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Adaptive Resolution Schemes

Christoph Junghans, Matej Praprotnik†, and Luigi Delle Site

Max Planck Institute for Polymer Research
Ackermannweg 10, 55128 Mainz, Germany

E-mail: dellsite@mpip-mainz.mpg.de

The Adaptive Resolution Scheme (AdResS) is a simulation method, which allows to perform
Molecular Dynamics (MD) simulations treating different regions with different molecular res-
olutions. The different scales are coupled within a unified approach by changing the number
of degrees of freedom on the fly and preserving the free exchange of particles between regions
of different resolution. Here we describe the basic physical principles of the algorithm and
illustrate some of its relevant applications.

1 Introduction

Multiscale techniques are becoming standard procedures tostudy systems in condensed
matter, chemistry and material science via simulation. Thefast progress of computer tech-
nology and the concurrent development of novel powerful simulation methods has strongly
contributed to this expansion. This led to the result that detailed sequential studies (mod-
eling) from the electronic scale to the mesoscopic and even continuum are nowadays rou-
tinely performed (see e.g.1–8). However, sequential approaches still do not couple scales
in a direct way. Their central idea is to employ results from one scale to build simplified
models in a physically consistent fashion, keeping the modeling approximations as much as
possible under control; next, in a separate stage, a larger scale is considered. A step beyond
these sequential schemes is represented by those approaches where the scale are coupled in
a concurrent fashion within a unified computational scheme.Problems as edge dislocation
in metals or crack of materials where the local chemistry effects large scale material prop-
erties and vice versa, are typical examples where the idea ofconcurrent scale methods has
been applied. In this case quantum based methods are interfaced with classical atomistic
and continuum approaches within a single computational scheme9–11. A further example is
the Quantum Mechanics/Molecular Mechanics (QM/MM) scheme12; mainly used for soft
matter systems it is based on the idea that a fixed subsystem isdescribed with a quantum
resolution while the remainder of the system is treated at classical atomistic level. A typi-
cal example of application of the QM/MM method is the study ofthe solvation process of
large molecules; for this specific example the interesting chemistry happens locally within
the region defined by few solvation shells and thus it is treated at a quantum level while
the statistical/thermodynamical effect of the fluctuatingenvironment (solvent) far from the
molecules is treated in a rather efficient way at classical level. In the same fashion there
are several more examples (see e.g. Refs.13, 14). All of these methods, although computa-
tionally robust, are characterized by a non-trivial conceptual limitation, i.e. the region of
high resolution is fixed and thus the exchange of particles among the different regions is
not allowed. While this may not be a crucial point for hard matter, is certainly a strong lim-
itation for soft matter, i.e. complex fluids, since relevantdensity fluctuations are arbitrarily
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suppressed. The natural step forward to overcome this problem is the design of adaptive
resolution methods which indeed allow for the exchange of particles among regions of dif-
ferent resolution. In general, in such a scheme a molecule moving from a high resolution
region to a lower one, would gradually lose some degrees of freedom (DOFs) until the
lower resolution is reached and yet the statistical equilibrium among the two different re-
gions is kept at any instant. Recently some schemes based on this idea, for classical MD,
have been presented in literature15–19. They are based on different conceptual approaches
regarding the way the scales are coupled and the way the equilibrium of the overall system
is assured. For the quantum-classical case there are instead several conceptual problems
to be solved before a proper scheme can be designed; this is briefly discussed in the next
section.

2 Classical and Quantum Schemes

As stated before, many problems in condensed matter, material science and chemistry are
multiscale in nature, meaning that the interplay between different scales plays the funda-
mental role for the understanding of relevant properties asreported in the examples above.
An exhaustive description of the related physical phenomena requires in principle the si-
multaneous treatment of all the scales involved. This is a prohibitive task not only because
of the computational resources but above all because the large amount of produced data
would mostly contain information not essential to the problem analyzed and may over-
shadow the underlying fundamental physics or chemistry of the system. A solution to this
problem is that of treating in a simulation only those DOFs, which are strictly required by
the problem. In this lecture, in particular, we will illustrate the basic physical principles of
the Adaptive Resolution Scheme (AdResS) method, where the all-atom classical MD tech-
nique will be combined with the coarse grained MD one (for a general discussion about
coarse graining see the contribution of C. Peter and K. Kremer), and briefly discuss the
difference with other methods. In the AdResS method the combination of all-atom classi-
cal MD and coarse grained MD leads to a hybrid scheme where themolecule can adapt its
resolution, passing from an all-atom to a coarse grained representation when going from
the high resolution region to the lower one (and vice versa),and thus changing in a con-
tinuous manner the number of DOFs on the fly. In this way the limitation of the all-atom
approach in bridging the gap between a wide range of length and time scales is overcome
by the fact that only a limited region is treated with atomistic DOFs (where high resolution
is necessary) while the remaining part of the system is treated in the coarse grained rep-
resentation and thus loses the atomistic (chemical) details but retains those DOFs relevant
to the particular property under investigation. This meansthat one can reach much longer
length and time scales and yet retain high resolution where strictly required. In principle
the same concept may be applied for quantum-classical hybrid adaptive schemes. Here for
quantum is meant that the nuclei are classical objects but their interaction is determined
by the surrounding electrons obeying the Schrödinger equation. In this case, however the
level of complexity is by far much higher than the hybrid all-atom/coarse grained case.
In fact it involves not only a change of molecular representation but also of the physical
principles governing the properties of the system. One of the major obstacles is that of
dealing with a quantum subsystem where the number of electrons changes continuously
in time, that is the wavefunction normalization varies in time. In this case one deals with
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a different Schrödinger problem at each step unless one introduces some artificial creation
and annihilation terms in the Hamiltonian in order to allow acontinuous fluctuation of the
electron number in a consistent way. Although not trivial, this may still be feasible but
the physics of the system could be dramatically modified by the presence of such technical
artifacts. One should be also careful in not confusing a proper adaptive scheme, where
the DOFs (classical and quantum) change continuously on thefly, with the straightforward
approach of running a QM/MM-like simulation and ateach step modify the size of the
quantum region. In this case one has a brute force, by-hand adaptivity which does not
allow the system to properly relax both the classical and quantum DOFs. A possible solu-
tion to the problems above may be that of treating the electron in a statistical way within
a macrocanonical ensemble where their number is allowed to fluctuate, along the same line
of thinking of Alavi’s theory in the Free Energy MD scheme20, or by mapping the quan-
tum problem of the subsystem into a classical one in a path integral quantum mechanical
fashion (see e.g.21) so that the idea of adaptivity can be applied between two (effective)
classical descriptions. A possible further approach may bealong the lines of coupled
quantum-classical MD schemes where the classical bath provides the average environment
for a quantum evolution of a subsystem via the use of Wigner transformations22. How-
ever at this stage these are only speculations and up to now noproper quantum-classical
procedures where the adaptivity occurs in a continuum smooth way have been proposed.

3 AdResS: General Idea

The driving idea of the AdResS is to develop a scheme where theinterchange between
the atomistic and coarse level of description is achieved onthe fly by changing the molec-
ular DOFs. In order to develop this idea a test model for the molecule has been built.
Fig. 1 gives a pictorial representation of the tetrahedral molecule used and its correspond-
ing spherical coarse grained representation, derived in a way that it reproduces chosen
all-atom properties. The tetrahedral molecule consists offour atoms kept together by
a spring-like potential with a Lennard-Jones intermolecular potential; specific technical
details of the model as well as of the coarse grained procedure for the spherical represen-
tation are reported in Appendix. As Fig. 1 shows, the atomistic molecule when passing to
the coarse grained region, slowly loses its vibrational androtational DOFs, passing through
different stages of hybrid atomistic/coarse grained representation and finally reducing its
representation to a sphere whose DOFs are solely the translational ones of the center of
mass with a proper excluded volume. A crucial point to keep inmind is that the different
resolutions do not mean that the molecules are of differentphysical species. The basic un-
derlying physics is in principle the same in all region and thus the process of exchange has
to happen in condition of thermodynamical and statistical equilibrium which means pres-
sure balanceP atom = P cg, thermal equilibriumT atom = T cg, and no net molecular flux
ρatom = ρcg. This conditions must be preserved by the numerical scheme and thus repre-
sent the conceptual basis of the method17, next the effective dynamical coupling between
the scales must be specified; this is reported in the next section.

3.1 Scale coupling

Once the effective potential is derived on the basis of the reference all-atom system (see
Appendix 8) then the atomistic and the coarse grained scalesare coupled via a position
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(a) On-the-fly interchange of a molecule (b) Snapshot of the simulation box

Figure 1. (a) The on-the-fly interchange between the atomic and coarse grained levels of description. The middle
hybrid molecule is a linear combination of a fully atomistictetrahedral molecule with an additional center-of-
mass particle representing the coarse grained molecule. (b) Snapshot of the hybrid atomistic/mesoscopic model at
ρ∗ = 0.1 andT ∗ = 1 (LJ units). The red molecules are the explicit atomistically resolved tetrahedral molecules,
while the blue molecules are the corresponding one-particle coarse grained molecules. (Figure was taken from
Ref.15)

dependent interpolation formula on the atomistic and coarse grained force15, 16:

Fαβ = w(Xα)w(Xβ)Fatom
αβ + [1 − w(Xα)w(Xβ)]F

cg
αβ (1)

whereα andβ labels two distinct molecules,Fatom
αβ is derived from the atomistic potential

where each atom of moleculeα interacts with each atom of moleculeβ, andF
cg
αβ is ob-

tained from the effective (coarse grained) pair potential between the centers of masses of
the coarse grained molecules. In the region where a smooth transition from one resolution
to another takes place, a continuous monotonic ”switching”functionw(x) is defined as
in Fig. 2 (whereXα, Xβ are thex-coordinates of the centers of mass of the molecules
α andβ). A simple way to think about the functionw(x) is the following:w(x) is equal
to one in the atomistic region and thus the switchable DOFs are fully counted, whilew(x)
is zero in the coarse grained region and thus the switchable DOFs are turned off, while
in between takes values between zero and one and thus provides (continuous) hybrid rep-
resentations of such DOFs (i.e. they count only in part). In general, Eq. 1, allows for
a smooth transition from atomistic to coarse grained trajectories without perturbing the
evolution of the system in a significant way. More specifically the formula of Eq. 1 works
in such a way that when a molecule passes from the atomistic tothe coarse grained re-
gion, the molecular vibrations and rotations become less relevant until they vanish so that
w(x) smoothly “freezes” the dynamical evolution of these DOFs and their contributions
to the interaction with the other molecules. Vice versa, when the molecules goes from the
coarse grained region to the atomistic one,w(x) smoothly ”reactivates” their dynamics and
their contributions to the intermolecular interactions. In the case of tetrahedral molecules,
being characterized by pair interactions, we have that all the molecules interacting with
coarse grained molecules interact as coarse grained molecules independently of the region
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Figure 2. The weighting functionw(x) ∈ [0, 1]. The valuesw = 1 andw = 0 correspond to the atomistic and
coarse grained regions of the hybrid atomistic/mesoscopicsystem with the box lengtha, respectively, while the
values0 < w < 1 correspond to the interface layer. The vertical lines denote the boundaries of the interface
layers. (Figure was taken from Ref.15)

where they are (the coarse grained molecule does not have anyatomistic detail, thus the
other molecule can interact with this molecule only via the center of mass), two atomistic
interact as atomistic, while for the other couplings, the interactions are governed by the
w(Xα)w(Xβ) combination. A very important point of Eq. 1 is that, by construction, the
Newton’s Third Law is preserved. The diffusion of moleculesbetween regions with dif-
ferent resolution must not be perturbed by the resolution change. Thus the conservation of
the linear momentum dictated by the Newton’s Third Law is crucial in adaptive resolution
MD simulations.

3.2 Thermodynamical equilibrium

Eq. 1 cannot be derived from a potential and thus a scheme based on it, would not have
an energy to conserve. The natural subsequent question is how to then control the ther-
modynamic equilibrium. The conceptual problem for an adaptive scheme is that the free
energy density is formally not uniform since the number of DOFs varies in space, however
being the system uniform by construction (and being theunderlying physical nature of
the molecules the same everywhere), this would be only an artifact of the formalism used.
This non uniformity leads to a non-physical preferential direction of the molecular flux. In
fact, as numerical tests show, there is a preferential tendency of the atomistic molecules
to migrate into the coarse grained region and change resolution in order to lower the free
energy of the system (the free energy is an extensive quantity, that is proportional to the
number of DOFs). A simple qualitative way to picture this diode-like aspect is the follow-
ing: when a molecule goes from an atomistic to a coarse grained region it loses vibrational
and rotational DOFs and thus in its interactions with the neighboring (coarse grained)
molecules it must accommodate only its excluded volume (i.e. find space). This becomes
more complicated if a coarse grained molecules moves into anatomistic region, in this
case the molecule acquires rotational and vibrational DOFsand tries to enter into a region
where other molecules are already locally in equilibrium. This means that in order to en-
ter this region, the molecules should accommodate both rotational and vibrational DOFs
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according to the neighboring environment. Most likely the molecule would enter with vi-
brational and rotational motions which does not fit the localenvironment and this would
lead to a perturbation of the local equilibrium. This means that for such a molecule the
way back to the coarse grained region is more convenient, and thus this free energy barrier
works as a closed door (probabilistically) for the coarse grained molecules and opened
door for the atomistic ones so that a preferential molecularflux from the atomistic to the
coarse grained region is produced. In thermodynamic terms,as an artifact of the method,
the different regions are characterized by a different chemical potential, however, since
this aspect does not stem from the physics of the system but only from the formalism,
we have to amend for this thermodynamical unbalance. This means that the use of Eq. 1
alone cannot assure thermodynamical equilibrium and further formal relations, linking the
variables of the problem, should be determined in order to obtain equilibrium. This can be
obtained, as shown in the next sections, by analyzing the meaning of the process of varying
resolution in statistical and thermodynamical terms.

4 Theoretical Principles of Thermodynamical Equilibrium in
AdResS

In this section we analyze the idea of describing thermodynamical equilibrium for a system
where, formally, the number of DOFs is space dependent and yet the molecular properties
are uniform in space.

4.1 The principle of geometrically induced phase transition

The space dependent change of resolution can be seen, to havesome similarities to a physi-
cal phase transition, as a fictitious geometrically inducedphase transition. In simple words,
the concept of latent heat is similar to that of a molecule which, for example, goes from
the liquid to the gas phase and in doing so needs a certain energy (latent heat) to activate
those vibrational states that makes the molecules free fromthe tight bonding of the liquid
state. In the same way, a molecule in the adaptive scheme thatpasses from a coarse grained
to an atomistic resolution, needs a latent heat to formally (re)activate the vibrational and
rotational DOFs and to reach equilibrium with the atomisticsurrounding. Vice versa the
heat is released when the molecule goes from gas to liquid andso the bond to the other
molecules becomes tighter, in the same way in the adaptive scheme, the molecule passing
from atomistic to coarse grained, formally releases DOFs and thus automatically the asso-
ciated heat. This concept can be formalized as:µatom = µcg+φ, whereµcg is the chemical
potential calculated with the coarse grained representation,µatom that of the atomistic one,
andφ is the latent heat23, 17. Possible procedures for a formal derivation of an analyticor
numerical form ofφ and how to use it in the AdResS scheme is still a matter of discussion
and subject of work in progress and will be briefly discussed later on. For the time being,
a simpler and practical solution is used, that is the system is coupled to a thermostat (see
Appendix 8) which automatically, as a function of the position in space, provides (or re-
moves) the required latent heat assuring stability to the algorithm and equilibrium to the
system. The coupling of the system to a thermostat leads to the natural question of how
to define the temperature in the region of transition where the number of DOFs is space
dependent.
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4.2 Temperature in the transition region

In the atomistic and coarse grained region the temperature can be defined without a prob-
lem employing the equipartition theorem:T atom/cg= 2<Katom/cg>

natom/cg , where< Katom/cg > is
the average kinetic energy of the atomistic/coarse grainedregion andnatom/cg is the total
average number of DOFs. In the atomistic/coarse grained region, such a quantity is a well
defined number, however it is not so in the transition region wherentrans = n(x). The ques-
tion arising is how to defineT trans and above all what< K trans > means. To address this
question we make the following observations: the switchingprocedure implies that a DOF,
in calculating average statistical quantities,fully counts in the atomistic region, which
formally means that an integral over its related phase spaceis performed (

∫

....dq; q being
a generic switchable DOF). On the other hand in the coarse grained region,q is not relevant
to the properties of the system and thus itdoes not count at all, that is no integration over
its related phase space is required. In the transition region the situation is something in
between and thus by switching on/off the DOFq we effectively change the dimensionality
(between zero and one) of its related phase space, that is of its domain of integration. In
simple wordsq in the transition region contributes to statistical averages with a weight.
The mathematical tool which allows to formalize this idea isprovided by the technique of
the fractional calculus, where for a fixed resolutionw the infinitesimal volume element is
defined as26:

dVw = dwq Γ(w/2)/2πw/2Γ(w) = |q|w−1dq/Γ(w) = dqw/wΓ(w) (2)

with Γ(w) the well-knownΓ function. Employing such a formalism to calculate the aver-
age energy for quadratic DOFs one obtains:

< Kq >w=

∫ ∞

0
e−βq2

qw+1dq
∫ ∞

0
e−βq2qw−1dq

. (3)

The solution of Eq. 3 is found to be26:

< Kq >w=
w

2
β−1. (4)

This is nothing else than the analog of the equipartition theorem for non integer DOFs.
Here< Kq >w is the average kinetic energy of the switchable DOFq for the fixed res-
olution w. One can then think to usew as a continuous parameter and thus obtaining the
definition of kinetic energy for the switchable DOFs in the transition region. A further
point needs to be explained, that is, we have implicitly useda Hamiltonian to perform the
ensemble average and this would contradict the statement ofthe previous section about
the non existence of an energy within the coupling scheme used. To clarify this aspect we
have to say that the coupling formula on the forces is not directly related to the derivation
of the statistical average performed here. Here we have interpreted the process of chang-
ing resolution as the process of partially counting a DOF contribution into the statistical
determination of an observable, under the hypothesis that the underlying Hamiltonian is
the same all over the system. This is justified by the fact thatthe underlying physics is
in principle the same all over the system but the formal representation and thus the anal-
ysis of the DOFs of interest and their contributions differs. This in practical terms means
that the derivation of the temperature and the principle of coupling of forces via spatial
interpolation are two aspects of the same process but one cannot formally derive both from
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a single general principle so that the connection between them, at this stage, must be in-
tended as only qualitative. However, we will use the numerical tool of simulation where
both Eq. 1 and Eq. 4 are employed in connection to each other toprove that they are nu-
merically consistent. At this point the obvious question arises about why to choose the
approach based on the interpolation of the forces and not to choose the more natural one
based on the smooth interpolation of the potential. This problem is treated in the next
section.

5 Coupling the Different Regimes via a Potential Approach

The coupling scheme analog of Eq. 1 using potentials insteadof forces would be:

Uαβ = w(xα)w(xβ)Uatom
αβ + [1 − w(xα)w(xβ)]U cg

αβ . (5)

This approach leads to a series of problem whose solution is not trivial. In particular if one
derives the forces from Eq. 5 obtains an extra term, which here we will namedrift force,
of the following form:

Fdrift = Uatom∂w

∂x
+ U cg∂w

∂x
(6)

There are two options at this point, one accepts this force asa result of a definition of
a new force field in Eq. 5, or one tries to remove it by a specific choice ofw(x) or by
modifyingUαβ in Eq. 5. In the first case one has to be aware that, because the derivative
of w(x) enters into the equations of motion, the evolution of the system becomes highly
sensitive to the choice of the form ofw(x). This means that different functionsw(x) may
lead to complete different results, and being the choice ofw(x) made on empirical basis,
the dynamic becomes arbitrary and thus, most likely, unphysical. The limitation above
applies in principle to the approach proposed by Heyden and Truhlar19, where the scales
are coupled by an interpolation of Lagrangians via a space dependent function. Moreover,
the force obtained from Eq. 5 does not preserve the third Newton’s law23, 26.

Instead if one tries to follow the second possibility, that is removingFdrift, one en-
counters heavy mathematical difficulties24, 25since the conditionFdrift = 0 leads to a sys-
tem of partial differential equations of first order:

U cg∂f(Xα, Xβ)

∂Xα
+ Uatom

∂g(Xα, Xβ)

∂Xα
= 0

U cg∂f(Xα, Xβ)

∂Xβ
+ Uatom

∂g(Xα, Xβ)

∂Xβ
= 0. (7)

Heref(x) andg(x) are the most general switching functions one can think of. For the sys-
tem of Eqs. 7 each equation is characterized by two boundary conditions, thus the system
is overdetermined and thus in general a solutiondoes not exist. This is valid also if one
tries to generalize Eq. 5 as:

U coupling = f(Xα, Xβ)U cg + g(Xα, Xβ)Uatom+ Φ. (8)

The extra potentialΦ does not improve the situation because in this case the overdetermi-
nation is shifted fromf andg to Φ. These sort of problems, in principle, occur for the
conserving energy method proposed by Ensinget al.18, where the difference between the
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Figure 3. (a) Center-of-mass radial distribution functions for all molecules in the box of the all-atom ex and
hybrid atomistic/mesoscopic ex-cg systems atρ∗ = 0.1 andT ∗ = 1. Shown are also the corresponding center-
of-mass radial distribution functions for only the explicit molecules from the explicit region ex-cg/ex and for
only the coarse grained molecules from the coarse grained region ex-cg/cg . The width of the interface layer is
2d∗ = 2.5. (b) The corresponding average numbers of neighborsnn(r∗) of a given molecule as functions of
distance. The different curves are almost indistinguishable. (Figure was taken from Ref.15)

true (full atomistic) energy of the system and the one of the hybrid scheme is provided
during the adaptive run via a book keeping approach while theforces are calculated with
a scheme similar to that of AdResS. The problem of the overdetermination reported above
in this case would mean that the conserved energy is not consistent with the dynamics of
the system. In comparison, the AdResS method has the limitation of not even attempting
to define an energy but on the other hand the overall scheme is robust enough to keep the
dynamics and the essential thermodynamics under control without the problem of energy
conservation. The next step consists of using the information gained so far and apply the
principles of the previous section in a numerical experiment to prove the validity of the
scheme.

6 Does the Method Work?

In order to prove that such a computational approach with thetheoretical framework pre-
sented so far is robust enough to perform simulations of chemical and physical systems we
have carried on studies for the liquid system of tetrahedralmolecules where the results of
the AdResS approach are compared with the results obtained with full atomistic simula-
tions. First we have shown that global and local structure can be reproduced. This means,
we have determined the center of mass-center of mass radial distribution function for the
whole system (global), and for only the atomistic part and only for the coarse grained
part (local) and compared it with the results obtained in a full atomistic simulation. This
comparison for a medium dense liquid are reported in Fig. 3; the agreement is clearly satis-
factory since the various plots are all on top of each other. However the radial distribution
function is based on an average over the space, this means that cannot describe possible
local and instantaneous fluctuations due to some possible artifact of the method. These
latter may not be negligible but, by compensating each other, they would not appear in the
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plot of Fig. 3. In this sense the study above is not sufficient to infer about the validity of
the method. Therefore, we also studied the evolution of the number of DOFs as a function
of time. This should make us aware of possible non-negligible artificial fluctuations of the
system. Fig. 4 shows that the number of DOFs is conserved at any time during the run
and thus there is no net flux through the border of the two regions. Again, this study is not
sufficient to prove the validity of the scheme, because stillone should prove that indeed
there is a true exchange of particles from one region to another. In fact it may happen
that the equilibrium among the different regions is due to a reflection mechanism without
exchange of particles between them. Fig. 5 shows that indeeda sample of molecules from
the atomistic region diffuses into the coarse grained one and vice versa a sample from the
coarse grained region diffuse into the atomistic one. It is however only a coincidence that
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Figure 6. A schematic plot of a solvated generic bead-springpolymer. The solvent is modeled on different levels
of detail: solvent molecules within a certain radius from the polymer’s center of mass are represented with a high
atomistic resolution while a lower mesoscopic resolution is used for the more distant solvent. The high resolution
sphere moves with the polymer’s center of mass. The polymer beads are represented smaller than the solvent
molecules for presentation convenience; for details see text. (Figure was taken from Ref.27)

this happens in a symmetric way, because the system in question has basically the same
diffusion constant in the atomistic and coarse grained representation. In general the profile
is not symmetric. To remove this unphysical effect the system is coupled with a position
dependent thermostat to match the diffusion constants of the atomistic and coarse grained
molecules (see Appendix 8). The data reported in the plots above are for a medium dense
liquid15, but the same satisfactory agreement was found for high density liquid16.

7 Further Applications

7.1 Solvation of a simple polymer in the tetrahedral liquid

An extension of the approach above to a solvation of an ideal bead and spring polymer
in tetrahedral liquid was then performed in Ref.27. Here the solvation shell is defined as
the atomistic region, and outside the solvent is represented with its coarse grained spheres.
The solvation shell, centered at the center of mass of the polymer is always large enough
that the polymer is contained in it. This region can diffuse around with the polymer and
all the molecules entering the solvation area become atomistic and those leaving the re-
gion become coarse grained. As for the cubic box before, between the atomistic and the
coarse grained regions there is a transition region (see Fig. 6). Two examples of compari-
son with a full atomistic simulation are reported, these arethe calculation of the static form
factor (left panel Fig. 7) and the shape of the solvation region as a function of the distance
from the center (of the region) in terms of particle density (right panel Fig. 7). These two
plots show very good agreement with the full atomistic simulation and thus prove that the
method is indeed robust for such a kind of system.

7.2 Liquid water

The first application to a real chemical and physical system is that to liquid water. Several
new technical issues arise, the most relevant of which are the presence of the charges and
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Figure 7. (a) The static structure factor of the polymer withN = 30 in the Kratky representation for all three
cases studied: the fully explicit, the AdResS scheme with and without the interface pressure correction. (b) The
correlation hole for the same systems as in (a) . (Figure was taken from Ref.27)

the different diffusion coefficients in the atomistic and coarse grained representations (see
Fig. 8)28, 29. These technical problems have been solved and the approachused is reported
in the appendix, here we report only the results showing thatindeed the adaptive simulation
can reproduce in a satisfactory way the results of the full atomistic ones. This is shown in
the right panel of Fig. 8(b), where several radial distribution functions calculated in the full
atomistic simulation and in the adaptive case (for the atomistic region) are plotted . More-
over, not shown here, results of the study show that the system remains indeed uniform.
Several other properties were calculated showing the robustness of such an approach for
liquid water and they are reported in Refs.28, 29.

7.3 Triple-scale simulation of molecular liquids

Recently we succeeded in developing a triple scale approachwhere the atomistic is in-
terfaced with the coarse grained description and the latterwith the continuum30, 31. This
multiscale approach was derived by combining two dual-scale schemes: our particle-based
AdResS, which links the atomic and mesoscopic scales withina molecular dynamics (MD)
simulation framework, and a hybrid flux-exchange based continuum-MD scheme (Hy-
bridMD) developed by Delgado-Buscalioniet al.32, 33. The resulting triple-scale model
consists of a particle-based micro-mesoscale MD region, which is divided into a central
atomistic and a surrounding mesoscopic domain, and a macroscopic region modeled on
the hydrodynamic continuum level as schematically presented in Fig. 9 for the example of
the tetrahedral liquid. The central idea of the triple-scale method is to gradually increase
the resolution as one approaches to the atomistic region, which is the “region of interest”.
The continuum and MD region exchange information via mass and momentum fluxes,
which are conserved across the interface between continuumand MD regions (for details
see Refs.32, 33). The combined approach successfully solves the problem oflarge molecule
insertion in the hybrid particle-continuum simulations ofmolecular liquids and at the same
time extends the applicability of the particle-based adaptive resolution schemes to simulate
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(a) Mapping scheme (b) Radial distribution functions

Figure 8. (a) On-the-fly interchange between the all-atom and coarse grained water models. Top: the explicit
all-atom water molecule is represented at the right, and thecoarse grained molecule at the left. The middle hybrid
molecule interpolates between the two (see text). Bottom: aschematic representation of the full system, where
a hybrid region connects the explicit and coarse grained levels of description. All the results presented in the paper
were obtained by performing N V T simulations using ESPResSo34 with a Langevin thermostat, with a friction
constantζ = 5ps−1 and a time step of0.002ps atTref = 300K andρ = 0.96g/cm−3 (the density was obtained
from an NPT simulation withPref = 1bar). Periodic boundary conditions were applied in all directions. The box
size is 94.5Å in the x direction and 22̊A in the y and z directions. The width of the interface layer is18.9Å in
the x direction. (b)The center-of-mass, OH and HH RDFs for the explicit region in the hybrid system dots, and
bulk line systems. (Figures were taken from Refs.28 and29)

open systems in the grand-canonical ensemble including hydrodynamic coupling with the
outer flow.

8 Work in Progress: Towards an Internally Consistent Theoretical
Framework

The AdResS method has been shown to be numerically rather robust, however further de-
velopments of the theoretical framework, on which the method is based, would be highly
desirable in order to improve the structure and the flexibility of the algorithm. One rele-
vant point regards the concept of latent heat introduced viathe theoretical analysis about
the meaning of changing resolution in thermodynamical terms. This has been so far im-
plemented numerically by using a thermostat; such an approach is numerically very con-
venient to stabilize the algorithm and drive the system to equilibrium but at the same time
does not permit the detailed control of the physical processoccurring while the change of
resolution happens. To this aim we are making an effort to formalize the concept of latent
heat on the basis of a physical ground by employing first principles of thermodynamics
or statistical mechanics. In this way an explicit analytic or semi-analytic description of
the latent heat, would allow to avoid the use of a stochastic thermostat and automatically
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Figure 9. The triple-scale model of the tetrahedral liquid.The molecular particle-based region is embedded
in the hydrodynamics continuum described by Navier-Stokesequations (solved by the finite volume method).
The molecular region is divided into the central explicit atomistic region with all-atom molecules (red tetrahe-
dral molecules) sandwiched in between two coarse grained domains with the molecules represented on a more
coarse grained level of detail (one particle blue molecules). (Figure was taken from Ref.30)

provide thermodynamic equilibrium. With that the dynamicsand the essential thermody-
namics can be taken explicitely under control and provide equilibrium despite the fact that
still we do not define an energy as in standard simulation schemes. For this purpose we
reformulate the problem of the latent heat in terms of an additional thermodynamic force.
Such a thermodynamic force is represented by the gradient ofa scalar field whose task is
that of assuring the balance of the chemical potential in allregions. Such a field can be
derived by calculating numerically the chemical potentialor the free energy density in the
various region of different resolution. Numerical as well as analytic work on this subject
is in progress.

Appendix A: Tetrahedral Fluid

In the atomistic representation every molecule of this model fluid consist of 4 atom. All of
these have the same massm0 and interact via purely repulsive Lennard-Jones potential:

Uatom
LJ (rαiβj) =







4ǫ

[

(

σ
rαiβj

)12

−
(

σ
rαiβj

)6

+ 1

4

]

: rαiβj ≤ 21/6σ

0 : rαiβj > 21/6σ
, (9)

whererαiβj is the distance between theith atom in theαth molecule and thejth atom in
theβth molecule, note that we also consider the Lennard-Jones interactions between the
atoms of the same molecule. Additionally the atoms in one molecule are bonded by FENE
potential

Uatom
FENE(rαiαj) =







− 1

2
kR2

0 ln

[

1 −
(

rαiαj

R0

)2
]

: rαiαj ≤ R0

∞ : rαiαj > R0

, (10)

with a divergence lengthR0 = 1.5σ and stiffnessk = 30ǫ/σ2.
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Appendix B: Mapping Scheme/Coarse Grained Potentials

In coarse grained representation we replace a molecule by a bead located at the position of
the center of mass of the atomistic molecule. The interaction between the coarse grained
beads is determined by the iterative Boltzmann inversion35 and it is such that the radial
distribution function (RDF) of the coarse grained system fits the RDF of the atomistic
system. In summary this procedure works as follows (for a detailed presentation see the
lecture of C. Peter and K. Kremer). After starting with an initial guess of the pair interaction
V0(r), the interaction of the(i + 1)th step is given by:

Vi+1(r) = Vi(r) + kBT ln

[

gi(r)

gtarget(r)

]

, (11)

wheregtarget(r) is the RDF we want to fit, usually given by atomistic simulation andgi(r)
is the RDF of theith step. Commonly the potential of mean force is used as an initial
guess:

V0(r) = −kBT ln gtarget(r) (12)

Appendix C: Interface Correction

In the switching region the density profile is not uniform, instead it is characterized by
some evident fluctuations. Such fluctuations are due to the fact that for hybrid interactions
the corresponding effective potential is not the same as thefull coarse grained one for
matching the structure and the pressure of the atomistic system. Technically this means that
we need to derive first an effective potential between hybridmolecules with a fixed weight,
which reproduces the RDF and the pressure of the atomistic one, and then, in order to
suppress the density fluctuations, use it for an interface correction. Here we report the case
w = 0.5, however the extension to other weights (and other points) is straightforward. The
newly derived effective potential withw = 0.5, V ic,0.5(Rαβ) is determined via the iterative
Boltzmann procedure (as before, see Appendix 8). Then, one replaces the forces between
the coarse grained beads by16:

Fic
αβ = s[w(Rα)w(Rβ)]Fcg(Rαβ) + (1 − s[w(Rα)w(Rβ)])Fic,0.5(Rαβ) , (13)

whereFic,0.5(Rαβ) is the force coming from the potentialV ic,0.5(Rαβ) and

s[x] = 4(
√

x − 0.5)2 , (14)

is a functions ∈ [0, 1], which is zero for both weights being 0.5 (s[(0.5)2] = 0) and one
for the product of the two weights being 0 or 1 (s[0]=s[1]=0);this means that one has the
”exact” force when both molecules havew = 0.5. For other weights the force is smoothly
interpolated between the corrected and the standard coarsegrained force, and thus one
obtains an improvement at the interface. In principle if onerepeated this procedure for
each combinations ofw(Rα)w(Rβ), in the switching region one would have always the
exact force. We have noticed that numerically is enough to have a correction for the worst
case (w = 0.5).
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Appendix D: Charged Molecules

Electrostatic interactions are long-ranged and must be calculated over several periodical
images of the simulation box. This leads to some problems in the adaptive resolution
method because, on one hand, molecules become uncharged in their coarse grained rep-
resentation and on the other hand the long-ranged characterof electrostatic interactions
leads to self interaction of all periodical images, for example the interaction of the explicit
regions of two image boxes. Additionally, standard approaches like particle mesh Ewald
or P3M will always lead to an all-with-all interaction of themolecules, due the involved
Fourier transformation, and thus making the switching of the degrees of freedom not pos-
sible.

Luckily, in the case of dense and homogeneous fluids (like water) one can use the reac-
tion field approach36. The latter assumes that outside a sphere with radiusrcut the charges
are distributed homogeneously, and thus it makes it possible to replace the interactions
outside the sphere with that of a continuum with a dielectricconstantǫrf. This scheme
has been frequently used for liquid water37, and, in this case, it allows to treat charged
molecules in the adaptive resolution method, where one deals with pair interactions:

U(r) =

{

qiqj

4πǫ0ǫ1

[

1

r − Br2

2r3
c
− 2−B

2rc

]

: r ≤ rc

0 : r > rc

(15)

with B = 2(1 − ǫ1 − ǫrf)/(ǫ1 + 2ǫrf). The ǫrf is the dielectric constant outside the cut-
off. rc, which can be estimated from a particle mesh Ewald calculation or determined in
a recursive manner.

Appendix E: Thermostat

In general a thermostat is always needed to perform a NVT simulation. Specifically, in
the case of the adaptive resolution scheme the thermostat isalso needed to compensate
for the switch of the interaction between the molecules, since it ensures that the atoms of
a molecule have the correct velocity distribution when entering the switching region from
the coarse grained side. We use the Langevin idea or stochastic dynamics38 to ensure the
correct ensemble by adding a random and a damping force

ṗi = −∇iU + FD
i + FR

i (16)

The damping force is Stokes-like force

FD
i = −ζi/mi pi (17)

To compensate for this friction one adds a random force

FR
i = σiηi(t) , (18)

whereηi is a noise with zero mean (< ηi(t) >= 0) and certain correlation properties
(< ηi(t)ηj(t

′) >= δijδ(t − t′). And ζi, σi are the friction and the noise strength. The
corresponding Fokker-Planck operator39 for the stochastic part of the Langevin equation
(Eq. 16) is given by:

LSD =
∑

i

∂

∂pi

[

ζi
∂H
∂pi

+ σ2
i

∂

∂pi

]

, (19)
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where the sum goes over all particles. By assuming that the equilibrium distribution is
a Boltzmann distribution, one has:

LSD exp(−H/kBT ) = 0 (20)

and from that one obtains:

σ2
i = kBTζi , (21)

which is also known as the Fluctuation-Dissipation theorem(FDT)39. At this point we are
left with one free parameter to choose, namely the friction strengthζi. The drawback
of this thermostat is its lack of Galilei invariance and the strong dependence of the dy-
namics from the friction strength. Therefore, it is in many cases more appropriate to use
the Galilei invariant and hydrodynamics conserving DPD thermostat40, which leaves the
dynamic nearly unchanged for wide range ofζ.

Applying the thermostat in AdResS

To obtain the FDT from Eq. 20 a Hamiltonian is needed and, as discussed above, in the
AdResS method it is not possible to define a Hamiltonian. For this reason one has to cou-
ple the thermostats acting on the explicit and coarse grained molecules. One could make,
for example, a linear combination of the thermostat forces (as in Eq. 1 for the deterministic
forces). However, this would violate the FDT because the ratio of “random force squared
to damping force” would not be conserved (see Eq. 21). Consequently, the temperature
would not be correctly defined. Another possibility is to apply the linear scaling to the
friction coefficient of the damping force (from the atomistic friction coefficient at the all-
atom/transition regime interface to the coarse grained oneat the transition/coarse grained
boundary) and adjust the noise strengthσ to satisfy the FDT29, 30 (see also the next sec-
tion). The thermostat is then applied to the explicit particles in the atomistic and transition
regions and to the center of mass interaction sites in the coarse grained regime. In ad-
dition, the explicit atoms of a given molecule, which entersthe transition regime from
the coarse grained side, are also assigned rotational/vibrational velocities corresponding to
atoms of a random molecule from the atomistic region (where we subtract the total lin-
ear momentum of the latter molecule). By doing this we ensurethat the kinetic energy is
distributed among all DOFs according to the equipartition theorem. For practical reasons,
the thermostat can act always on the underlying explicit identity of the molecules even if
they are in the coarse grained region (keeping a double resolution)15. The explicit forces
are then added up to determine the force acting on the center of mass of the coarse grained
molecules. In this way the coarse grained particles have thecorrect velocity distribution.

Diffusive processes

The application of the AdResS method as reported in the previous sections may lead to the
fact that one has different diffusion constants in the atomistic and in the coarse grained re-
gion. This will lead to an asymmetric diffusion profile for molecules whose coarse grained
representation is much simplified with respect to the atomistic one (for example for water).
However, while a faster dynamics of the coarse grained molecules may even be an advan-
tage for sampling purposes, for dynamical analysis this is not ideal. A way to circumvent
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Figure 10. Top figure: The upper curve indicates the dependency of the friction coefficient as a function of the
particle identityw when a position-dependent thermostat is used. The straight(lower) curve shows the constant
value of the friction coefficient when a regular thermostat is used. Bottom figure: The dots at the upper part
indicate the diffusion of the molecules when the regular thermostat is used. The dots of the lower part indicate
the diffusion of the molecules when the position-dependentthermostat is used. (Figure was taken from Ref.29)

this problem is that of slowing down the dynamics of the faster coarse grained molecules.
The Langevin thermostat (see above) allows for the changingof the dynamics (and the dif-
fusion constant) by modifying the strength of the frictionζ. As the Langevin thermostat is
a local thermostat one can easily make the friction space dependent (or weight dependent).
In this case one has to simply tuneζ(w) in a way that the diffusion constant is the same all
over the system. This has been done for the tetrahedral fluid (see Fig. 10).

Recently41 the DPD thermostat has been extended to change the dynamics of the sys-
tem; the basic idea is to add an additional friction (and noise) to the transversal degrees of
freedom, which allows to conserve hydrodynamics keeping Galilei invariance.
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