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Abstract. This contribution analyzes several strategies and combina-
tion of methodologies to perform molecular dynamic simulations in
open systems. Here, the term open indicates that the total system
has boundaries where transfer of mass, momentum and energy can
take place. This formalism, which we call Open Boundary Molecular
Dynamics (OBMD), can act as interface of different schemes, such as
Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle
dynamics to link atomistic, coarse-grained (CG) and continuum
(Eulerian) fluid dynamics in the general framework of fluctuating
Navier-Stokes equations. The core domain of the simulation box is
solved using all-atom descriptions. The CG layer introduced using
AdResS is located at the outer part of the open box to make feasible
the insertion of large molecules into the system. Communications be-
tween the molecular system and the outer world are carried out in the
outer layers, called buffers. These coupling preserve momentum and
mass conservation laws and can thus be linked with Eulerian hydro-
dynamic solvers. In its simpler form, OBMD allows, however, to
impose a local pressure tensor and a heat flux across the system’s
boundaries. For a one component molecular system, the external
normal pressure and temperature determine the external chemical
potential and thus the independent parameters of a grand-canonical
ensemble simulation. Extended ensembles under non-equilibrium sta-
tionary states can also be simulated as well as time dependent forcings
(e.g. oscillatory rheology). To illustrate the robustness of the combined
OBMD-AdResS method, we present simulations of star-polymer melts
at equilibrium and in sheared flow.

1 Introduction

A quite large number of molecular processes, with disparate applications, are natu-
rally described in terms of open systems where, not only energy and momentum is
exchanged with the exterior, but also mass. Molecular Dynamics (MD) simulations
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are, by contrast, more easily implemented in periodic boxes, with a fixed number
of particles. Theoretical approaches, based on Hamiltonian dynamics also rely on a
fixed number of molecules. However, many applied situations and studies cannot be
naturally described using closed systems or periodic boundaries with fixed mass per
simulation volume. We could cite the solidification front of paraffins under temper-
ature and velocity gradients, or ice formation or melting under and external heat
flux (with possible heat advection due to flow), adsorption of molecules in surfaces
under non-equilibrium states, or even shear rheology and extended thermodynamics
of complex fluids, where the local density and pressure depends on the shear rate. A
standard way to sort out these problems is to use large closed boxes in the hope that
a “sound bulk phase” is established some distance away from the interesting domain
(surface, nucleation site, interface, etc.); however it is not even clear that this option
is correct, in particular if long distance correlations and confinement effects become
relevant; and they do due to thermodynamic, hydrodynamic effects, or simple steric
effects, in the case of large molecules. Another type of processes which would largely
benefit having simulation of Open Boundary Molecular Dynamics (OBMD) systems
are those involving mass exchange and/or chemical interaction of different species.
Most of these processes have been studied in equilibrium, using Grand-Canonical
Monte Carlo methods (Zeolites, reactions...). However having access to dynamic in-
formation requires solving the boundaries of the real system, and these boundaries
are open. Interestingly, heat production under shear is also a problem which becomes
hard once the molecules are long enough (polymers) to release enough entropy by
friction. So much so that standard thermostats are not able to work properly [1] and
heat extraction through boundaries seems to be the only physically correct alterna-
tive [2]. Again, this requires open boundaries which in fact, permit to generalize the
boundary ensemble to different constraints [3]: isothermal, isenthalpic, isobaric, etc.,
allowing full, partial or zero heat removal and also different types of shear and com-
pression (non-equilibrium) ensembles. The effect of boundary ensembles on polymeric
response has been scarcely studied, despite its relevance shown in recent studies [4].
Another interesting application of open boundaries is to generalize recent efforts on
multiscale simulations with MD-continuum synchronization, where a series of MD
boxes are distributed over a grid and used to evaluate the momentum and heat fluxes
introduced into the overlying continuum solver [5]. OBMD boxes would allow mass
transfers (density field variations) in this promising multiscale methodology.
Indeed, sound is the fastest hydrodynamic mode so the most natural coupling be-

tween particle and continuum fluid dynamics should in principle involve mass transfer.
Although incompressible formulations of hybrid models do exist and can be used for
certain particular problems (water over surfaces [6]), there are still important unclear
phenomena where these hybrid methods could contribute, such as nanobubbles [7],
nucleation under non-equilibrium conditions (flow, heat or concentration gradients),
links between mass, heat and momentum transfers in polymer rheology [5], and
also as a tool to prove the concepts of extended thermodynamics in non-equilibrium
complex fluids [8] or theories for non-equilibrium statistical mechanics, involving
phase contraction and energy dissipation [9].
Technical difficulties and the inertia of the standard packages used by applied

computational scientists, together with the “activation energy” required to imple-
ment any new methodology, are somewhat delaying the standard usage of mature
hybrid methods [10]. Still, while all the problems mentioned above and many
others can be tackled to some extent with different simulation methodologies, it would
be certainly nice to have a unique scheme flexible enough to deal with all of them.
This “ideal algorithm” would then necessarily use open boundaries, either to mimic
the equilibrium (grand canonical) ensemble, to introduce heat, momentum and mass
(species) at arbitrary rates or to couple an OBMD box with a continuum solver.



Discussion and Debate: Scale-Bridging Techniques in Molecular Simulation 2333

Imposing the boundary conditions on a particle system is the major challenge
for hybrid methods. There have been two kinds of schemes presented in the litera-
ture: the state variable (Dirichlet boundary conditions) [6,11–14] and flux-exchange
(Newmann boundary conditions) [10,14–16] schemes. One of the examples of the for-
mer is Schwartz alternating method [12,13,17,18], which is an iterative procedure that
enables the hybrid coupling in steady states and closed systems. One of the pioneer
works in this field (albeit not the first one [11]) was published by Flekkoy et al. [3],
and its innovation was precisely the possibility of inserting arbitrary amounts of heat
and momentum into OBMD simulation boxes, through its boundaries via external
forces acting on the outer layers of the open box (the so called buffers). Another
interesting feature of this view (the idea of external forces at the buffer) is that it
can be easily adapted to impose Dirichlet boundary conditions [19] making possible
to select Dirichlet or Neumann boundaries in a single OBMD scheme.
Another important pioneer work in this field, is related to coupling fine- and

coarse-grained descriptions of soft matter within a particle-based framework [20].
The idea of so called Adaptive Resolution Scheme (AdResS) was to solve part of the
MD simulation box using a simplified coarse-grained (CG) version of the all-atom
(AA) description. More precisely, the idea was to solve the interesting part of the sys-
tem with the detailed AA description, which is coupled with a CG description of the
naked solvent at some distance from it. In the original AdResS, such coupling refers to
mass and momentum, but not to energy. Recent generalizations of the idea permit to
ensure energy transfer through the AA-CG borderland [21,22] and further works and
extensions of this concept are presented in this volume, or will appear soon. Indeed,
the AA is an open subsystem as it is surrounded by a CG domain, which should be
much larger in size to act like a reservoir. However, AdResS formulation and all their
sons and daughters methodologies, still work with closed total systems and cannot
be adapted to arbitrary boundary conditions such as arbitrary heat, momentum or
mass flow (of some species) across the system. Conceptually though it is not dif-
ficult to imagine that AdResS can be used in combination with OBMD and even
connect it with a continuum solver. Such extension was proven in a couple of works
for tetrahedral molecules [23] and water [24], and will be briefly summarized also in
this review. Such connection opens several interesting roads because it allows the in-
sertion of complex molecules, of arbitrary size, into the system: the CG domain acts
now as an open subsystem (to the exterior) where large molecules (described by soft
CG potentials) can be easily inserted using standard methods such as usher [25,26]
or variants [27]. In theory there is no limit to the size of molecules, as one could
use two or more CG layers with coarser resolution. Limitations to large polymers
are still alive in the long relaxation times and, if required, in how to treat entangle-
ments at the borderland. Here, we present new results on this idea, by validation of
the equilibrium state of OBMD simulations of star-polymers containing 12 arms and
73 monomers per molecule. These simulations illustrate another benefit of OBMD-
AdResS simulations, which is the possibility of varying the thermodynamic state of
the system (here we change its density), without the need of re-calibration of the
CG (effective) potential. AdResS and OBMD are now evolving into new routes which
involve combinations of well established tools, to name a few: energy exchange [21],
free energy evaluation [28,29], Adaptive Resolution Monte Carlo [22], and SDPD
(a Lagrangian hydrodynamic solver) as CG system; a quite natural hybridization
which paradoxically have appeared just recently [30]. The numbers of papers in the
field of multiscale simulation of liquids is increasing [31–53] and we refer to the reviews
[14] and [19].
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2 Open boundaries for MD

The present contribution intends to highlight the flexibility of OBMD simulations
in terms of possible combinations with other existing “multiscale” methodologies. In
what follows we briefly review a robust scheme for OBMD simulations which origi-
nally appeared in Ref. [3]. The original scheme was designed to implement heat and
momentum fluxes across particle simulation boxes (Newmann boundary conditions)
but it can be easily generalized to Dirichlet boundary conditions, as shown in Ref. [19].
The idea of OBMD is in fact quite simple. Consider an open MD simulation, such

as that sketched in Figs. 1, 2, and 7. At this level, there are just two main parts: a core
MD domain and a buffer. The core MD domain is (ideally) sacred, in the sense that
no computational artifact is applied (at most a soft thermostat) just the good-old
Newton laws acting to move the classically described atoms dynamics. Particles are
free to enter of leave the core MD domain as they wander about, and enter (or leave)
the Buffer. The buffer is assumed to be infinite, but this unwanted feature is changed
by a condition over the mean number of particles in the buffer: which is fixed by a
simple feedback algorithm (this required particle insertion and deletion, see below).
The buffer is the key part of the scheme because it is the region where the exterior
world “communicates” (fluxes and/or state-variables) with the MD system. In hy-
brid schemes the exterior world is another solver (usually a continuum fluid dynamic
solver) and the communication is two-fold. The OBMD provides one the communi-
cation arrows: it is a method to impose fluxes (and/or state variables) across (or at)
the borders of the MD system. We shall focus on flux coupling and refer to [6,19,54]
for Dirichlet boundary conditions.

2.1 Equations of motion

Before entering into specific details on the buffer and how to evaluate the external
forces there, let us write out the equations of motion of the particles in the OBMD
setup. The dynamics of any particle inside the system (i.e. inside the MD+Buffer
region) is determined by,

dri
dt
= vi (1)

mi
dvi
dt
= fadi ({r}) + f thi ({v}) + fexti (ri) (2)

where vi is the velocity of the particle i and mi and ri its mass and position. The
external force fexti (ri) acts only in the buffer domains B, i.e. f

ext
i (ri) = 0 if ri is not

in B. We shall come back to the description of this force in Sect. 2.2. The forces
fadi come from particle-particle interactions and in an standard OBMD simulation
(i.e. not coupled with AdResS) they derive from the interaction potential energy
−∇riU({r}). In Sect. 3 we discuss how to connect AdResS with OBMD and provide
the corresponding expression for fadi . Finally, f

th is the thermostat force which we
will just briefly comment. Many OBMD applications (as those illustrated hereby)
involve transfer of momentum (pressure tensor) from outside the MD domain. This
requires a momentum conserving thermostat. Thus, in production runs, we use a
DPD thermostat (in principle Lowe-Andersen [55] could also be used) whose force
corresponds to,

f thi = −
∑

j

γ(rij) (vi − vj) + R̃ij (3)

where R̃ij is the fluctuating force (we refer to Ref. [56] for details of this DPD thermo-
stat, see also [57] for a more general setup and microscopic foundation). Briefly, the
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pair-wise friction matrix is of the form γ = γ||ee+ γ⊥(1− ee) so it projects friction
force into the particle-particle (normal) direction eij ∝ ri − rj and also along a per-
pendicular direction in the transversal plane. This transversal friction adds substantial
viscosity to the system and we have kept it zero (γ⊥ = 0) in the present simulations.
Finally the dependence on the friction kernels γ||(r) with the pair-distance r was
made constant (in present simulations) with a cut-off at one particle diameter, the
amplitude of the thermostat is determined by its characteristic time m/γ|| and we
have made it larger than the longest chain relaxation time τ . A “hard thermostat”
(see equilibration process below) corresponds to smaller values m/γ, i.e. fast ther-
mostating rates. To conclude with this fast presentation of the equations of motion,
we note that Eqs. (1) and (2) were integrated using the Brunger, Brooks, Karplus
(BBK) scheme [58].

2.2 External forces

Adding a precise (input) energy and pressure flux across the MD border requires
control over the heat and work transferred. As stated, for this task OBMD uses
external forces fexti acting on each particle at (each) buffer [3]. To evaluate these
forces, one needs to consider the momentum and energy input created by such forces
fexti over one time step Δt and equate the result to the desired amount of momentum
and heat one wants to add/extract into the system. These later quantities are given
by the momentum flux tensor Jp and the heat flux (vector) and Je one wish to
impose across each MD boundary 1. The momentum balance for a OBMD boundary
of surface A is,

Jp · nAΔt =
∑

i∈B
fexti Δt+

∑

i′
Δ(mi′vi′) (4)

while the energy balance is

Je · nAΔt =
∑

i∈B
fexti · viΔt+

∑

i′
Δεi′ , (5)

where index i runs over those particles which happen to be in the buffer i ∈ B at each
particular time, because as stated fexti = 0 outside B. n is the unit vector normal
to the buffer interface (n = x in Fig. 7). The index i′ runs over the particles that
have entered or exited the buffer in the last time step Δt. Indeed, for the momentum
change we have that Δ(mi′vi′) = ±mi′vi′ if the particle i′ enters (+) or leaves (−).
The corresponding energy change is Δεi′ = ±εi′ . Thus, these terms of Eqs. (4) and (5)
measure the momentum and energy release due to particle exchange with the exterior
(incoming new particles and outgoing deleted ones). It is important to highlight that
the balance of Eqs. (4) and (5) ensure that the total momentum and energy (MD
system plus external domain) is conserved. Momentum conservation (either exact or
on average [28]) is key to ensure, for instance, that the external pressure is transferred
to the particle system irrespective of the type of particle-particle potential acting in
the buffer. It is also important to warn the reader that in the OBMD scheme the
external input of momentum and energy is introduced into the whole particle system;
which includes the MD-region plus buffer domain. This means, in particular, that the
momentum transfer across the MD-buffer interface is not instantaneously equal to
the external input prescribed by that Jp and Je in Eqs. (4) and (5) (for such exact
instantaneous transfer one would need to correct for the flux due to internal particle

1 The present explanation considers one single interface, but the method trivially gener-
alizes to many (two parallel planes, a cube or some polyhedra, ...).
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forces across the MD-buffer interface). As momentum is conserved, this fact does
not affect steady states, however under unsteady forcing (e.g. oscillatory rheology) a
certain delay might exist between the input pressure and that crossing the MD-buffer
surface. Such delay is roughly the viscous time for momentum to cross the buffer and
should be much smaller than the period of any applied unsteady forcing. The effect
was completely negligible in unsteady simulations of water and tetrahedral molecules
[23,24] although it has not been yet tested under unsteady polymer flow.
In order to properly separate momentum from heat, the force is separated in two

parts:

fexti = G(ri)F
ext + f̃exti (6)

where Fext =
∑
i∈B f

ext
i the total external force applied in the buffer and G(ri) is a

weighting function (
∑
i∈BG(ri) = 1) which in general has a tensorial form

G = G||nn+G⊥tt. (7)

The second contribution in Eq. (6) f̃exti is a fluctuating force which does not con-

tributes to the overall momentum input in Eq. (4), i.e.
∑
i∈B F̃

ext
i = 0. These random

forces are introduced to create heat at a rate
∑
i∈B F̃

ext
i · vi. As explained in Ref. [3]

the variance of the random forces can be evaluated from Eq. (5) to release/extract
the desired amount of heat into/from the system in an irreversible way. On the other
hand the power introduced by the total external force Fext provides the reversible
work (rate) of the energy balance (see Ref. [3]).
Here we leave the energy transfer for another occasion and focus on momentum

balance. The total force Fext is decomposed in its normal and tangential components,

Fext ≡ F ext|| n+ F ext⊥ t (8)

where t spans the perpendicular plane of the buffer interface. The way to distribute
the external forces over the buffer using the weighing function G(ri) is not unique.
First, for a given interface G(ri) it is chosen to depend on the particle position
projected over the interface vector ri · n. Let us consider the interface n = x so that
G = G(xi). Second, one can select different forms of the weighting function for each
direction of the applied force. From Eq. (7) this corresponds to

G(xi) ≡
g||(xi)∑
i∈B g||(xi)

nn+
g⊥(xi)∑
i∈B g⊥(xi)

tt, (9)

where the (unnormalized) weighting functions g||(x) and g⊥(x) distribute normal and
tangential forces according to their shape. Importantly, these weighting functions g||
and g⊥ should be assigned at the beginning of the equilibration process (suitable
choices are given in Sect. 5.3).
In summary, the force on a particle at the buffer (recall that fexti = 0 for particles

outside the buffer) is,

fexti = G||(xi)F ext|| n+G⊥(xi)F
ext
⊥ t (10)

with (see Eq. (4)),

Fext = A

(
Jp · n−

∑
i′ Δ(mi′vi′)

AΔt

)
· (11)
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2.3 Particle exchange

As stated, the buffer is also a particle reservoir. Particles are deleted once they leave
the end of the buffer and new particles are inserted if required, as explained just
below. Particle deletion and insertion is, first, a technical problem for a standard
MD code working with fixed number of particles N . We have solved this problem
in a relative easy way, by assigning a zombie label to any particle leaving the buffer
towards the system’s exterior. Using a conditional on this zombie particle label, these
“dead” particles are immediately excluded from the neighbor search (we used linked
cells), force loops, etc. New inserted particles are selected from the list of zombies,
which then become immediately “alive” in their new position inside the system (in
the buffer). Another way of “opening up” a MD code is to update N and reorder the
particle list from i = 1 to N each time a particle leaves the system (there would be
no zombies). However the zombie approach permits to work with a MD code with
fixed N (whose value obviously has to be large enough) and it should also permit
parallelization.
Once this technical problem is solved, the objective of the mass balance in the

buffer is to have there a fixed average density. This is controlled by a simple algorithm,

ΔNB = (Δt/τr)(〈NB〉 −NB), (12)

where 〈NB〉 and NB are the average and the current number of particles inside a
buffer, while τr is the characteristic relaxation time of buffer, typically of the order
τr ∼ O(100) MD time steps. A particle is deleted from the simulation whenever
ΔNB < 0 or when the particle leaves the buffer-end. New particles are inserted (in
the buffer) if ΔNB > 0. The insertion is carried out by an iterative algorithm called
USHER, which is a Newton-Raphson-like search method on the potential energy
surface [25,26]. A new particle is inserted at potential energy ET and its velocity
can be extracted from a Maxwellian distribution at the local average velocity and
temperature.

3 Adaptive resolution at the buffer

Although USHER is quite efficient, even for non-spherical molecules, like water
[26], inserting polymer molecules is certain not possible using this straight forward
approach. This is the point where an adaptive resolution method comes into play. The
AdResS [32] permits to couple the hard AA domain with a soft CG domain, formed
by much softer and simpler molecular descriptions. In this way AdResS simplifies
insertions of complex molecules. The AA region (where fluid’s constituent molecules
are represented atomistically) is connected to the CG region (where each molecule is
represented as one soft particle) through the hybrid (HY) region, where the change
of degrees of freedom takes place (see Fig. 1). This change is implemented by grad-
ually mixing the intermolecular AA and CG forces in a momentum conserving way.
The resulting force appearing in Eq. (2), contains the contribution of all pair-wise
molecule-molecule interactions,

fadi =
∑

j �=i

[
w(xi)w(xj)f

AA
ij + (1− w(xi)w(xj))fCGij

]
, (13)

were fAAij is the all-atom (AA) force between molecules i and j and f
CG
ij the soft force

between CG representations of these molecules. These forces derive respectively from
atomistic (AA) and coarse-grained (CG) potentials,

fAAij = −∇rijUAA(rij) (14)
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fCGij = −∇rijUCG(rij). (15)

The “resolution” function w(xi) of some molecule i is w = 1 if the molecule is in
the AA region and w = 0 if it is in CG region. In the transition domain, the value
of w smoothly varies from 0 to 1. It is important to note that the resolution w(xi)
applies to the center of mass of the molecule and not to the atomic degrees of freedom
and intramolecular interactions. From Eq. (13) and as expected, two AA-molecules
interact in a purely conservative fashion, according to their potential UAA; however
for the whole (AA+HYB+CG) system Eq. (13) cannot be not derived from a potential
energy. This means that energy is not strictly conserved and a thermostat should be
used. Energy conserving versions of Eq. (13) (based on the potentials) have recently
appeared but, by contrast, do not strictly conserve momentum and require a free
energy compensation [21,28].
Another design option of the OBMD-AdResS setup is the composition of the

buffer domain. Depending on the application one can choose to implement a homo-
geneous [23] buffer, where all the buffer is in CG level, or a heterogeneous one [24],
schematically shown in Fig. 2. In this second choice, the entire particle domain is of
AA resolution and there is also a part of the AA domain inside the buffer. In both
cases new molecules are inserted into the region of CG resolution, which facilitates
the insertion of large molecules, since molecules diffuse from CG towards AA domain
and vice-versa. The homogeneous buffer can be the preferred choice in some partic-
ular cases, such as free energy evaluations, where the hybrid layer plays a central
role [28,29]. However, in sheared flows or other non-equilibrium states, it requires
adapting the viscosities of the CG and HY layers [23], a pre-calibration which is not
required in the heterogeneous buffer [24]. New results presented hereby were obtained
using an heterogeneous buffer.

4 Connection with Eulerian hydrodynamics: The triple-scale scheme

The momentum flux Jp and the energy flux Je can be chosen ad hoc to set non-
equilibrium OBMD simulations, but these quantities allow in fact to interface the
OBMD simulation with higher level descriptions. Maybe for historical reasons, most
of the projects to carry out such coupling, sometimes called hybrid MD, or particle-
continuum scheme, involved Eulerian hydrodynamics interfacing MD. The number of
papers on this subject is not small anymore and keeps growing (see [14,19] for some
reviews). Finite differences were the preferred method for some authors [6], while
finite volume for others [16,59]. In fact, finite volume formulations are more naturally
suited for such coupling, particularly if one deals with flux coupling, which involve
microscopic fluxes averaged over volume fluid cells. In such case the values of Jp and Je
imposed at the buffer should be those at the hybrid (particle-continuum) interface and
depend, via interpolation, on the local values of the continuum solver. The coupling is
so natural that the finite volume solver, which might include fluctuations and sound
modes [10] does not need to be adapted to the hybrid scheme in any means: the
fluid cells within the MD domain furnish the local values of any required quantity
Jp and Je (and also the local velocity, needed to impose continuity [60]). In fact, in
the fluctuating hydrodynamics setup, one does not even need to average in time and
instantaneous values of the microscopic Jp and Je in the MD border domains, are
just used in the standard Eulerian solver protocol. Dirichlet boundaries can be also
imposed in similar ways.
When using the hybrid MD scheme in connection with AdResS, three methods are

combined which classifies for the catching term “triple scale” scheme. Although the
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Fig. 1. An artistic illustration of the triple-scale scheme which concurrently couples the
dynamics of MD (water), CG model (blue spheres) and continuum hydrodynamics [24].

Fig. 2. Buffer: two possible setups [23].

idea of this triple scale scheme, with AdResS playing the role of the inserting facility,
was meant to deal with complex molecules, so far it has been only applied on simple
liquids with small molecules: tetrahedrons and water [23,24]. Equilibrium properties,
i.e. radial distribution function and density profile, in MD domain of the hybrid
set-up have been validated against all-atom MD simulations. And thermodynamic
susceptibilities expressed in the mass fluctuations of the open MD box were shown to
agree with the grand-canonical formulae [24]. These liquids were exposed to Couette
and (oscillatory) Stokes flows [23,24] with excellent agreement with continuum hydro-
dynamics (as it should). And some technicalities were also tested: in particular using
homogeneous buffer (see Fig. 2) required matching the viscosities of the CG and HY
domains to that of the AA domain (softer interactions reduce viscosity). To match the
CG viscosities (increasing it) it was used the transverse dissipative particle dynamics



2340 The European Physical Journal Special Topics

(T-DPD) thermostat [56]. Using heterogeneous buffers [24] (see Fig. 2) avoids this
step and the use of T-DPD thermostat is no longer required. The method works and
awaits to deal with real applied research.

5 Simulations of star polymers

AdResS simplifies insertions of complex molecules in OBMD simulations. Although,
this claim has been made in several papers, in practice, it has been so far only veri-
fied with small molecules: tetrahedrons [23] and water [24]. In this section we present
new results for OBMD-AdResS simulations of much larger molecules: star polymer
melts. The model of star polymers is taken from Ref. [57]. Each polymer contains
73 monomers, having 12 arms of 6 monomers attached to a central monomer. Inter-
actions between adjacent monomers are modeled as harmonic springs and excluded
volume interactions are modeled by a repulsive Weeks-Chandler-Anderson (WCA)
potential. For further details on the model parameters we refer to Ref. [57], in par-
ticular the results are given in units of σ0, where the diameter of the monomer
σ = 2.415σ0, and the energy of the WCA repulsive interaction ε. Simulation time
step equals Δt = 0.01τ , where τ =

√
σ20mm/ε. Here mm represents mass of each

monomer. The CG description of the polymers consists on a unique interaction site
(its center of mass), so that each polymer is represented as one large CG soft ball.
The CG interaction potential acting between each two CG polymers was calculated
by Boltzmann iteration [61,62] so as to reproduce the radial distribution function
of the center of mass of the AA description at one thermodynamic state: tempera-
ture T = 4.0ε/kB and polymer volume fraction φ = 0.2. This effective potential is
shown in Fig. 3 along with the resulting radial distribution functions (RDF’s) af-
ter the equilibration process of the AA polymer melt (described below). It is noted
that this evaluation is carried out in a standard periodic box. Indeed the RDF’s
obtained in the canonical ensemble (periodic box, fixed mass) should be consistent
with those obtained in the grand canonical setup (open boundaries), after the equili-
bration procedure. Recall however that the independent thermodynamic parameters
for the open system are the external chemical potential and temperature. As stated
above, for a single component μ = μ(pext, T ), so in practice μ is fixed by the input
(external) normal pressure pext and temperature T . To that end, we precalculated
the equation of state of the melt p = p(T, φ) in a periodic box of AA molecules and
used pext = p(4.0ε/kB , 0.2) as input for the open boundary simulations. Consistency
obviously requires having an AA domain with polymer volume fraction φ = 0.2.
We now comment on the equilibration procedure, which is usually a difficult step

in polymer melt simulations [63]. We show that AdResS can be also used to alleviate
this delicate process.

5.1 Equilibration procedure

To prepare the equilibrated initial configuration of star-polymer melt we use a modi-
fied version of AdResS [32], where the resolution function w is a function of time rather
than of molecules’ positions inside the simulation box. The resolution is, therefore,
the same through out the box at any time, and is slowly sharpened from CG to AA.
The force between any two molecules is given by simplified Eq. (13):

fadij = w
2(t)fAAij + (1− w2(t))fCGij . (16)

Here w(t) denotes time dependent resolution function that equals 0 in CG resolu-
tion and 1 in the AA one. The corresponding expression for the force between two
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Fig. 3. Effective potential between CG particles fixed by Boltzmann Inversion at tempera-
ture T = 4.0ε/kB and polymer volume fraction φ = 0.2. Bottom: comparison of RDFs; the
red one is obtained by equilibration procedure described in the text, and the green one by
a purely CG simulation at the fixed thermodynamic state. r and Ueff are given in units of
σ0 and ε, respectively.

monomers is thus similar to the force employed in the Multigraining algorithm [64].
Note that once equilibration is finished fadij equation is switched back to expression
given by Eq. (13).
The equilibration is carried out in a closed system at constant temperature. First,

we randomly distribute positions of CG representations of molecules inside the box.
Then we simulate the system in CG resolution until it reaches the equilibrium. After-
wards, we raise the resolution function to w = 0.01. In order to avoid overlapping of
monomers due to so far not equilibrated AA degrees of freedom, we cap the repulsive
WCA potential. Then, we gradually decrease the capping radius and increase w in
steps of 0.01 till the value of w = 0.1. Subsequently, we keep increasing w in 10 times
larger steps until it reaches its AA resolution value w = 1.0. Finally, the equilibration
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Fig. 4. The growth of w function during equilibration procedure. Equilibration in CG
resolution lasts for 300τ . Then w is raised to w = 0.01 and for the next 100τ WCA interaction
is capped at radius r = 0.62σ. In the subsequent 100τ radius of capping is decreased to
r = 0.41σ and in the last 200τ to r = 0.21σ. Afterwards, w is gradually increased in steps of
0.01 up to the value of w = 0.1. The equilibration is run for 50τ at each of these values. Then
we keep increasing w in steps of 0.1 till its final value of w = 1.0, running the equilibration
for 200τ at every step. Finally, the equilibration ends with 5000τ long simulation at AA
resolution.

Fig. 5. Schematic representation of equilibration process. In the beginning (far left picture)
each polymer is represented as a CG particle (red ball). During the equilibration process AA
degrees of freedom are gradually turned on, while the CG ones are gradually turned off. At
the end each polymer is modeled with the fine-grained representation (far right picture).

procedure ends with a long simulation at AA resolution. Raising of w is depicted in
Fig. 4. Figure 5 demonstrates sharpening of the resolution and gradual turning on of
AA degrees of freedom.

Unlike some other equilibration methods used to equilibrate melts of long polymer
chains [65,66], our enables swifter disentanglement of the arms of adjacent polymers
by the gradual sharpening of the resolution. At low values of w monomers feel the AA
forces between them, but since the expression is multiplied by the value of w its con-
tribution to the total force between the monomers is relatively small. Consequently,
the effective radius of the monomers is smaller and this facilitates the transition of
the arms. A full-blown fine-grained equilibration carried out by MD simulation would
require more time as the arm disentanglement would occur more slowly.

Once the equilibration process is finished, we calculate radial distribution function
(RDF) and velocity autocorrelation function of centers of mass of molecules in our
melt. We compare the former with the RDF obtained from purely CG simulation
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of the melt. The comparison is demonstrated in Fig. 3. The velocity autocorrelation
function is shown in Fig. 6. Its integral divided by 3 gives the diffusion constant of the
melt in equilibrium, which equals D = (0.072 ± 0.001)σ20/τ [67], in good agreement
with the results reported in Ref. [57].
In star polymers one can observe three types of relaxation phenomena [68]. First

is elastic deformation of the overall shape of polymers, second relaxation occurs
via rotational diffusion, and the third one regards disentanglement of arms of every
star polymer. Each of the relaxation processes can be described by a corresponding
autocorrelation function, which are given by Eqs. (17), (18), and (19), respectively:

CR (t) =

〈
R (t)R (0)− 〈R〉2

〉

〈R2〉 − 〈R〉2 (17)

CRD (t) =
〈R (t) ·R (0)〉
〈R2〉 (18)

Ce (t) =
1

f (f − 1)
f∑

i,j=1
i�=j

〈[Ri (0) ·Rj (0)] [Ri (t) ·Rj (t)]〉 . (19)

Here R represents center-end vector, R end-center distance, t time, f number of arms
of each polymer, and Ri center-end vector for i-th arm. i and j are indices of different
arms within the same polymer.
Each autocorrelation function decays with its characteristic time of the relaxation

process [68,69]. Our obtained relaxation times are the following: τR = (12±1)τ for the
elastic deformation of the overall shape of polymers, τRD = (136± 5)τ for rotational
diffusion, and τE = (78 ± 4)τ for the relaxation occurring via arm disentanglement.
We observe that the disentanglement of the arms occurs more rapidly than rotational
diffusion and that is due to the short length of the arms, as each contains only
6 monomers.
From the comparison of the RDFs in Fig. 3, which match well, and from the

fact that our equilibration lasted much longer than all three characteristic relaxation
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times we can deduce that at the end we have obtained a well equilibrated melt of star
polymers.

5.2 Equilibrium OBMD simulations

After the equilibration process, we proceed with open boundary MD simulations of the
star-polymer melt. An interesting check consists on modify the external pressure pext
at the buffer so as to study the resulting polymer volume fraction φ = φ(pext), at fixed
temperature T = 4.0ε/kB . The interest of this calculation resides in the possibility of
using a single CG potential (which reproduces the RDF of the AA system at some
thermodynamic state, here T = 4.0ε/kB and φ = 0.2) over a thermodynamic process
where the system density changes. If the OBMD were able to recover the equation
of state obtained in the canonical setup (periodic boundaries) p = p(φ), then one
could use a single CG potential to simulate different thermodynamic states. This
claim resembles or at least partially solves the problem of transferability of the CG
potential [28], of central importance in mesoscopic modeling. We gradually reduced
the external pressure, starting from pext = p(0.2), and let the open system relax
to the equilibrium density. The resulting relation between the density and external
pressure was then compared with the equation of state p = p(φ) calculated in a
series of canonical MD simulations (periodic boxes), where the input density was
gradually reduced. Finally, we monitored the internal pressure of the AA domain in
the grand canonical simulations at the different equilibrium states (varying φ) the
system relaxes. The comparison of the three evaluations, shown in Fig. 8, shows an
excellent agreement. This result is not only a way of validating the OBMD scheme, but
also an indication that it is possible to simulate thermodynamic processes with large
density variations using a single form of the CG potential. The reason underlying this
nice feature was already explained in Ref. [24], where we showed that our approach is
robust against the details of the mesoscopic model. Pressure is a flux of momentum so
it just requires momentum conservation to consistently spread over the heterogeneous
system. OBMD and AdResS conserves momentum so the external pressure applied
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density are depicted in green and blue, respectively. All three equations of state match well
within the error bar, which is around 5%.

at the buffer is transfered without losses to the whole particle system. The same
reasoning could be used for energy (temperature changes), although in this case one
should use the energy conserving version of AdResS [21,28].

5.3 Star-polymer melt under shear

To conclude with these preliminary results on open boundary MD simulations of
polymer melts, we present some non-equilibrium states, focusing on steady shear. It is
noted that the OBMD allows for the imposition of arbitrary time dependent external
pressure tensor (either shear or compression). Here, we just show a simple shear flow
to illustrate the method and how one can play with the distribution functions for
normal and forces in the buffer [19] (respectively g||(x) and g⊥(x)). These functions
are illustrated in Fig. 7 and appear in Eq. (10). The user is free to distribute the shear
stress and the normal external forces in different ways. Here, we decided to apply the
normal forces over the whole buffer, while the shear stress is just distributed the
AA part of the heterogeneous buffer (see Fig. 7). In fact, what we wanted to obtain
is exactly the velocity profile depicted in Fig. 9 (top panel). Note that the shear
rate is constant over the interesting part of the AA domain and goes to zero at the
HY and CG parts of the buffer, where no shear forces are in fact imposed. This
conservative choice ensures that viscous transport of momentum is not propagated
outwards, towards the CG domain, and all the input stress propagates to the AA
domain. To get a perfect zero shear rate at the CG domain one certainly need to
provide the new inserted molecules with the local buffer velocity (as indicated in Ref.
[60]). We tried other choices for g⊥ and found that deviations are in any case small.
The case shown in Fig. 9 corresponds to a moderate shear rate (Weissemberg number
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polymer volume fraction of φ = 0.2) is also consistent with the equilibrium equation of state.
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Wi 	 3). The middle and bottom panels of this figure show the gyration radius and
the density profiles. Both are flat at the AA domain and in good agreement with
the values found in closed (periodic) boxes. Interestingly however, comparisons with
periodic simulations under shear (Lee-Edwards) indicate that the behavior of open
and closed polymeric systems is not equivalent at large shear rates. Such study of
sheared star polymer melts in OBMD boxes will be the subject of our next work.

6 Summary and outlook

This contribution presents a revision of the methodologies allowing molecular simu-
lations of open systems (i.e. with boundaries open to mass, momentum and energy
exchanges). The revision is somewhat biased, due to the relatively large amount of
works that have been published in recent years. However, the information given is
enough for any newly interested to follow the trend to present dates.
OBMD allows to impose momentum and/or heat at the system’s boundaries.

It can be then used as an interface to connect MD with other methods: with any
variant or evolution of the AdResS method [20–22,29,32,70–72], and also with hybrid
particle-continuum hydrodynamics: either based on synchronized schemes [5,73] or
domain decomposition [19], with fluctuations [10,16] or without fluctuations [6], and
either involving flux [3] or variable coupling [6,18,19]. To illustrate OBMD in a far
from trivial scenario, we have presented open simulations of star polymer melts, where
AdResS is used to allow relatively large molecules to freely flow inwards or outwards
the simulation box according to the externally imposed thermo-mechanical state.
Following the spirit of this volume, we conclude with some critics to the method-

ology, giving possible feasible solutions. The first one concerns the equilibration of the
open system which can be longer than in a periodic box because it involves dealing
with sound waves across a finite system. During these equilibration periods we used
a hard Langevin thermostat to damp out these oscillations, and then, upon equi-
libration, switch to a momentum conserving (DPD) thermostat. It is important to
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note that the buffer dynamics are not designed to act as a non-reflecting boundaries
for density waves and nonphysical wave reflections can take place under unsteady
forcing (compressions) or transient (equilibration) periods. Recently, the reduction of
reflection at the boundaries has been discussed, using the extended Galerkin projec-
tion method, which is similar to Mori-Zwanzig projection formalism [74]. Our prob-
lem might be also solved using the idea of non-reflecting boundaries, which have
been proved to work quite well for fluctuating hydrodynamics [75–77]. In fact, non-
reflecting boundary conditions can be extended to transverse (shear) modes as well,
its implementation into particle systems could be a quite useful tool.
A second concern of OBMD is technical: most (probably all) molecular simulation

packages deal with a fixed number of particles, while in OBMD codes one needs to
delete or insert. This can be sorted out in different ways, but so far there have been few
attempts to adapt hybrid schemes or even OBMD schemes to production packages.
There are several reasons for this fact; one is the inertia of scientific production (which
does not favor robust code implementation of mature ideas, but rather production
of new methods or slight variants of them). Another one could be the relative small
range of problems which so far seems to require simulations of open systems, in any
of its variants (either as an open subsystem of a closed system [78] or as really open
domain [3]). The lack of OBMD options in standard packages implies that open
processes have to be solved in large closed simulation boxes. This dilemma requires
extra effort from the model-development community which should prove that these
novel techniques can tackle new difficult and relevant problems which cannot be solved
by standard schemes or well established theories. We have given some examples of
these problems in the introduction, and more examples are recently being published
[5,71,79]. In general, we believe that energy related processes (nanobubbles bursts,
critical phenomena, melting, heat adsortion, etc.) and those involving multiple species
(possibly including some description of chemical reactions) will be good candidates
to reaffirm the need for an “open simulation flag” in the most famous computational
packages. New ideas and methods are now appearing which will surely pave the road
for this step.
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article. We would especially like to thank K. Kremer, L. Delle Site, and J.J. Freire for useful
discussions. J. S. and M. P. acknowledge financial support through grants P1-0002 and
J1-4134 from the Slovenian Research Agency. R.D-B acknowledges support from Spanish
MINECO projects FIS2010-22047-C05 and FIS2013-47350-C5-1-R.
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