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We present a triple-scale simulation of a molecular liquid, in which the atomistic, coarse-grained,
and continuum descriptions of the liquid are concurrently coupled. The presented multiscale
approach, which covers the length scales ranging from the micro- to macroscale, is a combination
of two dual-scale models: a particle-based adaptive resolution scheme �AdResS�, which couples the
atomic and mesoscopic scales, and a hybrid continuum-molecular dynamics scheme �HybridMD�.
The combined AdResS-HybridMD scheme successfully sorts out the problem of large molecule
insertion in the hybrid particle-continuum simulations of molecular liquids. The combined model is
shown to correctly describe the hydrodynamics within a hybrid particle-continuum framework. The
presented approach opens up the possibility to perform efficient grand-canonical molecular
dynamics simulations of truly open molecular liquid systems. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2890729�

I. INTRODUCTION

Many processes in molecular liquids and soft matter are
inherently multiscale, i.e., they involve a range of different
time and length scales that are intrinsically interconnected.
The relevant properties of the system are thus typically de-
termined by the interplay of the various temporal and spatial
scales involved. All-atom simulations that capture phenom-
ena on the atomic scale are often not computationally fea-
sible or even not desirable due to a large number of the
degrees of freedom �DOFs� in these systems. The more
coarse-grained models or continuum simulations, on the
other hand, can cover much larger time and length scales but
are unable to provide the information on the atomic level of
detail. Multiscale modeling techniques that concurrently
couple different length scales, where each separate scale is
described by the appropriate model for that particular scale,
hence, providing a very efficient way to treat such systems
by a computer simulation.1 Using a multiscale approach one
simplifies the model of the physical system to the largest
extent possible while keeping all the necessary details of the
system where this is required.

Such hybrid multiscale methods have been developed
and successfully applied to study solid state systems, where
the atomistic simulation was either combined with the finite
elements method2–6 or it was linked to a quantum mechani-
cal model.7,8 In recent years there have been a few schemes
also derived for hybrid atomistic-continuum simulations of
molecular fluids where an atomistic domain has been embed-
ded into the continuum hydrodynamics domain described ei-
ther by the deterministic9–18 or the fluctuating Navier–Stokes
equations.19,20 However, one problem of this class of hybrid

methods, when applied to molecular fluids, is the insertion of
complex molecules into a dense liquid at the molecular
�atomistic�/continuum boundary. Because of that the applica-
tions have been limited so far to “simple” liquids such as the
Lennard-Jones fluid21 or water.22

In parallel, there have been recent efforts made to con-
currently couple atomic and coarse-grained scales within the
class of the particle-based methods, see for example Refs.
23–27. There the molecules adaptively on-the-fly change
their level of resolution from the atomic to coarse-grained
one and vice versa on demand during the course of a single
molecular dynamics �MD� or Monte Carlo simulation. Thus
far, these simulations could only be performed in the canoni-
cal statistical ensemble with a constant number of molecules
in the system. Moreover, previous work on this particle-
based method did not explicitly include hydrodynamic trans-
port of mass and momentum. An extension allowing simula-
tion of open systems in the grand-canonical ensemble and
including hydrodynamic transfer across the atomic and dif-
ferent coarse-grained scales involved, would thus very much
enlarge the scope and applicability of this kind of multiscale
simulations.

In this work, we combine the two dual-scale approaches,
i.e., the particle-based adaptive resolution scheme23–25

�AdResS� and hybrid continuum-molecular dynamics
�HybridMD�.19,20 The combined approach solves the prob-
lem of large molecule insertion in the hybrid particle-
continuum simulations of molecular liquids and at the same
time extends the applicability of the particle-based adaptive
resolution schemes to simulate open systems in the grand-
canonical ensemble including hydrodynamic coupling with
the outer flow.

II. LIQUID MODEL

The modeled system is an open particle system of tetra-
hedral molecules23–25 in a liquid state schematically pre-
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sented in Fig. 1. The triple-scale system is divided into a
molecular particle-based micro-mesoscale region, which is
surrounded by a liquid described on the macroscopic con-
tinuum level. The molecular region is further split into the
central explicit atomistic �ex� region, where the molecules
are modeled using atomic resolution, and the surrounding
�cg� part modeled on a more coarse-grained level of detail.
The ex region, which is our “region of interest” with the
highest resolution, is thus occupied by atomistic tetrahedral
molecules, while the cg region is filled up with the corre-
sponding one particle coarse-grained molecules.

The liquid molecules in the ex regime are composed of
four equal atoms with mass m0. The atom diameter � is fixed
via the repulsive Weeks–Chandler–Andersen potential
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with the cutoff at 21/6�. � and � are the standard Lennard-
Jones units for lengths and energy, respectively. In what fol-
lows, all quantities shall be expressed in the standard
Lennard-Jones units associated to the atoms: length �, mass
m0, energy �, and time ����m0 /��1/2. The distance between
the atom i of the molecule � and the atom j of the molecule
� is ri�j�. The neighboring atoms in a given molecule � are
connected by finite extensible nonlinear elastic bonds
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with divergence length R0=1.5� and stiffness k=30� /�2, so
that the average bond length is approximately 0.97� for
kBT=�, where T is the temperature of the system and kB is
Boltzmann’s constant. For the coarse-grained model in the cg
regime we use one-site spherical molecules interacting via an
effective pair potential,23,24 which was derived such that the
statistical properties, i.e., the center of mass radial distribu-
tion function and pressure, of the high resolution liquid at a
given phase point are accurately reproduced.28 In this way
the atomistically resolved part of the liquid is maintained at
thermodynamical equilibrium with a liquid in the coarse-
grained regime.29 In our numerical tests we treat a medium

density liquid with a molecular number density of 	m

=0.1 /�3�0.58 /�cg
3 and pressure p=0.4� /�3, and a high

density liquid with 	m=0.175 /�3�1.0 /�cg
3 and pressure p

=2.0� /�3 ��cg�1.8� is the excluded volume diameter of the
coarse-grained molecule24�.

The two molecular regions freely exchange molecules
through a transition regime �hyb� containing hybrid
molecules,30 where the molecules with no extra equilibration
adapt their resolution and change the number of DOFs
accordingly.23 Furthermore, the cg region also exchanges
molecules �that are annihilated/created in accordance with
the grand-canonical ensemble� with the continuum part of
the system. Thus, in the triple-scale model described earlier
the liquid is modeled at each domain of the system only with
the level of detail, which is absolutely necessary for that
particular area. This allows for the most efficient description
of the liquid with the least number of DOFs used but at the
same time retaining all the necessary details in the model.

III. ADAPTIVE RESOLUTION SCHEME

The dynamics of molecules in the molecular particle-
based region of the system is governed by the classical New-
ton’s equations of motion, which are solved using the MD
simulation technique. The atomic and mesoscopic scales in
the molecular particle-based region are smoothly coupled us-
ing the AdResS.23 The transition between the two resolu-
tions, which needs to be smooth for MD simulations, is gov-
erned by a weighting function w�x�� �0,1� that interpolates
the interaction forces between the two regimes and assigns
the identity of the particle. In the present work we employ
the weighting function of the following form �see Fig. 2�:
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where l, a, and d are widths of the molecular, atomistic �ex�,
and transition �hyb� regimes of the system, respectively.

FIG. 1. �Color� The triple-scale model of the tetrahedral
molecules’ liquid. The molecular particle-based region
is embedded in the hydrodynamics continuum. The mo-
lecular region is divided into the central explicit atom-
istic �ex� region with molecules represented using the
atomic resolution �red tetrahedral molecules� sand-
wiched in between two coarse-grained �cg� domains
with the molecules represented on a more coarse-
grained level of detail �one particle blue molecules�.
The molecules freely move between the three levels of
resolution and change their resolution accordingly.
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The weighting function given by Eq. �3� is defined in
such a way that w=1 corresponds to the atomistic �ex� re-
gion, and w=0 to the coarse-grained �cg� region, whereas the
values 0�w�1 correspond to the transition �hyb� regime.
The atomic and mesoscopic length scales are coupled via the
intermolecular force acting between centers of mass of mol-
ecule � and � as

F�� = w�X��w�X��F��
atom + �1 − w�X��w�X���F��

cm, �4�

where F��
atom=i�,j�

Fi�j�
atom=−i�,j�

�Uatom /�ri�j�
is the sum of

all pair intermolecular atom interactions between explicit at-
oms of the molecules � and � and F��

cm =−�Ucm /�R�� is the
corresponding effective intermolecular force between their
centers of mass. ri�j�

=ri�
−r j�

is the vector between atom i in
molecule � and atom j in molecule � and R��=R�−R� is
the vector between the centers of mass of molecules � and �,
with the corresponding X coordinates X� and X�. To suppress
the density fluctuations at the transition regime we employ
the interface pressure correction.24 Each time a molecule
crosses a boundary between the different regimes it gains or
loses �depending on whether it leaves or enters the coarse-
grained region� its equilibrated rotational DOFs while retain-

ing its linear momentum. To supply or remove the latent heat
caused by the switch of resolution and to synchronize the
timescales of the all-atom and coarse-grained regimes in the
molecular region while preserving the hydrodynamics this
method is employed together with a combination of the stan-
dard and recently introduced Transverse dissipative particle
dynamics �DPD� thermostats.31,32 The application of the ther-
mostats and proper derivation of the effective pair potential
between coarse-grained molecules �yielding the same pres-
sure in the ex and cg regions� provide the same chemical
potential across the molecular region. This guarantees the
free exchange of molecules between the ex and cg regions
with a zero net flux.1,29 As discussed in earlier publications,
it is important to interpolate the forces and not the interaction
potentials in order to satisfy Newton’s Third Law.29,33,34 This
is crucial among others for the local linear momentum con-
servation.

A bottleneck for performing hybrid particle-continuum
simulations of complex molecular liquids is the insertion of
large molecules into a dense liquid21,22 �see the next section�.
Exploiting the earlier described methodology one can solve
this problem by gradually lowering the molecular resolution
to the level at which the insertion of molecules is no longer
problematic.

IV. HYBRID MOLECULAR-CONTINUUM
HYDRODYNAMICS

The AdResS method presented in the previous section is
a dual-scale approach based on domain decomposition
whereby an atomistically described fluid domain �explicit
model� is gradually converted into a coarse-grained molecu-
lar description as one moves outwards in space. As stated
earlier, in this work we further expand this approach by con-
necting the coarse-grained domain with a continuum descrip-
tion of the external fluid flow.

The HybridMD is designed to connect the dynamics of a
“molecular domain” with that obtained from a continuum
description of the surrounding fluid flow. The method is
based on flux exchange and it is explained in detail in Refs.
19 and 20. The idea is conceptually simple, as illustrated in
Fig. 3. The system is divided in �at least� two domains, de-
scribed via classical MD and continuum fluid dynamics
�CFD�. While at the particle domain each molecule’s motion

FIG. 2. The weighting function w�x�� �0,1� defined by Eq. �3�. The values
w=1 and w=0 correspond to the atomistic �ex� and coarse-grained �cg�
regions, respectively, of the molecular region with the size l=15�, whereas
the values 0�w�1 correspond to the transition regime �hyb�. Shown is the
example where the widths of the hyb and ex regions are d=2.5� and a
=6�, respectively. The vertical lines denote the boundaries of the hyb
regime.

FIG. 3. Domain decomposition of the combined AdResS and HybridMD used in the present test cases. The top part of the figure shows the location of the
fluid model layers �cg, hyb, and ex� within the HybridMD setup. The width of the hyb regime is 2.5�, which approximately corresponds to the range of the
effective intermolecular interaction in the tetrahedral fluid �Refs. 23 and 24�. The bottom part of the figure shows the set of control cells used in the HybridMD
setup: the dotted region corresponds to the molecular domain, surrounded by a continuum description of the fluid flow �solved via the finite volume method�.
The shaded regions indicate the particle buffers B. The “P” and “C” cells adjacent to the hybrid interfaces H are also indicated. All the control cells are x=3�
wide in the �coupling� x direction, and 15�15�2 in the orthogonal �periodic� directions. Cell number 0 and 16 are used to set the �no-slip, rigid wall� boundary
conditions in the finite volume scheme.
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is described via Newtonian dynamics �ai= fi /mi�, at the CFD
side we solve the Navier–Stokes equations. The MD and
CFD components are coupled independent models, which
exchange information after every fixed time interval tc. We
set tc=nCFDt=nMD�t, where t and �t are the CFD and
MD time steps and nCFD and nMD are integers which depend
on the system being modeled.35 The MD and CFD domains
share one unique “hybrid interface,” H. Flux balance implies
the conservation of mass and momentum across H: both do-
mains should receive equal but opposite sign mass and mo-
mentum transfer across H over each tc. In the HybridMD
scheme the mass flux across the hybrid interface is not ex-
plictly imposed, but naturally arises as a consequence of lo-
cal pressure gradients, as occurs in hydrodynamics. There-
fore, the central quantity, which drives mass and momentum
exchange between the CFD and MD domains, is the momen-
tum flux across H. This flux is equal to JH ·eH, where eH is
the surface unit vector, normal to the H interface and JH is
the local pressure tensor at r=rH �i.e., JH�J�rH , t��. The
pressure tensor

J = 	vv + pI + � , �5�

includes a convective term �proportional to the dyadic prod-
uct of the velocity vv�, the thermodynamic pressure p�	 ,T�,
and the stress tensor �=−���v�S−�� ·vI �here I is the
identity matrix�.36 We consider a Newtonian fluid with dy-
namic viscosity � and bulk viscosity �.

In general, the HybridMD scheme allows to switch on
hydrodynamic fluctuations at the CFD domain �in this case
the pressure tensor in Eq. �5� includes an extra term arising
from stress fluctuations19,20�. However, in this work hydro-
dynamic fluctuations are switched off at the CFD region in
order to clearly assess the accuracy of the coupled AdResS-
HybridMD scheme. In the Eulerian description of fluid dy-
namics the evolution of the local density of any conserved
fluid variable, say ��r , t�, is given by the conservation equa-
tion �� /�t=−�J�, where J��r , t� is the associated local
“flux.” We consider mass and momentum transfers so that
the set of conserved densities is �= �	 ,	v�. We solve this set
of �Navier–Stokes� equations using the finite volume
method. A detailed discussion of the CFD solver used in
HybridMD was presented in Ref. 37 and here we briefly
outline the method for the sake of completeness. The finite
volume method is based on the spatial integration of the
conservation equations within a discrete set k= �1, . . . ,N� of
nonoverlapping control cells of volume Vk which decompose
the whole system �see Fig. 3�. Integration within each vol-
ume gives

d�k

dt
= − 

l

Jkl
� · ekl, �6�

where ekl is the surface vector of the kl interface �pointing
toward the l cell� and �k=�Vk

��r , t�dr3 stands for the
amount of � at cell k at time t. In standard CFD, Eq. �6� is
closed by the constitutive relations expressing the fluxes in
terms of fluid variables and their gradients. In particular, J	

=	v is the mass flux, while the momentum flux is given by
Eq. �5�. The resulting discretized Navier–Stokes equations

are then integrated in time using a simple explicit Euler
scheme.37 As shown in Fig. 3, the interface H connects the
“particle” cell P and the “continuum” cell C. The corre-
sponding surface vector is thus eH�ePC=−eCP, as indicated
in Fig. 3.

As stated, one of the key issues in the hybrid scheme is
to evaluate the momentum flux across the H interface,
JH ·eH. This flux is used to update the flow variables at the
CFD cells, according to Eq. �6�. In turn, the same �but op-
posite sign� flux −JH ·eH needs to be imposed into the par-
ticle system across H. This point shall be explained later.

In the hybrid scheme one has a direct access to the mi-
croscopic dynamics so there are, in general, two ways to
evaluate the momentum flux JH ·eH. One can use the micro-
scopic expression �Irving–Kirkwood� for the pressure tensor
�see Ref. 20�. Alternatively, in this work we use a “mesos-
copic approach,” which consists on using the local fluid vari-
ables at the MD cells38 to evaluate momentum flux according
to Eq. �5�. Both �“micro” and “mesoscopic”� routes were
shown to give similar results �in terms of mean and variance�
in recent simulations coupling molecular dynamics and fluc-
tuating hydrodynamics.20 Note that the mesoscopic route
avoids the cost of evaluating the microscopic stress and it
also simplifies the structure of the coupling algorithm �one
just needs to plug the local MD variables into the CFD equa-
tions�. Finally, we note that the continuity of the velocity
field at H is ensured by adding a relaxation term into the
momentum equation of the CFD cells adjacent to H
interface39 �see Ref. 14 for details�.

The way one imposes the momentum flux −JH ·eH into
the particle system constitutes the core of the HybridMD
algorithm. For that sake, hybrid schemes use a buffer domain
B, which is shown in Fig. 3. It is important to note that the
buffer B is not part of the system �which is just CFD+MD�.
In fact, the buffer acts as a mass and momentum reservoir for
the particle region. It is also used to impose the external
momentum into MD: molecules are free to enter of leave B
across H, but once inside B each particle feels an external
force fi

ext such that Fext=i�Bfi
ext=−AJH ·eH �here A is the

area of the H interface�. This external force includes pres-
sure, shear, and inertial forces from outside and can be spa-
tially distributed in different ways �for example, so as to
achieve a flat density profile over the whole buffer40 or a
rarefied region at the buffer end20�. The number of particles
at the buffer NB is controlled by a relaxation algorithm of the
form NB= �t /�r���NB�−NB�. Thus, the average number
particles within B relaxes toward a certain imposed value
�NB� over a typical relaxation time of �r�O�100� MD time
steps. The imposed average is set to �NB�=�NC, where � is a
constant �within the range 0.5���0.8� and NC is the num-
ber of particles according to the local density at overlapping
CFD cell C. Particles crossing the buffer end are removed
and, when required �i.e., if NB�0�, particles are inserted
near the buffer end using the USHER algorithm.21

To conclude this section, it is important to note that the
external momentum flux is imposed onto the extended par-
ticle system �MD+B�. As a consequence, in absence of ex-
ternal forces, the momentum of the extended system MD
+CFD+B is conserved, but the momentum of the real sys-
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tem �MD+CFD� is not. The size of fluctuations of the sys-
tem’s total momentum �MD+CFD� is, however, bounded by
the finite size of B. In fact, for typical buffer sizes the error in
momentum conservation is negligible. This fact was shown
in Ref. 19 using water as working fluid and a buffer width of
several molecules’ diameter. More comments on the effect of
buffer size are deferred to Sec. VI B.

V. THE COMBINED TRIPLE-SCALE SCHEME

The idea underlying the combination of the AdResS and
the HybridMD is to gradually increase the number of DOFs
describing the system, as one approaches an atomistically
described region of interest where molecular processes and
hydrodynamics are intertwined in some multiscale phenom-
ena.

As shown in Fig. 3, the combined AdResS-HybridMD
scheme might be envisaged as an “onion type” model. The
resulting scheme retains all the atomistic detail within a
small all-atom core �the ex layer� seamlessly connected,
through the transition layer �hyb�, with a coarser particle
description �the cg layer�, which keeps part of the molecular
information �e.g., structure�, and finally coupling the whole
particle system with the surrounding flow at larger scales,
solved via continuum fluid dynamics �the CFD layer�.

The purpose of any multiscale method is to reduce the
computational cost involved in solving large systems where
different phenomena are intertwined at different length
scales. A way to estimate the reduction in computational cost
that this combined model brings forth is given by the volume
density of the number of DOFs. Consider a molecular fluid
composed by molecules of mass m=Mm0 �in this work
M =4�. The DOF density at the ex region is then 3M	m, it
decreases by a factor M at the cg domain, and becomes
�3+1�	m / �Nc� at the CFD domain. Here �Nc�=	mVc is the
mean number of molecules within one control cell of volume
Vc and �3+1� corresponds to the cell momentum �vector� and
its mass density. In hybrid simulations of molecular liquids,
the cell volume Vc is set accordingly to the molecules’ size,
so that one typically gets �Nc��O�100�. Thus for the same
volume, the solution of the CFD domain is O�100� faster
than the particle �cg� domain. In passing from the cg to the
ex model, the reduction in DOFs of course depends on the
molecular liquid considered. Indeed, the efficiency of the
present method increases with increasing molecular mass of
the fluid, i.e., the speed-up ranges from a factor 10 for liquid
water26 to 104 for polycarbonate.1

A. The buffer

As previously mentioned, the buffer region, which is an
extension of the particle’s system, is not a part of the system
MD+CFD �in particular, in Fig. 3, cell Nos. 5 and 11 belong
to the CFD domain�. However, the buffer is a key component
of the HybridMD scheme as it acts as a mass reservoir and it
is also used to impose external forces into the MD region.
The domain decomposition of the combined AdResS and
HybridMD scheme can be designed in several ways depend-
ing on how the buffer is filled up. In this work the buffer is
uniquely filled with cg particles. However, in principle, one

can also choose to enlarge the buffer, allowing part of the ex
core and both the hyb and cg layers to be included within B.
This second choice for the buffer decomposition shall be
explored in subsequent works. The combined setup used in
this work is illustrated in Fig. 3. The buffer is part of the cg
layer, while the MD region contains the rest of the cg layer,
the transition layer hyb and the ex �all-atom� core.

One of the objectives of the combined AdResS-
HybridMD model is to facilitate the simulation of open sys-
tems formed by relatively large molecules. As explained in
Ref. 20 particle insertions are done at the buffer domain. In
order to avoid particle overlapping or sudden increase of the
system’s energy upon each molecule insertion, one needs an
insertion procedure. To that end, Delgado-Buscalioni and
Coveney developed an efficient algorithm, called USHER,21

initially designed for spherical soft particles �e.g., Lennard-
Jones�, and latter generalized to water.22 By adapting the
AdResS model into the HybridMD setup, the buffer can be
made of soft coarse-grained particles, which are quite easily
inserted by the USHER algorithm overcoming characteristic
problems, when applying it to explicit molecules directly.
For instance, in the dense tetrahedral fluid, the USHER re-
quired only about five trials per inserted cg molecule, mean-
ing that the CPU cost of particle insertion is negligible. In
this way, the multiscale method can be applied to larger mol-
ecules.

Finally, the external force is imposed onto the buffer
particles according to the spatial distribution g�x�; i.e., the
external force to the buffer particle i is fi

ext

=g�xi�Fext /i�Bg�xi�, where x is the coordinate normal to the
hybrid interface. In this work we have used a constant dis-
tribution g�xi�=1. More elaborate choices for g�x� enable
one to obtain a flat density profile across the whole buffer
�see Ref. 40�. The problem of the density profile shape in
open fluid systems is well studied and it is possible to adapt
the function g�x� to the requirements of the hybrid model
used. The choice g�x�=1 is perfectly suited for the purposes
of this work �shear flow solved via a flux-exchange scheme�.

B. Transport properties: Matching viscosities

In order to connect the fluid model mixture shown at the
top part of Fig. 3, with an external continuum description of
the fluid, we need to ensure that the coarse-grained models
�cg and hyb� have the same transport properties as the ex-
plicit model �ex�, at least for those transport coefficients rel-
evant to the sort of flow considered. For instance, to consis-
tently impose into the all-atom core the shear stress resulting
from a certain shear flow, one requires to match the viscosi-
ties of the cg and hyb models to that of the all-atom fluid,
i.e., �cg=�ex and �hyb=�ex.

However, as explained in Sec. III, the cg and hyb models
were initially designed to fit the pressure and molecular
structure �radial distribution� of the explicit fluid model at a
certain density and temperature. As expected, due to softer
effective interaction potentials, the coarse-grained fluid has a
smaller viscosity than the explicit molecular fluid �cg mol-
ecules hence move faster�. One thus therefore requires a way
to increase �cg without modifying either the pressure-density
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relation or the temperature. This problem was solved using
the Galilean invariant local “transverse dissipative particle
dynamics” �TDPD� thermostat,32 which enables us to in-
crease the viscosity of the fluid by allowing a noncentral
component of the DPD thermostating force appearing at each
binary collision. This transversal component mimics the
shear of those DOFs that were integrated out in the coarse-
graining procedure. Due to orthogonality the TDPD thermo-
stat, which preserves the hydrodynamics, can be used in a
combination with the standard DPD thermostat.31 This en-
ables us to adjust at the same time two friction constants ��

and �� for the standard DPD and TDPD thermostats,
respectively.32

As explained in Ref. 20 the HybridMD algorithm can be
used as a rheometer. We used this method to calibrate the
transversal friction coefficient �� so as to fit the viscosity of
the explicit model. As an example, for the tetrahedral fluid at
temperature T=1.0kB /� and pressure p=2.0� /�3 �the equi-
librium molecular density is 	m=0.175�−3�, one gets �ex

=1.30m0 / ����. Using a TDPD thermostat with ��

=0.037m0 /�, in shear flow simulations of the cg fluid we
obtained a similar viscosity. The viscosity does virtually not
depend on ��, which was set to �� =0.05m0 /�. Interestingly
the variation of viscosity with �� is linear �see Ref. 32�. This
fact is quite useful for the calibration of �� but, more impor-
tantly it permits to match the viscosity of the hyb model by
doing a simple linear transformation of �� over the hyb layer
�e.g., in the denser tetrahedral case, from ��=0.037m0 /� at
the cg-hyb interface to ��=0 at the hyb-ex one�. A similar
procedure was also applied in Ref. 41 to match the diffusion
constants across the system using a position dependent
Langevin thermostat, which, however, does not conserve hy-
drodynamics.

Diffusion constants: We also measured the diffusion con-
stant of the cg fluid model and compared it with the ex
model. In liquids the state dependence of the diffusion con-
stant should follow that of the viscosity

D =
kBT

c��
, �7�

where c is the coefficient of proportionality.42,43 According to
Eq. �7�, in an ideal situation where cex=ccg, the diffusion
constants and viscosity could be matched simultaneously
with a specific choice of ��. However, in practice this is not
granted and fitting the viscosity of the cg molecules to the ex
value, will not necessarily fit the mass diffusion values. For
the dense tetrahedral case we obtained Dex=0.054�2 /� while
�using ��=0� Dcg�0.085�2 /�. Using ��=0.037m0 /� �which
matches �cg=�ex�, one gets Dcg=0.066�2 /�, which is still
about 20% larger. One needs to further increase the transver-
sal friction to ��=0.101m0 /� to get Dcg=Dex.

VI. RESULTS

A. Equilibrium

The hybrid explicit/coarse-grained fluid models were de-
signed to keep consistency in the pressure-density equation
of state.23,24 On the other hand, the open boundary conditions
used by the HybridMD method �see Ref. 15� have been

shown to reproduce the grand-canonical ensemble. This
means that the combined AdResS-HybridMD model is al-
ready designed to keep consistency in the pressure-density
relation. This fact is illustrated in Fig. 4, where the equilib-
rium density profiles in a hybrid simulation of tetrahedral
fluid at temperature T=1� /kB and two different pressures,
p=0.4 and 2.0� /�3 are shown. The mean densities at the
molecular domain perfectly agree with the expected thermo-
dynamic value �dashed lines in Fig. 4�. In equilibrium, the
mean values of the pressure, measured at each control cell of
the molecular domain perfectly coincide with the external
pressure imposed at the buffer. The oscillations in the density
profile near and within the buffer domain observed in Fig.
4�b� are due to the way we are distributing the external pres-
sure to the buffer particles �g�x�=1�. As stated earlier, when-
ever required, it is possible to adapt the spatial distribution of
the external force g�x� so as to obtain a flat density profile
around the hybrid interface.40 On the other hand, a small
bump is also observed in the density profile at the hyb layer
of Fig. 4�b� �the denser tetrahedral fluid�. As discussed in
Refs. 23 and 24, this is due to the force interpolation function
used in the AdResS scheme. These small density oscillations
have no effect on the transversal velocity profile �see Fig. 6,
below�, although, if necessary, they can also be further re-
duced using either an improved single point or multiple point
versions of the “interface pressure correction” as explained
in Refs. 24 and 41 to eventually obtain a flat profile.

To demonstrate that the local structure of the liquid is
correctly reproduced in the molecular region of the triple-

FIG. 4. �Color online� Molecular density profiles obtained from simulations
of tetrahedral liquid at temperature T=1� /kB and pressures �a� p=0.4� /�3

and �b� 2.0� /�3, corresponding to equilibrium molecular densities �shown in
dashed lines� of 	m=0.1�−3 and 	m=0.175�−3, respectively. The hybrid in-
terfaces H �vertical dot-dashed line�, buffer domains B and the subdomains
of each fluid model �ex, hyb, and cg� are also indicated. The domain decom-
position in �b� corresponds to that of Fig. 3 and circles correspond to the
mean density at each control cell.
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scale model we also show in Fig. 5 for the 	m=0.175 /�3 the
center-of-mass radial distribution functions �RDFcms� of the
molecules in the atomistic �ex� and transition �hyb� regimes
and in the total molecular region of the triple-scale model
together with the reference RDFcm obtained from the all-
atom simulation of the tetrahedral liquid.24 All RDFcms
match to the line-thickness indicating that the structure of the
liquid in the molecular region is correct.

One of the most stringent tests for any model of open
system is consistency with the thermodynamics of mass fluc-
tuation. We calculated the standard deviation of the mass �N

2

at the whole molecular system and at each control cell. In the
thermodynamic limit one should get �N

2 /V=	kBT /cT
2, where

the isothermal sound velocity is cT= ��P /�	�T and V is the
volume of the �sub�system considered. Intramolecular inter-
actions across the interface of the volume induce deviations
from the thermodynamic limit, which is recovered once the
smallest length of the volume considered is made larger than
at least three molecular diameters �for the tetrahedral model
this is about 6��. This was, in fact, shown in a previous work
which considered an open HybridMD system of argon,20 see
also Ref. 44. In the low density tetrahedral fluid ��	m�
=0.1 /�3 , p=0.4� /�3�, we get �N

2 /V=0.2m0
2 /�3 for V=15

�15�5�3, while the thermodynamic limit is 0.17m0
2 /�3. In

the high density case ��	m�=0.175 /�3 , p=2.0� /�3�, larger
deviations from the thermodynamic limit are due to increas-
ing strength of interfacial intermolecular interactions: �N

2 /V
decreases from 0.27 to 0.1m0

2 /�3 as one increases the control
volume from V=15�15�3 to V=15�15�15�3, the ther-
modynamic limit being 0.07m0

2 /�3. We also checked the con-
tinuity of mass fluctuation along the molecular domain,
which is now composed by different fluid model layers �see
Fig. 3�. The standard deviation of density at different control
cells are shown in Fig. 4 with error bars. They all coincide
within the statistical accuracy. In the high density case using
cells volume of V=15�15�3�3, we get �N=13.9m0, in a
cell containing ex fluid while �N=14.5m0 in a cell containing
cg fluid. Similar values are obtained in the hyb domains. This
result indicates that the different fluid layers are in chemical
equilibrium.

B. Unsteady shear flow

In testing the hydrodynamic behavior of the AdResS-
HybridMD model we first checked that the combined fluid
model correctly transfers the transversal momentum across
different model layers. To that end, we performed simula-
tions of a simple Couette flow imposed in the y direction and
analyzed the resulting steady velocity profile, v=vy�x�j. Any
significant difference in the fluid viscosity as one crosses
from one model to another would induce a change in the
slope of the velocity profile. The velocity profile of Fig. 6,
obtained for the high density case shows, by contrast, a per-
fectly linear velocity profile with no slope change and in
agreement with the expected Couette flow.

The second step was to test the response of the model to
unsteady flow. We first considered the start-up of a Couette
flow. Results of hybrid simulations using the high density
tetrahedral fluid are shown in Fig. 7 and compared with the
expected Navier–Stokes time-dependent solution. After more
than about 100� the system reaches the steady state; all the
cells pertaining to the molecular domain �the system’s setup
corresponds to that of Fig. 3� closely follow the unsteady
Navier–Stokes solution. We note that matching the viscosi-
ties of the different fluid models is a necessary but not suf-
ficient condition to get the unsteady response right. A second
issue, which needs to be considered, is any possible delay in
the momentum transfer across H. Note that the external shear
force, imposed at the buffer domain, corresponds to the local
shear force at H. This momentum, however, takes a certain
time to be diffused across B to reach the hybrid interface.
This latency time is, to the first order, equal to �B� lB

2	 /�,
where lB is the width of the buffer in the normal direction to
the H interface. Using lB=3�, one gets �B�5�, which is
quite a small time, in particular, it is 80 times smaller than
the period of external forcing frequency �400��. However, �B

increases quadratically with lB so one needs to take into ac-
count any possible latency effect, especially if larger buffer

FIG. 5. �Color online� RDFcms of the liquid in the atomistic and transition
domains �ex+hyb� and in the total molecular region �ex+hyb+cg� of the
triple-scale model together with the reference RDFcm of the all-atom system
�ex�PBC�� from Ref. 24 at 	=0.175 /�3. All RDFcms match to the line
thickness.

FIG. 6. �Color online� Velocity profile at the particle region of a hybrid
simulation of a Couette flow of a tetrahedral fluid at pressure 2.0� /�3. In the
present setup the coarse-grained model �cg� and the hybrid fluid model �hyb�
are placed inside the MD region, and their viscosities were tuned using the
TDPD thermostat so as to match that of the explicit model �ex�,
�=1.30m0 / ����. The value of the DPD friction constants used for the cg
and hyb fluids are ��=0.037m0 /� and �� =0.05m0 /�, while at the ex model
��=0.0 and �� =0.05m0 /�. The dashed line corresponds to the expected lin-
ear velocity profile. The density �fluctuating around 	m=0.175�−3 in the
molecular region� and the x-velocity �fluctuating around zero� profiles are
also shown.
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domains are need in simulations with larger molecules. In
passing we note that this latency effect does not affect the
final steady state �e.g., in a simple Couette flow�.

We also performed simulations of oscillatory shear flow
�the Stokes flow� arising as a consequence of the oscillatory
motion of a wall along its plane direction. Figure 8 illustrates
one example whereby a sinusoidal motion is imposed to one
of the walls with a period of 400�, while the other is kept at
rest. Comparison with the full Navier–Stokes solution shows
a quite good agreement and no trace of phase delay due to
viscosity mismatches or by buffer size �here lB=3��. In order
to illustrate the latency effect induced by larger buffers, Fig.
9 shows a similar Stokes flow simulation, but now using an
unique fluid model throughout the particle system �a cg fluid
with �	m�=0.175�−3 and �=0.8m0 / ����� and a wider buffer
lB=5.5�. In this case a small but appreciable phase delay is
observed with respect to the full Navier–Stokes solution; as
indicated in Fig. 9, the amount of time delay is of the same
order as �B� lB

2	 /�=25�.

VII. CONCLUSIONS

We have presented a hybrid multiscale method, which
combines a hybrid particle-continuum scheme19,20

�HybridMD� with the particle-based hybrid atomistic-
mesoscopic procedure �AdResS�.23,24 The resulting triple-

scale model consists of a molecular particle-based micro-
mesoscale region, which is divided into a central atomistic
and a surrounding mesoscopic domain, and a macroscopic
region described on the hydrodynamic continuum level. The
combined scheme provides several important benefits. First,
it greatly facilitates larger molecules insertion into an open
molecular system, which is required by the HybridMD
scheme. The combined scheme thus allows for simulations in
the grand-canonical ensemble, using liquids composed by
moderately large molecules. Second, it allows one to gradu-
ally increase the number of degrees of freedom as one fo-
cuses on a region of interest, described atomistically. In do-
ing so, part of the molecular liquid description is kept in the
coarse-grained level of detail, while only the mean flow is
solved at the CFD layer. And finally, one of the problems

FIG. 7. �Color online� �a� Steady state velocity in a Couette flow of a
tetrahedral fluid at pressure 2.0� /�3 and temperature T=1� /kB. Filled circles
correspond to the MD domain. �b� Start-up of the Couette flow showing the
velocity at each control cell versus time; dashed lines corresponds to the
deterministic Navier–Stokes solution. The setup corresponds to that of
Fig. 3.

FIG. 8. �Color online� Velocity in the y direction at some selected cells
�setup corresponds to that of Fig. 3� in a hybrid simulation of a Stokes flow:
an oscillatory motion with a period of 400� is imposed at the left wall while
the right wall is kept at rest. Results from the nonfluctuating Navier–Stokes
solution are also shown for comparison �solid lines�.

FIG. 9. �Color online� Velocity at the center molecular cell �top� and at one
of the C cells �bottom� resulting from a Stokes flow simulation, with a
period of 400�. In this case a cg fluid model with 	m=0.175 /�3 and �
=0.8m0 / ���� fills the whole particle system. The buffer size is lB=5.6�.
Comparison with the full Navier–Stokes solution indicates a small phase
delay of the hybrid solution. An estimate of the time delay �B� lB

2	 /� is
indicated with thick horizontal segments.
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associated with the hybrid explicit/coarse-grained fluid
model �AdResS� was the different viscosities of each fluid
model. In this work we used the recently proposed TDPD
�Ref. 32� to solve this problem. This allows to consistently
couple the hydrodynamics of the whole �dual-scale� particle
region with the continuum domain, using the HybridMD
methodology.

In summary, the present methodology provides a new
route for studying equilibrium and nonequilibrium processes
in open molecular systems, involving liquids with relatively
large molecules or even complex molecules in aqueous
solutions.19,26
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