thus allow minia-
ture applications.

We will comprehensively explain the concept of such
metafluids and describe their principle of operation in detail. It
is schematically sketched in Fig. 1. From the normal modes of
the micro-oscillator units coupled to the surrounding fluid, we
will calculate the response of the units to acoustic excitation.
We will also estimate the width of the coupled modes due
to viscous damping in the fluid. All this allows us to arrive
at a self-consistent continuum solution that explicitly defines
the two macroscopic effective moduli—dynamic compress-
ibility and density—that govern acoustic propagation in this
metamedium. We demonstrate that both effective moduli can
indeed become negative and show when this happens. Partic-
ular attention is paid to achieving negative dynamic density,
which is the main challenge with metafluids.

II. ACOUSTIC WAVE EQUATION OF A METAFLUID

The metafluid is a two-component system—a host fluid
component (the main component, water), in which a micro-
oscillator component is randomly distributed. We will treat
it in the dilute limit, which means that the micro-oscillators
do not communicate directly with each other, but only in-
directly via their continuum (mean-field) pressure and flow
fields. Thus, ideally, we have two separations of length scales:
the microunits are sufficiently far apart (dilute limit), while
their mean distance is still small compared to the acoustic
wavelength (the usual limit for a metamaterial). Note that this
idealization is applicable for ultrasound in water up to about
100 MHz.

We describe the dynamics of acoustic waves in the main
component, while the micro-oscillator component gives rise
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FIG. 1. Schematic of a micro-oscillator working principle: a
macromolecular entity is excited by the acoustic field and generates
local flow (arrows) of the host fluid; the contours indicate the corre-
sponding pressure. The dipole component of the flow is associated
with a “hidden” force on the fluid. Dipolar contributions of many
micro-oscillators add up to smooth flow and hidden-force fields,
while contributions of the monopole component (which dominates
in the long-wavelength limit and is not shown) add up to a smooth
volume source field. The former change the effective density and
the latter the effective compressibility of the medium experienced
by the ultrasonic wave. For a continuous medium, these two effects
are described by Eqs. (1) and (4), respectively.

to “hidden” force [50,51] and volumetric flux source. This will
result in an effective wave equation for the main component
with an effective dynamic density ρeff (ω) and an effective
dynamic compressibility χ eff (ω).

With e−iωt as the time factor used from now on, the lin-
earized Euler equation for the main component is

−iωρ0u = −∇p + f ′, (1)

where ρ0 is the density of the main component, u is its acous-
tic (macroscopic) velocity, p is the acoustic pressure, and f ′
is the hidden force density. In view of the two component
system, −∇p is an external force on both components, while
f ′ is an additional internal force of the micro-oscillator com-
ponent on the main component. This separation is absolutely
crucial—these two forces are physically distinct and cannot be
reduced to a single quantity, i.e., the partitioning of the total
force density on the main component into both contributions
is not a matter of choice.

In the following part of this section, dynamic density and
compressibility moduli are justified and systematically intro-
duced. Readers familiar with the subject may proceed directly
to Sec. III.

The hidden force arises from the oscillation of the micro-
oscillators excited by the acoustic field, i.e., by the local
acoustic pressure or velocity or both, depending on the cou-
pling mechanism (pressure or viscous drive). Importantly, in a
linear system, the excited amplitude is linear in the amplitudes
of the acoustic fields p and u (which are themselves linearly
related) and the resulting force F1 of a single micro-oscillator
on the fluid is also linear in the excited amplitude of the micro-
oscillator. Therefore, in the homogeneous limit the hidden

force density f ′ = ρN F1 of the micro-oscillators with number
density ρN can be written in the form

f ′ ≡ iωρ ′(ω)u, (2)

with ρ ′ ∝ ρN . Equation (1) then becomes

−iω[ρ0 + ρ ′(ω)]u = −∇p, (3)

where ρeff ≡ ρ0 + ρ ′(ω) is an effective dynamic density of
the metafluid.

The continuity equation for the main component, with
dρ0/ρ0 = χ0d p the equation of state of the main component
and χ0 its compressibility, is in the usual linearized form

−iωχ0 p + ∇ · u = q′, (4)

where q′ is the additional, hidden volume source density (vol-
ume flux per unit volume) due to the breathing oscillations of
the micro-oscillator component. Again, the volume source Q1

of a single micro-oscillator is linear in its excited amplitude
and thus linear in p, such that in the homogeneous limit the
hidden volume source density q′ = ρN Q1 can be written in
the form

q′ ≡ iωχ ′(ω)p, (5)

with χ ′ ∝ ρN . Equation (4) then becomes

−iω[χ0 + χ ′(ω)]p = −∇ · u, (6)

where χ eff ≡ χ0 + χ ′(ω) is an effective dynamic compress-
ibility of the metafluid.

Finally, from Eqs. (3) and (6) follows the acoustic wave
equation of the metafluid,

∇2 p + ω2χ eff (ω)ρeff (ω) p = 0, (7)

where χ effρeff = 1/c2 defines the speed of sound c in the
metafluid. The particularly interesting case of the double neg-
ative metafluid occurs at frequencies where both χ eff (ω) and
ρeff (ω) are negative and thus c2 is real.

In Secs. V and VI, we will determine the effective moduli
ρeff and χ eff from the modal structure of the micro-oscillator.
In Sec. III, we must first determine these eigenmodes, taking
into account the coupling with the surrounding fluid, which
introduces a nontrivial additional mass load.

III. FLUID-COUPLED MICRO-OSCILLATOR

The micro-oscillator unit is generically represented by a
discrete globular, quasispherical ensemble of point masses mi

with harmonic expansion

Ui j = 1

2
ki j[êi j · (xi − x j )]

2, êi j ≡ Ri − R j

|Ri − R j | (8)

of their distance-dependent quadratic pair potentials Ui j =
1
2 ki j (|Ri + xi − R j − x j | − |Ri − R j |)2 with force constants
ki j , where Ri is the equilibrium position of the ith particle
and xi its fluctuation. Such a generic discrete approach in the
spirit of anisotropic network models [44,46,47] of proteins
is convenient, since practically any microscopic system can
be modeled in this sense and then always coupled to the
surrounding fluid in the same manner.

In the present study, we couple the dynamics of the micro-
oscillator with the surrounding host fluid by considering

224317-3
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incompressible irrotational (potential) flow of the fluid and ne-
glecting its viscosity η. The inviscid approximation is typical
of an acoustic medium that is sufficiently transparent to sound
waves, while the incompressibility assumption corresponds
to the omission of the radiation pressure applicable in the
long-wavelength limit.

To ensure that the viscous effects are small even for the
microscopic flow field v around the micro-oscillator and
the potential flow assumption is sufficient, the radius r0 of
the micro-oscillator should not be too small. The require-
ment that the inertial forces dominate over the viscous ones,
ρ0ωv � η∇2v, leads to the condition r0 � √

2η/(ρ0ω), i.e.,
the micro-oscillator must be large compared to the penetration
length of oscillatory shear (∼0.18 μm for ultrasound with
frequency ν ∼ 10 MHz in water).

The values of the parameters are selected according to the
following strategy. The mean density of the micro-oscillator
is kept on the order of ρ0, which is also confirmed by the
results as the relevant density scale. This sets the mass of
the micro-oscillator given its typical micron size. Finally, the
constants ki j are chosen such that the relevant resonances
occur at frequencies in the typical ultrasonic range of 10 MHz,
which is also realistic for micron-sized objects.

To ensure strong coupling of the micro-oscillator to the
surrounding fluid, it is assumed that the surface of the micro-
oscillator is impermeable to the fluid. In practice, this may be
a physical surface due to hydrophobicity, as in the case of a
lipid bilayer, or an effective surface defined by a depletion
layer. It is essential that the modeled contact surface with
the fluid, albeit discrete, is complete and that pressure forces
acting on it are described exactly. Otherwise, a homogeneous
pressure field will lead to a spurious net force on the micro-
oscillator, which in the long-wavelength limit will prevail over
actual pressure gradient force. Therefore, the interfacial part
of the mesh is triangulated and the pressure force F	 on
each triangle is distributed to its three vertices A, B,C by the
requirement of zero in-plane torque on the triangle,

FA = FB = FC = F	/3. (9)

Similarly, the velocity of the triangle’s center is expressed
with the velocities of the vertices as

v	 = (vA + vB + vC )/3. (10)

The velocity potential of the surrounding fluid with veloc-
ity v(r) is of the general form

�(r, θ, φ) =
∑
lm

blm

(
r

r0

)−(l+1)

YR
lm (θ, φ), v = ∇�, (11)

where YR
lm are real combinations of spherical harmonics.1 We

will determine the multipole coefficients blm by relating the
radial component vr (r0, θ, φ) = ∂�/∂r of the flow velocity
on a virtual sphere r = r0 to the motion of the triangles.

1A Green’s function boundary element formulation [52] is an alter-
native. Here, the spherical harmonics expansion is preferred, mainly
because of the tractability of the dissipation integrals; see the Ap-
pendix.

This sphere can be the average effective surface of the micro-
oscillator, or its circumscribed sphere as illustrated in Fig. 1.
In our examples, all surface points will lie on this sphere, but
this is not necessary in general. By integrating over the sphere
and considering the orthogonality of YR

lm ,

blm = − 1

l + 1

1

r0

∫
dS vr (r0, θ, φ)YR

lm (θ, φ). (12)

The knowledge of the continuous function vr (r0, θ, φ) is
required. In the simplest discrete approximation, we re-
place the integral by a sum over the triangles 	 j , that is,∑

	 j S j vr (r0, θ
	 j

, φ	 j
)YR

lm (θ	 j
, φ	 j

), where the superscript
	 j denotes the values at the centers of the triangles and S j are
their areas.

The single scalar boundary condition for potential flow
requires that the normal velocity of the center of the triangle
(i.e., the average normal velocity of the triangle) be equal to
the normal velocity of the fluid at that point (whereas any rota-
tion of the triangle about an axis through its center is coupled
only to the rotational components of the flow). Stating this
normal boundary condition for the radial velocity components
in Eq. (12) is a convenient approximation. Then, with respect
to outward normals n̂ j of the triangles, we obtain

blm = − 1

l + 1

1

r0

∑
	 j

S j[(v	 j · n̂ j )n̂ j] · ê	 j

r YR	 j

lm , (13)

where ê	 j

r are radial directions at the centers of the triangles
and S j n̂ j · ê	 j

r are radial projections of their faces. We thus see
that in this approximation the coefficients blm of the potential
flow Eq. (11) are expressed by the volume fluxes through the
virtual sphere r = r0 generated by the normal translation of
the triangles.

In Eq. (13), only the midpoint values of the spherical har-
monics are used instead of their complicated integrals over the
triangles. Thus, when l in Eq. (11) is brought to high values,
one gets sharper and sharper peaks of �(r0, θ, φ) as the series
reproduces this discrete function more and more accurately.
To avoid this artifact, it is necessary to truncate the series at
l = lmax such that the number of terms (lmax + 1)2, i.e., the
number of degrees of freedom, is of the order of the number
of surface points.

Taking into account the linearized form of the Bernoulli
equation, p = −ρ0∂�/∂t , i.e.,

p = iωρ0�, (14)

the pressure force on a triangle, resulting from the flow
Eq. (11) of the surrounding fluid, is F	i = Si(−n̂i )p	i =
−iωρ0Sin̂i�	i

. In agreement with the radial direction approx-
imation assumed in Eq. (13), it turns out, however, that we
must again introduce a radial projection,

F	i = −iωρ0Sin̂i
(
n̂i · ê	i

r

)
�	i

, (15)

which can be interpreted as the normal component of the
pressure force acting on the spherical cap belonging to the
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triangle. Inserting the expressions Eqs. (11) and (13),

F	i = ω2ρ0

r0
Sin̂i

(
n̂i · ê	i

r

)∑
lm

1

l + 1

×
∑
	 j

S j
(
n̂ j · ê	 j

r

)
(n̂ j · x	 j

)YR	 j

lm YR	i

lm , (16)

we obtain a closed expression for the force F�i
on a triangle

i in terms of a linear combination of displacements x	 j
of

centers of all triangles j. Importantly, the radial projection
in Eq. (15) ensures that in Eq. (16) the coefficient of x	 j

appearing in F	i
and the coefficient of x	i

appearing in F	 j

are identical and hence the effective mass matrix in Eq. (19)
will be symmetric.

We can now write down Newton’s law for a particle i,

−miω
2xi = −

∑
j

dUi j

dxi
+ Fp

i , (17)

where the pressure force

Fp
i = 1

3

∑
	k
i

F	k
(18)

is nonzero for the particles on the surface of the micro-
oscillator and is obtained by adding contributions Eq. (16) of
all triangles with vertex i, considering the simple connections
Eqs. (9) and (10).

In a clean matrix form for the “supervector” x = {xi} of the
particle vectors xi, Eq. (17) becomes

−ω2Tx = −Vx, (19)

where V is the interparticle force matrix defined by the
quadratic pair potentials Eq. (8), which is symmetric by def-
inition, and T ≡ M + A is the effective mass matrix of the
fluid-coupled micro-oscillator, with M the trivial diagonal ma-
trix of the point masses mi and A the additional effective mass
matrix due to the fluid. The matrix A results from Eqs. (16),
(10), and (18), and is a full, symmetric matrix. The latter is
ensured by the analogous projections in Eqs. (13) and (15).

We can check a simple limit—that of a symmetric breath-
ing mode of a perfect sphere with amplitude �r0. For this
spherically symmetric velocity vr = −iω�r0 of the sphere
surface, Eq. (12) yields the only nonzero coefficient b00 =√

4π iωr0�r0, the velocity potential Eq. (11) is then �(r) =
iωr0(r0/r)�r0, and the fluid pressure Eq. (14) at the sphere
surface is

p = −ω2ρ0r0�r0. (20)

In passing, the fluid pressure can also be written in terms of an
effective mass load mfluid of the fluid, p = −mfluid ω2/(4πr2

0 ),
which is thus three times the fluid mass m0 displaced by the
sphere,

mfluid = 3m0. (21)

Balancing the fluid pressure Eq. (20) and the pressure p =
−3χ−1�r0/r0 inside the bubble, where χ is the compressibil-
ity of the bubble, the natural (Minnaert [53]) frequency of a
bubble entrapped in the fluid is ω = √

3/(ρ0χ )/r0.

A. Coupled modes

For symmetric matrices T and V, the generalized eigen-
system Eq. (19) is solved by eigenvectors xi (denoted by the
superscript),

Vxi = ω2
i Txi, x jTxi = 0 ⇐ ω2

i �= ω2
j , (22)

which are, for different eigenvalues ω2
i , orthogonal with

respect to the scalar product with T. Note that, for the
fluid-coupled micro-oscillator, T is a full matrix. Due to the
translational and rotational symmetry of the whole system,
there are three translational and three rotational degenerate
modes with zero frequency. For a complete orthogonal basis,
this six-dimensional subspace (the null space of V) must be
orthogonalized with respect to T. Additional degeneracies are
present in the case of a symmetric (particle positions Ri,
stiffness constants ki j) micro-oscillator and must be orthog-
onalized.

For a physical interpretation, one must keep in mind that T
maps from the space of displacements x to the space of forces,
i.e., up to the factor ω2; Tx is the vector of forces needed to
generate the displacement vector x if the forces Vx between
the particles were not present. So the scalar product yTx is
between a displacement vector y and the force vector giving a
displacement vector x for V = 0.

IV. ACOUSTIC SOLUTION AND EXCITATION
OF COUPLED MODES

The dynamic equation (19) for the fluid-coupled micro-
oscillator has been written in the system where the far-field
fluid is at rest, i.e., the motion of the fluid is due only to the
motion x of the micro-oscillator. In the presence of a long-
wavelength acoustic wave with frequency ω and amplitude a0,
the total solution vector of the micro-oscillator is

xtot (ω) = a0(ω) + x(ω), (23)

where a0 is the “supervector” of rigid translation, i.e., a0

for each particle. The corresponding solution in the fluid
component is v(ω) = −iωa0(ω) + ∇�, i.e., the background
quasihomogeneous acoustic flow plus the local flow gener-
ated by the micro-oscillator. By the ansatz Eq. (23), x is still
defined in the rest system of the fluid, so the micro-oscillator–
fluid coupling conditions of the eigenvalue problem are not
affected.

The dynamic equation for the complete solution Eq. (23),
i.e., an augmented version of Eq. (19), is

−ω2Ma0 − ω2Tx + Vx = F, (24)

where F is the excitation force acting on the coupled system,
i.e., the acoustic pressure force on the triangles distributed
to their vertices by Eq. (9). We have considered that for a
rigid motion xtot = a0 (thus x = 0) there is no force other
than F between the micro-oscillator and the fluid, and no force
between the particles, Va0 = 0. We thus have

−ω2Tx + Vx = F + ω2Ma0, (25)

where ω2Ma0 is interpreted as a system force—an additional
excitation force acting on all particles, while F acts only on
those on the surface. These forces generally excite relative
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motion between the interior of the micro-oscillator and its
surface, resulting in hidden reaction forces on the fluid. As a
check, in the case when the densities of the micro-oscillator
and the fluid are equal, the sum of all force vectors in F
(buoyancy) is equal and opposite to the total system force
and, according to Eq. (25), x = 0 is indeed a possible solu-
tion (which takes place when the excitation of the modes is
negligible, e.g., for very low frequencies).

Writing x = ∑
i ci|xi〉 and using the bra–ket notation, the

excited amplitudes ci of the modes |xi〉 are obtained by pro-
jecting the dynamic equation (25) onto the modes. Taking into
account the orthogonality Eq. (22), the mode amplitudes are

ci = 1

ω2
i − ω2

〈xi|(F + ω2Ma0)〉
〈xi|T|xi〉 , (26)

provided that all degenerate modes, Sec. III A, have been or-
thogonalized. We see that the effective mass matrix T, which
also contains the mass load of the coupled fluid, appears in
the denominator of Eq. (26) and reduces the mode amplitudes
compared to the uncoupled case.

We regularize the singularities in Eq. (26) at ω2 = ω2
i

by introducing an imaginary part of ωi, i.e., ω′
i ≡ ωi − iβi,

while leaving the corresponding eigenmode unchanged. This
is the classical Rayleigh damping, which is an adequate and
standardly used approximation for the case of weak damp-
ing. Examples of sufficient conditions [54] for this type of
damping are that the drag force supervector is proportional
to Tv or Vv, where v is the particle velocity supervector.
Physically, this means that the damping force of a given mode
is distributed to all micro-oscillator particles in proportion to
their inertial or potential force amplitudes in that mode. We
estimate the damping coefficients βi, Eq. (A13), in a pertur-
bative way by integrating from r = r0 to r = ∞ the viscous
dissipation for the unperturbed flow Eq. (11) coupled to the
mode; see the Appendix.

V. HIDDEN FORCE AND SELF-CONSISTENT
DYNAMIC DENSITY

To find the hidden force density f ′ of Eq. (1) which defines
the effective dynamic density of the metafluid via Eqs. (2) and
(3), we need to (i) formulate the force of the micro-oscillator
on the fluid arising from its excited modes Eq. (26) and (ii)
find a self-consistent excitation force F in Eq. (26) coming
from the action of the continuous “sea” of other identical
randomly oriented micro-oscillators in addition to the original
acoustic pressure.

We regroup the terms of the dynamic equation (24) such
that the form of Newton’s law for individual particles with
displacements, Eq. (23), becomes transparent,

−ω2M(a0 + x) = −Vx + ω2Ax + F. (27)

The interparticle forces −Vx are internal forces and drop out,
F are due to the effective acoustic force acting everywhere
in the fluid, while ω2Ax are just the forces of interest—the
additional forces of the fluid on the surface particles due to
the coupled modes. Therefore, the total force of the excited
micro-oscillator on the fluid is the negative sum of these force

vectors,

F1 = −ω2
∑

i

A{xi}

= ω2
∑

i

M({a0} + {xi}) +
∑

i

{Fi}

= ω2m(a0 + x) − ω2m0a0, (28)

where m is the mass of the micro-oscillator, x is the am-
plitude of the center of mass of the micro-oscillator modal
motion, and m0 is the mass of the fluid displaced by the
micro-oscillator. The latter is just Archimedes’ principle—the
pressure force on a closed region of the fluid drives its acoustic
motion a0; the equivalent continuous version of this statement
is Eq. (1).

The hidden force density that follows from Eq. (28) is

f ′ = ρN F1 = ω2ρN [mx + (m − m0)a0]. (29)

Finally, one needs to find the excited x. We assume that x lies
along the axis defined by a0, which is true for an isotropic
system, so in average it is also true for dispersion of orien-
tationally disordered generally anisotropic micro-oscillators.
The excited mode amplitudes, Eq. (26), require a0 as well
as F, which requires knowledge of the pressure p, which,
in turn, to be connected to a0 by one of Eqs. (3) or (6),
requires knowledge of the dynamic density or compressibility.
In contrast, to compute x in an isotropic linear system, only
the gradient part of the local pressure is needed, but not its
constant (homogeneous) part, since the excitation by homo-
geneous pressure cannot give a preferred direction and thus
x = 0 by symmetry. (In a nonlinear system, the magnitude of
x would in general also depend on the homogeneous part of
the pressure.)

From Eq. (1) it follows that the gradient of this local fluid
pressure is nothing but −∇p + f ′ and is simply expressed by
−ω2ρ0a0. Thus, for the calculation of x, one obtains the exci-
tation forces Fi on the surface particles, required in Eq. (26),
from the local pressure field of the form

p∇ ≡ ω2ρ0a0 · r, (30)

where a0 is constant, which agrees with Archimedes’ princi-
ple considered in Eq. (28). With that, the force supervector in
Eq. (26) is

F = {Fi} = −ω2ρ0
1

3

∑
	k
i

{Skn̂k (ê0 · R	k
)}a0, (31)

where the sum runs over triangles with vertex i and ê0 is a unit
vector in the direction of a0.

An important result is that the self-consistent excitation of
the mode amplitudes Eq. (26) and the self-consistent hidden
force density Eq. (29) with x = ∑

j

∑
i c j (a0)mix

j
i , where x j

i
is the displacement of particle i in mode j, are determined
purely from the surface geometry and the modal structure of
the micro-oscillator and are proportional to the amplitude a0

of the resulting acoustic wave.
Thus, if we write x = (x/a0)a0 with the awareness that

x/a0 does not depend on a0 and is exclusively a property of the
fluid-coupled micro-oscillator, with the hidden force density
Eq. (29) we obtain a compact Euler equation, Eq. (1), of the
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acoustic metafluid,

−ω2

[
ρ0 + ρN

(
m

x

a0
+ (m − m0)

)]
a0 = −∇p, (32)

which in the square brackets explicitly defines an effective
dynamic density

ρeff (ω) = ρ0 + ρ ′ = ρ0 + φV (ρ − ρ0) + φV ρ
x(ω)

a0
(33)

in terms of modal structure, mean mass density ρ = m/V1 of
the micro-oscillator with volume V1, and their volume fraction
φV = ρNV1 in the dilute limit. In Eq. (33), the first two terms
reflect a simple compositional average, while the last term
represents the dynamic effect.

To build understanding step by step, we start with a min-
imal micro-oscillator model that produces the hidden force
effect, Fig. 2 (top). It has both dipolar and breathing reso-
nances; in our particular example they are around 9.5 MHz
and 2.5 MHz in its basic design, but in general it is important
that they are in the relevant ultrasonic range. A single central
mass interacts with the shell, here represented by surface
masses in an arrangement of the Thomson problem [55] and
with negligible interactions between them. In other words,
there is no in-surface elasticity, as is the case for a bubble.
The central mass is needed in addition for the force effect,
which is not present in the bubble. A single ρ ′ resonance is
observed (black), corresponding to the relative motion of the
central mass with respect to the surface. The situation changes
significantly already if the in-surface elasticity is included,
like in Fig. 2 (bottom), where the interaction with the central
mass is negligible and thus this mass is irrelevant this time.
Nevertheless, several ρ ′ resonances take place, corresponding
to different modes of the surface particles alone.

This minimalistic example (and that of Fig. 4) is meant to
illustrate the increasing complexity of the dynamic density re-
sponse when the micro-oscillator becomes more complicated.
Here and in all other cases, orientational averaging of the
micro-oscillator was performed to describe an orientationally
disordered metafluid and to cancel the artifacts [due to the
discrete approximation of Eq. (12)] of a particular orientation
with respect to the spherical basis. This ensures that x and
hence the hidden force are exactly parallel to the acoustic
polarization a0 and a scalar effective density can indeed be
defined as in Eqs. (3) and (32), (33).

A. ρ′ performance

To pursue the practically relevant question of which ob-
jects are better suited to generate a large negative dynamic
density, heavier or lighter ones, Fig. 2 (top) also shows the
dependence of ρ ′ on the mean density2 ρ of the micro-
oscillator with fixed size r0 = 3 μm, which is to be examined
together with Eq. (33). The interparticle potential is rescaled
proportionally to ρ so that the normal frequency of the free
micro-oscillator remains unchanged. For the fluid-coupled

2Here we discuss only the effect of density scaling, while the more
subtle effects of the distribution of mass and bond strength will be
the focus of a follow-up study.

FIG. 2. Frequency dependence of dynamic density per volume
concentration ρ ′/φV for a simple micro-oscillator with one central
and 20 surface points; all masses are equal. Top: the interactions
between surface points are negligible, while those with the central
point are equal. Bottom: the interactions with the central point are
negligible, while all surface points interact equally with their nearest
neighbors; ρ = 2ρ0. Shown are some of the corresponding normal
modes: in the upper case, the density effect results from the rigid
relative motion of the shell with respect to the central mass, while
in the lower case the effect is due solely to the motion of the surface
points. Top (color/dashed): the dependence of the performance on the
mass of the micro-oscillator with fixed size r0 = 3 μm. The splitting
of the resonances, observed also in Fig. 3 (top), is due to a slight
nondegeneracy of the depicted mode.

micro-oscillator, the normal frequency therefore decreases
slightly with decreasing ρ, as expected. The weak ρ ′ perfor-
mance of low-density micro-oscillators is dictated by the ρ

factor of Eq. (33), since the increasing x of lighter objects
gets saturated by the finite fluid mass load. On the other hand,
the performance of high-density micro-oscillators goes into
saturation quite quickly. So we learn that the mean density of
the micro-oscillator is not crucial as long as it is not much
lower (e.g., in the case of hollow shells) than that of the host
fluid.
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FIG. 3. Dependence of ρ ′/φV (top) and χ ′/φV (bottom) on the
size r0 of the micro-oscillator, keeping its mean density fixed at ρ =
2ρ0. The splitting of the resonances (top), already seen in Fig. 2 (top),
is due to a slight nondegeneracy of the eigenmode in Fig. 2 (top).

Of practical interest is also the dependence of ρ ′/φV on the
size r0 of the micro-oscillator, Fig. 3 (top), this time at fixed
mean density ρ. Again, the potential between the particles
was rescaled in proportion to their mass, leaving the un-
coupled frequencies unchanged. But the effective fluid mass
load also scales in the same proportion, so the frequencies
of the fluid-coupled micro-oscillator also remain unchanged.
What changes substantially is the damping coefficient, which
scales as 1/r2

0 according to Eq. (A13), as the coefficients,
Eq. (12), scale as r0. Considering x of the simple mode of
Fig. 2 (top) as an oscillator with eigenfrequency ω0, damp-
ing coefficient β, effective mass m, driving force F , and
dynamic equation (ω2

0 − ω2 − 2iωβ )x = F/m, the real part
of its amplitude x(F ) is Re(x) = (F/m)(ω2 − ω2

0 )/[(ω2 −
ω2

0 )2 + (2ωβ )2], which has the two extrema

Re(x)1,2 ≈ ± F

m

1

4βω0
(34)

at ω2 − ω2
0 = ±2βω0. Since F/m is independent of r0 in

this case, the extrema of the dynamic part of ρ ′ are thus

inversely proportional to the damping coefficient, so that the
performance falls sharply as the size of the micro-oscillator
decreases. This is indeed confirmed by Fig. 3 (top).

Recall that the estimate of the damping coefficient
Eq. (A13) is based on potential flow and is therefore an over-
estimate for situations with strong damping. Nevertheless, the
general message is that damping is a critical limiting factor
for metafluid systems. As Fig. 3 (top) suggests, this problem
can be overcome with sufficiently large micro-oscillators—a
reasonable estimate of the critical scale is 1 μm.

VI. HIDDEN VOLUME SOURCE AND SELF-CONSISTENT
DYNAMIC COMPRESSIBILITY

To find the hidden volume source density q′ of Eq. (4)
which defines the effective dynamic compressibility of the
metafluid via Eqs. (5) and (6), we need to formulate the
volume source of the micro-oscillator arising from its excited
modes, Eq. (26). This time the excitation with the actual, full
pressure of the fluid is relevant.

One sees that in the long-wavelength limit the local pres-
sure p′ exerting on the fluid the hidden force f ′ in Eq. (1) is
negligible with respect to p, although in the metaregime f ′
is comparable to ∇p. This looks paradoxical at first glance,
but it is not: p builds up from ∇p on the length scale
of the wavelength, whereas p′ builds up from −f ′ on the
length scale of the inter-micro-oscillator spacing—the micro-
oscillator pushes the fluid at the front with increased pressure
and pulls it at the back with decreased pressure. From the
point of view of the continuum: to accelerate an extended
region of the fluid, a large pressure such as p must be applied
to its boundary, while no such pressure is required if the
accelerating force, like f ′, is distributed in the volume.

Thus F in Eq. (26) is given by the pressure p. The second
term in this equation can also be expressed by p via Eq. (3),

ω2Ma0 = ω2{mi}a0 = {mi} ik
ρeff

p, (35)

which is out of phase with the first term. This would make
dynamic compressibility inherently complex and would be a
problem for the metaregime. However, one sees two things.
(i) In a free micro-oscillator, this term excites only rigid
translation modes with no volume change and is orthogonal
to all other modes. Only the coupling with the fluid makes
this term in general not perfectly orthogonal to other modes.
(ii) Comparing the force on a surface particle from the second
and first terms of Eq. (26), the ratio of their magnitudes can be
estimated to ∼(ρ/ρeff )kd , where d is an effective thickness of
the surface layer. Unless ρeff is close to zero, the ratio of the
magnitudes in the long-wavelength limit is tiny.

Therefore, we neglect the second term of Eq. (26), while
the force supervector of its first term is

F = {Fi} = −1

3

∑
	k
i

{Skn̂k}p, (36)

where the sum runs over triangles with vertex i. The volume
flux of the micro-oscillator is

Q1 = −iω
∑
	k

1

3

∑
i∈	k

Sk n̂k · xi ≡ S1Q̃1, (37)
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where the first sum is over all triangles, the second over the
vertices of a triangle, and xi = ∑

j c j (p)x j
i are proportional to

p. For a given dynamics, Q1 scales with the surface area of the
micro-oscillator, while its surface density Q̃1 = Q1/S1, where
S1 is the total surface area of the micro-oscillator, remains
unaffected.

Knowing that Q1/(iωp) does not depend on p and is
exclusively a property of the fluid-coupled micro-oscillator,
we write Q1 = iωp Q1/(iωp). With the hidden volume
source density q′ = ρN iωp Q1/(iωp) we obtain a compact
continuity/compressibility equation, Eq. (4), of the acoustic
metafluid,

−iω

(
χ0 + ρN

Q1

iωp

)
p + ∇ · u = 0, (38)

which explicitly defines an effective dynamic compressibility

χ eff = χ0 + χ ′ = χ0 + φV
S1

V1

Q̃1

iωp
(39)

in terms of modal structure and volume fraction φV of the
micro-oscillators in the dilute limit. The surface to volume
ratio S1/V1 reflects the fact that for a given volume flux den-
sity Q̃1 from the surface of the micro-oscillator (the mean
velocity of the surface) its relative volume change rate is
inversely proportional to its linear size. Alternatively, one
can simply write in Eq. (39) φV S1/V1 ≡ φS , where φS is the
total surface area of the micro-oscillators per volume of the
metafluid, intuitively suggesting that the “active region” is
indeed the surface of the micro-oscillators.

Figure 4 (top) shows the dynamic compressibility spectrum
of our simple model micro-oscillator from Sec. V, whose
breathing mimics that of a bubble: there is no surface elas-
ticity and the compressional function of the trapped gas is
taken over by the isotropic interaction with the central point,
which is otherwise obsolete. A single breathing mode results
(black) and, because of mode orthogonality, this is the only
volume-changing mode that exists for a bubble. But even
simple surface elasticity relaxes this constraint, and many
different resonances begin to contribute to the volume change;
see Fig. 4 (bottom).

A. χ′ performance

We are again interested in the practical question of which
objects produce a larger negative compressibility—heavier or
lighter ones. Figure 4 (top) shows the dependence of χ ′ on the
mean density ρ of the micro-oscillator with fixed size r0 =
3 μm. In this case, the interparticle potential was rescaled,
taking into account the fluid mass load Eq. (21), such that the
normal frequency of a perfect fluid-coupled breathing sphere
would remain unchanged. It is well seen that the damping
coefficient decreases with increasing ρ, which is in agreement
with the factor 〈xi|T|xi〉 in the denominator of Eq. (A13).
Yet the peak height of χ ′ shows only a weak dependence
on ρ. Why is this so? Similar to our earlier consideration
leading to Eq. (34), this time we consider Q̃1/(iω) = −x of
the simple breathing mode, Fig. 4 (top), as an oscillator with x
the radial amplitude of the surface particles. Thus the extrema
of Q̃1/(iω) are again given by Eq. (34). However, this time F
is constant there, while the product mβ in the denominator is

FIG. 4. Frequency dependence of dynamic compressibility per
volume concentration χ ′/φV for the simple micro-oscillator model
of Fig. 2. Top: the interactions between surface points are negligi-
ble. Bottom: the interactions with the central point are negligible;
ρ = 2ρ0. Shown are some of the corresponding normal modes. Top
(color/dashed): the dependence of the performance on the mass of
the micro-oscillator with fixed size r0 = 3 μm.

also constant according to Eq. (A13), as for a given modal
shape it depends only on r0. Therefore, the weak density
dependence observed in Fig. 2 (top) is actually due to the
factor 1/ω0 of Eq. (34). We can conclude that the bandwidth
of the χ ′ performance decreases with increasing the mean
density of the micro-oscillator, while the peak amplitude is
independent of it.

Figure 3 (bottom) shows the dependence of χ ′/φV on the
size r0 of the micro-oscillator with fixed mean density ρ.
As in Fig. 3 (top), the potential between the particles has
been rescaled in proportion to their mass, leaving both uncou-
pled and coupled normal frequencies unchanged. Again, the
damping coefficient scales as 1/r2

0 . However, unlike ρ ′/φV in
Fig. 3 (top), in our simple oscillator model the driving force
F of Eq. (34) is now proportional to the surface area of the
micro-oscillator rather than its volume, so that Q̃1/(iω) gets
a factor of F/m = 1/r0. Together with the factor 1/r0 in
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Eq. (39) this compensates for the inverse proportionality of
χ ′/φV peaks to the damping, Eq. (34), making their heights
exactly independent of r0. Physically speaking, the lower
damping of a larger micro-oscillator is canceled out by a
weaker driving force relative to its larger mass. In effect, the
bandwidth of the χ ′ performance decreases sharply with the
size of the micro-oscillator, while the peak amplitude is again
independent.

VII. TOWARDS A REALISTIC SCENARIO

To go beyond the pure examples shown earlier and get a
sense of a more realistic situation, Fig. 5 (bottom) shows, as an
example, the dynamic density performance of a more compli-
cated and less regular micro-oscillator consisting of 30 surface
and 50 internal particles with random positions and varying
potentials; see Fig. 5 (top). The idea behind this still rather
simple example is to model a heterogeneous macromolecule,
in which different structural units with higher stiffness in-
teract in a less stiff manner, as is typical for proteins. In
particular, due to the possibility of low-frequency floppy

FIG. 5. Top: a heterogeneous micro-oscillator model consisting
of 30 surface (black) and 50 internal (color) particles with random
positions and varying potentials; dashed lines indicate strong bonds.
Bottom: the corresponding dynamic density spectrum—real (black)
and imaginary (color) parts of the complex quantity ρ ′/φV , Eq. (33).
Inset: close-up of the frequency response of the two parts near a
resonance.

FIG. 6. Top: normalized pressure field p/p0 profile in the xz
plane of an acoustic wave traveling to the right at ν = 0.05 MHz.
A micro-oscillator of the type of Fig. 2 (but with different masses,
spring constant, and size) is located at x = y = z = 14.5 μm. Mean-
subtracted center of mass of the micro-oscillator xcms and the average
displacement of the fluid x f (evaluated at the initial center of mass of
the micro-oscillator) at ν = 0.05 MHz (middle) and ν = 0.17 MHz
(bottom). In the latter case, the micro-oscillator and the fluid move
almost out of phase.
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modes in such discrete heterogeneous structures [41–45], their
dynamic properties can differ significantly from those of uni-
form elastic objects, and it is precisely such effects that one
would like to exploit in the development of a metafluid. We
will investigate these issues in future studies using extensive
micro-oscillator models of the type shown in Fig. 5 (top).

Figure 5 (bottom) reminds us that in general there may be
many frequency windows of potential interest. This time we
also show the imaginary part of the dynamic modulus, which
was omitted in all previous figures. It represents energy loss
and cannot be negative. The inset shows the detailed behavior
of the complex quantity ρ ′/φV near a resonance and unveils
the standard resonant response of the real and imaginary parts
of the compliance. Exactly at the resonance, where the real
part is zero and the imaginary part is maximum, there is only
damping, i.e., strong scattering and no wave propagation. The
frequency windows of a transparent metafluid lie to the right
of the resonances where the imaginary part of ρ ′ is already
small, while the real part is still large and negative, provided,
of course, that in the same frequency window the same is true
for χ ′.

In this work we have treated the suspension in the di-
lute limit, where direct interactions between the oscillators
are neglected. For larger micro-oscillator densities, one can
resort to methods of mesoscopic simulations. In a prelimi-
nary study, we have set up a coupled molecular dynamics
(micro-oscillator)–lattice-Boltzmann [56] (solvent) simula-
tion, where the interaction between the micro-oscillator beads
and the solvent is implemented by the immersed boundary
method [57,58]. In qualitative agreement with the harmonic
analysis presented in this work, we show that the pres-
sure waves induce a motion of the center of mass of the
micro-oscillator; see Fig. 6. At the right frequency, the
micro-oscillator moves in the opposite direction as the fluid,
Fig. 6 (bottom), decreasing the effective density of the
system.

VIII. SUMMARY AND CONCLUSION

Let us recapitulate the distinguishing features of the
presented metafluid model. (i) It is a model of a fluid meta-
material without the support of an external skeletal structure
providing external reaction forces. Instead, these come from
the inner, hidden part of the micro-oscillator, which must be
effectively inaccessible to the host fluid. (ii) The operation
of such metafluids is not based on spatial organization of
the micro-oscillators. (iii) The modal shapes of the micro-
oscillators are generally irregular, as is normally true also for
biological or macromolecular objects. In principle, this gen-
eralization does not pose a problem for the metabehavior and
opens more frequency windows as candidates for a suitable
metaregime. Moreover, the discrete, irregular, heterogeneous
micro-oscillator structure with different local connections
(e.g., interconnected filaments, sheets, clumps) is thought to
allow for dynamic surprises not expected from quasihomoge-
neous elastic systems, such as floppy modes, which extend
the low-frequency range and could also lead to anomalous,
stronger hidden force effects.

We should not overlook one characteristic feature. The
results show that the dynamic compressibility effect χ ′/χ0 is

much larger than the dynamic density effect ρ ′/ρ0; cf. Figs. 2
and 4. In our minimal models, this is directly due to design,
i.e., the choice of an appropriately weak interparticle potential
to keep the normal frequencies low enough. But in reality it is
similar—compared to the displaced volume of the host fluid,
complex molecules have much lower breathing frequencies
due to voids and numerous ways to move orthogonally to
strong bonds. This means that such a (bio)macromolecular
metafluid will tend to have large negative effective com-
pressibility and smaller negative effective density relative
to the moduli of the host fluid. This apparently convenient
circumstance allows the speed of the metaultrasound c =
(χ effρeff )−1/2 to be kept close to the original ultrasound speed
in the host fluid. For the same reason, however, the specific
impedance z = (ρeff/χ eff )1/2 of a metafluid will be low—this
seems to be a characteristic property of metafluids of this type.

Not surprisingly, our results show that damping is a crucial
limiting factor for the metafluid systems described. More pre-
cisely, as best seen in Fig. 3, it is only crucial for the dynamic
density mechanism, but not for the compressibility. The rea-
sons for this rather interesting distinction were discussed in
Sec. VI A. This confirms that a sufficient hidden force effect
is the main challenge in metafluids.

The specific intrinsic damping within the micro-oscillator
was not considered in our model. It should be small or
at most comparable to the viscous damping in the solvent.
Reasonable candidates for micro-oscillators are therefore
macromolecules. The damping of isolated molecules is neg-
ligible compared to the damping caused by contact with the
solvent. Also suitable would be artificial, e.g., microprinted
oscillators. Not to be excluded a priori are lyotropic lipid bi-
layer structures such as multilamellar vesicles if they are in the
solid (gel) state, while microbiological objects are generally
overdamped.

Nevertheless, damping at the microscopic scale was taken
into account by integrating the dissipation down to the size
of the micro-oscillator r0. This also effectively captures the
specific dissipation at the contact between the solvent and the
micro-oscillator by slightly redefining r0. Here, the dissipation
is primarily due to the local reconfiguration of the trapped
solvent molecules in response to the changing configuration
of the micro-oscillator and should be sufficiently small. This
requirement is compatible with the assumption in Sec. III
that the interior of the micro-oscillator should be inaccessible
to the solvent, which is necessary in the case of potential
flow. In general, it is essential for the compressibility effect,
but perhaps not necessarily for the density effect, which in
principle could also be based on viscous coupling with the
fluid.
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APPENDIX: VISCOUS DISSIPATION
AND MODE DAMPING

The damping of the coupled modes, Eq. (22), is estimated
by calculating viscous dissipation (time-averaged heat pro-
duction rate) P in the volume of the surrounding fluid for the
unperturbed potential flow Eq. (11) of the fluid,

P = 1

2

∫
dV σ v∗

i j vi j = η

∫
dV v∗

i jvi j, (A1)

where σi j = 2ηvi j is the viscous stress tensor, η is the viscos-
ity, and vi j = 1

2 (∂iv j + ∂ jvi ) is the strain rate tensor. Such a
perturbation treatment is a good approximation for the weak
damping case.

The velocity field, Eq. (11), is

v(r) = ∇� =
∑
l,m

blm(R′
lYlmr̂ + Rl∇Ylm), (A2)

where Rl (r) = (r/r0)−(l+1), r̂ = r/r, and ∇ is the angular part
of ∇, while the strain rate tensor is

vi j =
∑
l,m

blm

(
R′′

l Ylmr̂ ⊗ r̂ + 2R′
l [∇Ylm ⊗ r̂]S

+ R′
l

r
Ylm(I − r̂ ⊗ r̂) + Rl∇ ⊗ ∇Ylm

)
, (A3)

where [ ]S denotes symmetrization. We use here the usual
complex spherical harmonics Ylm and the coefficients blm

are now proper complex combinations of blm and bl,−m of
Eq. (11). However, since the final result is independent of this
transformation, we keep the notation blm unchanged.

It can be shown that any tensor field (like vi j) can be
expanded in terms of an orthogonal set of tensor spherical
harmonics [59,60]. Following Ref. [61], see Eqs. (2.28b) and
(2.30a)–(2.30d) therein, we write down the dyadic terms of
Eq. (A3):

Ylmr̂ ⊗ r̂ =
(

(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

−
(

2l (l + 1)

3(2l − 1)(2l + 3)

)1/2

T2,l,lm

+
(

l (l − 1)

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm

− 1√
3

T0,l,lm
, (A4)

r[∇Ylm ⊗ r̂]S = −
(

l2(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

−
(

3l (l + 1)

2(2l − 1)(2l + 3)

)1/2

T2,l,lm

+
(

l (l − 1)(l + 1)2

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm
, (A5)

Ylm(I − r̂ ⊗ r̂) = −
(

(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

+
(

2l (l + 1)

3(2l − 1)(2l + 3)

)1/2

T2,l,lm

−
(

l (l − 1)

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm

− 2√
3

T0,l,lm, (A6)

r2∇ ⊗ ∇Ylm =
(

l2(l − 1)2(l + 1)(l + 2)

4(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

+
(

3l (l + 1)(l − 1)2(l + 2)2

2(2l − 1)(2l + 3)

)1/2

T2,l,lm

+
(

(l + 2)2(l + 1)2l (l − 1)

4(2l − 1)(2l + 1)

)1/2

T2,l−2,lm

+ 1√
3

l (l + 1)T0,l,lm, (A7)

where T2,l ′,lm represent, for a given l and m, five symmetric
basis tensors [l ′ = l ± (0, 1, or 2)], while T0,l,lm = − 1√

3
Y lmI.

The expression (A7) is given explicitly in Eq. (6a) of Ref. [60].
The Tλ,l,LM basis tensor spherical harmonics are orthonor-

mal [61] under the scalar product∫
d� T λ′,l ′,L′M ′∗

jk T λ,l,LM
jk = δλλ′δll ′δLL′δMM ′ , (A8)

where the integral is performed over the solid angle �. The
calculation of the dissipated power Eq. (A1) is therefore rather
straightforward and after integrating from r = r0 to r = ∞
gives

P = η

r0

∑
l,m

|blm|2(l + 1)(l + 2)(2l + 1). (A9)

Assuming for an eigenfrequency, Eq. (22),

ω′
i ≡ ωi − iβi, (A10)

the mode amplitude decays as e−βit and its total energy W as
e−2βit ; thus

Ẇ = −2βiW. (A11)

Using in Eq. (A11) for −Ẇ the result Eq. (A9) and the ampli-
tude of the total kinetic energy of the coupled mode (including
the kinetic energy of the coupled fluid)

W = 1
2ω2

i 〈xi|T|xi〉 (A12)

for its total energy, one gets the mode damping coefficient

βi = P(ωi, xi )

ω2
i 〈xi|T|xi〉

= η

r0

1

ω2
i 〈xi|T|xi〉

∑
l,m

|bi
lm|2(l + 1)(l + 2)(2l + 1),

(A13)

where bi
lm ∝ ωi correspond to the mode |xi〉.

There is one detail to add. Due to the restriction to irro-
tational flow, Eq. (11), those normal modes, which on the
surface of the micro-oscillator happen to be mainly tangential,
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are only weakly coupled to the fluid. Notwithstanding the
fact that these modes are less excited by the pressure and
their contribution to the micro-oscillator volume source Q1

and force F1 is relatively insignificant, it could be danger-
ous if their damping were unphysically small. To eliminate

this problem, we scale the dissipation P(ωi, xi ) of a mode—
knowing that it comes only from the radial components of the
surface particles—by the ratio of the sum of squares of radial
components and the sum of squares of full displacements of
the surface particles.
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