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1. Partial-slip boundary condition

For the partial-slip boundary condition we allow a nonzero tangential component of

flow velocity at the wall. For the normal component, on the other hand, we demand

to vanish at the wall. We use the Navier boundary condition, which assumes a linear

dependence of shear stress on the tangential component of flow velocity at the wall [1].

Stress tensor at the wall thus reads as

σiknk = λvti − p′ni, (1)

where nk is the k-th cartesian component of the normal to the wall with the normal

pointing into the fluid. λ is the friction coefficient between the wall and the fluid and

p′ is the total pressure exerted on the wall by the fluid. The stress tensor of the bulk

liquid reads as

σik = µ

(

∂vi
∂xk

+
∂vk
∂xi

)

− pδik, (2)

where µ is the viscosity of the liquid and p the hydrodynamic pressure [2]. By requiring

the balance of stress at the fluid-solid interface we obtain the velocity boundary condition

λvt − p′n = µ[2(n · ∇)v + n× (∇× v)]− pn. (3)

This boundary condition can be divided into a tangential and a normal component

vt · n = 0, (4)

vn = (v · n)n. (5)

The tangential component reads as

vt =
µ

λ
[2(n · ∇)vt + n× (∇× vt) + n× (∇× vn)]. (6)

The curl of the normal component of velocity is zero by Stokes theorem and thus the

last term in brackets is zero. Using the following relation

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a). (7)

to rewrite the second term in Eq. (6) and realizing that the curl of the normal is again

zero by Stokes theorem we obtain the partial-slip boundary condition

vt =
µ

λ
[(n · ∇)vt − (vt · ∇)n]. (8)

The first term on RHS is the gradient of the tangential component of velocity in the

direction normal to the wall and the second term is the curvature of the wall in the flow

direction. This enables us to write the boundary condition in a more compact form

vt = ls

[

∂vt
∂n

−
vt
r

]

, (9)

where r is the radius of the curvature of the wall in the flow direction‡ with the curvature

being negative for concave boundaries. We introduce the slip length ls = µ/λ, which

‡ This curvature should not be mistaken for the curvature of the diameter of the nanotube. Thus the

second term in Eq. (9) is not required for a cylindrical nanotube in periodic boundary conditions or an

infinitely long tube.
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for non-curved boundaries gives the depth at which the linear extrapolation of the

flow velocity profile into the wall reaches zero [1]. A vanishing slip length ls = 0 nm

corresponds to the standard no-slip boundary condition where the fluid velocity vanishes

at the boundary. A diverging slip length ls → ∞ corresponds to a full-slip boundary

condition with no friction between the fluid and the wall at the interface. The boundary

condition Eq. 9 then reads

∂vt
∂n

=
vt
r
. (10)

By taking the normal component of Eq. (3) we obtain the total pressure exerted on the

wall

p′ = p− 2µ
∂vn
∂n

. (11)

The partial-slip boundary condition in Eq. (9) differs from the more intuitive and

frequently used form of the Navier boundary condition [3, 4, 5, 6]

vt = l̃s
∂vt
∂n

(12)

by the additional term depending on the wall curvature. This leads to a different

definition of the slip length, i.e. l̃s instead of ls. The absence of the curvature term

in the boundary condition can result in a significant dependence of slip length l̃s on

the shape of the boundary [7]. Einzel et al. discussed the dependence of l̃s from the

boundary shape [8]. They express the slip length l̃s for a curved boundary with the slip

length l̃s0 for a flat boundary and the curvature of the boundary

1

l̃s
=

1

l̃s0
+

1

r
=

1

ls
+

1

r
. (13)

By r → ∞ we recognise that ls and l̃s are the same for the flat boundary. The slip length

ls is the ratio of the liquid viscosity and the friction coefficient between the liquid and

the solid, both positive quantities. Consequentially the slip length ls is also a positive

quantity, whereas l̃s can be negative for −ls < r < 0 [7]. Furthermore, a diverging slip

length ls results in a vanishing shear stress at the boundary. Applying such a boundary

condition to a problem of a steady Stokes flow past a sphere results in the proper force

to the sphere with the full-slip boundary condition [9]

F = 4πµRV0, (14)

where V0 is the fluid velocity far from the sphere. A diverging l̃s, however, results in a

nonvanishing shear stress at the boundary

σshear = −µ
vt
r
. (15)

To achieve a vanishing stress at the boundary a negative slip length l̃s is needed with

l̃s = −r.
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Figure 1. Mesh independence test on a 20 nm section of an infinite CNT of radius

1 nm with the no-slip boundary condition imposed at the walls. The pressure drop

between the ends of the section of the CNT is 108 Pa.

2. Computational details

2.1. Mesh independence

To check mesh independence we first simulate a water flow through an infinite CNT and

as in our study of the CNT membrane [10] we consider only one quarter of the CNT

by imposing symmetry plane boundary conditions. We prepare a 20 nm section of an

infinite CNT of radius R = 1 nm. At the ends of the CNT section we impose periodic

boundaries with a pressure drop of 108 Pa and measure the volumetric flow through

the CNT. The study of mesh independence on this system (Fig. 1) yields the accuracy

requirements for mesh building inside the CNT of our CNT membrane system. This

simple system, because an analytic solution is known, also provides the opportunity to

check our partial-slip boundary condition implementation (Fig. 2). We then check mesh

independence on our CNT membrane system [10]. We test mesh independence on a

CNT of length L∗ = 19.5, the radius of curvature of the fillet r∗f = 0.3 and the Reynolds

number Re = 1.4× 10−3 for the full-slip and no-slip boundary conditions.

2.2. Solution convergence

We run simulations until the residuals drop below 10−6 (Fig. 4). For reference we give

the convergence of pressure loss between the inlet and the outlet for different boundary

conditions (Fig. 5).



Continuum Simulations of Water Flow in Carbon Nanotube Membranes 5

0 1 2 3 4 5 6

l
s
[nm]

0

10

20

30

40

50

60

70

Q
[µ
m

3
/s
]

Figure 2. Volumetric flow rate through a 20 nm section of an infinite CNT of radius

1 nm with a constant pressure gradient of 5 × 1015 Pa/m. The blue dots are the

volumetric flow rates obtained with CFD and the green line represents the analytically

obtained volumetric flow rate.
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Figure 3. Mesh independence test on a CNT with L∗ = 19.5, rf = 0.3 and

Re = 1.4× 10−3 for the full-slip and the no-slip boundary conditions.

3. Visiualization of the flow field at the CNT ends

Fig. 6 shows the fluid motion in the vicinity of the CNT entrance with a rounded

corner by a fillet with the radius of curvature r∗f = 0.3 and the Reynolds number

Re = 1.4 × 10−3. We show fluid flow for three different boundary conditions: the full-

slip, the partial-slip with l∗s = 1/6, and the no-slip boundary condition. We observe

that the boundary condition does not strongly affect the direction of the fluid motion.

It does, however, affect the velocity magnitude profile. We also show the vorticity in
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Figure 4. Residual convergence for a CNT of length L∗ = 29.5 with the radius of the

curvature of the fillet r∗f = 0.3 and the Reynolds number Re = 1.4 × 10−3 for three

different boundary conditions: a full-slip boundary condition, a partial-slip boundary

condition with l∗s = 1/6 and a no-slip boundary condition. The blue curve represents

the momentum residuals and the green curve the mass residuals.
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Figure 5. Convergence of pressure loss between the inlet and the outlet of a CNT of

length L∗ = 29.5 with the radius of the curvature of the fillet 0.3 nm and the Reynolds

number Re = 1.4× 10−3 for three different boundary conditions: a full-slip boundary

condition (blue), a partial-slip boundary condition with l∗s = 1/6 (green) and a no-slip

boundary condition (red).
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Figure 6. Line integral convolution of the fluid velocity on top of the fluid velocity

magnitude profile showing the fluid motion for three different boundary conditions: the

full-slip boundary condition, the partial-slip boundary condition with l∗s = 1/6 and the

no-slip boundary condition. The radius of the curvature of the fillet is r∗f = 0.3 and

the Reynolds number is Re = 1.4× 10−3.
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Figure 7. Nondimensional vorticity magnitude in the vicinity of the CNT entrance for

three different boundary conditions: the full-slip boundary condition, the partial-slip

boundary condition with l∗s = 1/6 and the no-slip boundary condition. The radius of

the curvature of the fillet is r∗f = 0.3 and the Reynolds number is Re = 1.4× 10−3.

the vicinity of the CNT entrance in Fig. 7 for all three cases. All three cases, regardless

of the boundary condition, exhibit an increased vorticity at the CNT entrance due to

contraction of the flow streamlines into the small CNT opening.

Fig. 8 depicts the velocity profile for the flow through a thin orifice and the slip

enhanced Hagen-Poiseuille flow. The figure clearly shows the similarity between the

velocity profile of the flow through a thin orifice and the slip enhanced Hagen-Poiseuille

flow with l∗s = 1/6. Due to this similarity the viscous energy dissipation at the CNT

ends has its minimum for l∗s = 1/6.

4. Boundary condition at outer walls

We check the effect of the boundary condition at the outer walls of the CNT membrane.

Again we impose three different boundary conditions at the outer walls of the CNT

membrane: the full-slip, the partial-slip with l∗s at the outer wall equal to l∗s inside the

CNT, and the no-slip boundary condition. With these boundary conditions we measure
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Figure 8. Velocity profile of the flow through a thin orifice (red) and the slip enhanced

Hagen-Poiseuille flow for the full-slip boundary condition (orange), the partial-slip

boundary condition with l∗s = 1/6 (blue) and the no-slip boundary condition (green).
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Figure 9. Pressure loss at the CNT ends dependence form l∗s for different boundary

conditions at the outer wall of the CNT membrane: the full-slip boundary condition

(orange), the partial slip boundary condition with l∗s at the outer wall equal to l∗s
inside the CNT (red) and the no-slip boundary condition (light blue). The radius of

the curvature of the fillet is r∗f = 0 and the Reynolds number is Re = 1.4× 10−3.

pressure losses at the CNT ends (Fig. 9) and conclude that the boundary condition

at the outer walls of the CNT membrane has negligible effect. This is in agreement

with Gravelle et. al. who also found the boundary condition at the outer walls to have

negligible impact [11].



Continuum Simulations of Water Flow in Carbon Nanotube Membranes 9

References

[1] Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073–1095

[2] Landau L D and Lifshitz E M 1987 Fluid Mechanics 2nd ed (Course of Theoretical Physics vol 6)

(Butterworth-Heinemann)

[3] Morris D L, Hannon L and Garcia A L 1992 Phys. Rev. A 46 5279–5281

[4] Bocquet L and Barrat J L 2007 Soft Matter 3 685–693

[5] Thomas J A and McGaughey A J H 2008 Nano Lett. 8 2788–2793
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