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1. Introduction

Heat transfer, i.e., energy transport as a result of a temperature gradient, is
important in homoeothermic organisms because maintenance of a specific tem-
perature is crucial for their functioning [3]. Because of their complexity, organs,
e.g. the heart muscle, are difficult to treat both theoretically and experimen-
tally. Computer simulations based on theoretical physical models [9] are there-
fore important for understanding heat transfer processes in such systems. There
are three fundamental heat transfer mechanisms: conduction, convection, and
radiation. Conduction, described by the heat conduction equation, is usually
the most important for thermal energy transport within a solid substance. In
order to study the temperature distribution in a system, such as the heart
muscle, efficient numerical schemes for solving the heat conduction equation
are required [6]. The heat conduction equation describes conduction on the
macroscopic scale and the numerical schemes are usually based on the finite
difference approximation [12] as opposed, for example, to molecular dynamics
simulations [1], where the properties of the physical system are computed on the
microscopic scale, and efficient algorithms for solving the Hamilton equations
for each atom in the system are used [7].

The structure of this paper is as follows. In the next section, the standard
schemes are described and a new explicit finite difference scheme for solving the
heat conduction equation for arbitrary inhomogeneous materials is derived. The
results of simulating heat diffusion in one dimensional (1-D) heat conductors
composed of different materials and in a realistic three-dimensional (3-D) heart
model are presented in Section 3. The paper concludes with a discussion of the
results and directions for future work.

2. Methods

The basic equation that describes heat transfer is known as the heat conduction
equation [11]

∇ · (λ∇T ) = ρcp(
∂T

∂t
+ (v · ∇)T ), (1)

where ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is a differential operator in terms of Cartesian coordi-

nates, v is the velocity of a part of the substance volume, ρ = ρ(r) is the mass
density, and cp = cp(r) is the specific heat at constant pressure. λ = λ(r, T ) is
the heat conductivity of a substance, which is usually temperature dependent.
Although (1) is in general nonlinear, we focus here only on the linear cases
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where λ = λ(r). λ is in general a 3×3 tensor. For isotropic substances λ = λI

and ∇λ = ∇λ hold, and in this case λ can be treated as a scalar. I denotes
the 3 × 3 identity matrix. T = T (r, t) is the temperature as a function of the
position r = (x, y, z) and time t.

For a 1-D system which is motionless (1) is written as

ρcp
∂T

∂t
= λ(x)

∂2T

∂x2
+

∂λ(x)

∂x
·
∂T

∂x
, (2)

or equivalently

ρcp
∂T

∂t
=

∂

∂x

[

λ(x)
∂T

∂x

]

. (3)

(2) can be used for determining the stationary temperature distribution in a
1-D heat conductor of length l shown in Figure 1. The conductor is composed

l r1 1 1, ,cp l r2 2 2, ,cp
TL

TR

Figure 1: A 1-D heat conductor composed of two materials with the
same thickness but different λ, ρ, and cp

of two different materials of the same thickness. The boundary conditions at
the left and right end are the temperatures TL and TR, respectively. The left
part of the conductor is composed of a substance with λ1, ρ1, and cp1, and the
substance of the right part is characterized by λ2, ρ2, and cp2. This simple
system provides an excellent test case for analysis of different methods because
they can be compared to the analytical solution. Also, the difference between
correct and incorrect solutions is diminished in more complex systems, as is
shown by the numerical results of a heat conduction simulation in heart muscle
in Section 3.

2.1. Analytical Solution

The analytical solution, which is used as the reference to check the accuracy of
the numerical solution, can be derived as follows. In the stationary state

0 =
∂T

∂t
= D

∂2T

∂x2
(4)

holds for each separate part of the conductor. D is the thermal diffusivity of
the substance defined as D = λ/(ρcp). The boundary conditions are T (0) = TL,
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T (l) = TR and the transient conditions between the left and right part of the
conductor are

T1(l/2) = T2(l/2), (5)

λ1
∂T1

∂x
|l/2 = λ2

∂T2

∂x
|l/2, (6)

which state that the temperature at the point of contact is the same for both
parts and that the heat flux density, determined by the Fourier Law of heat
transfer [4], is conserved. The solution of (4) comprises the linear functions

T1 = A1x + TL, (7)

T2 = A2(x − l) + TR. (8)

Inserting (7) and (8) into (5) and (6) the constants A1 and A2 are

A1 =
2(TR − TL)

l(λ1

λ2
+ 1)

, (9)

A2 =
2(TR − TL)

l(λ2

λ1
+ 1)

, (10)

and

T2(l/2) =
λ1TL + λ2TR

λ1 + λ2
. (11)

The temperature profile has the shape of a linear function that is broken at the
contact point between the two different parts of the conductor.

2.2. Finite Difference Scheme with Gradient Term

For the numerical solution of (2) the following explicit finite difference scheme
can be used

ρicpi

T n+1
i − T n

i

∆t

= λi
T n

i+1 − 2T n
i + T n

i−1

∆x2
+

(λi+1 − λi−1)(T
n
i+1 − T n

i−1)

4∆x2
. (12)

Index i denotes the spatial discretization and ∆x is the step size. Index n
refers to the time discretization and ∆t is the length of the time step. If there
were no gradient term in (12), i.e. the last term on the right side of (12),
this scheme would be stable for time steps up to ∆t = ∆x2/(2Dmax), where
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Dmax is the maximal value of thermal diffusivity in the system. The gradient
term ∂λ

∂x · ∂T
∂x introduces instability into the system if the difference between the

thermal conductivities of two sequential grid points is not small enough. The

gradient term
(λi+1−λi−1)(T n

i+1−T n
i−1)

4∆x2 can take very large values in these cases
and the approach in (12) is expected to become unstable [8].

2.3. Standard Finite Difference Scheme

The explicit finite difference scheme [10, 5] for a nonlinear diffusion equation

ρcp
∂T

∂t
=

∂

∂x

[

λ(T )
∂T

∂x

]

, (13)

based on the finite-difference approximation for derivatives [12] is

ρicpi

T n+1
i − T n

i

∆t
=

λi−1/2
T n

i−1−T n
i

∆x + λi+1/2
T n

i+1−T n
i

∆x

∆x

=
λi−1/2(T

n
i−1 − T n

i ) + λi+1/2(T
n
i+1 − T n

i )

∆x2
,

(14)

where

λi±1/2 =
λi + λi±1

2
. (15)

Because in (3) λ = λ(x), as opposed to λ = λ(T ) in (13), (15) cannot be used
for calculating λi±1/2 when solving (3).

We therefore consider the heat flux P through the conductor of length l
and cross sectional area S [4] as

P = −
λS

l
∆T, (16)

where ∆T is the temperature difference between the ends of the conductor.
The heat resistance is defined as

R =
l

λS
. (17)

The relation between the heat flux and the temperature difference is analogous
to Ohm Law in the case of an electrical current through a resistor R

P = −
∆T

R
, (18)
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where the temperature difference corresponds to the voltage. From this analogy
the equations for the different configurations of heat resistors can be derived –
the total resistance of serial resistors is the sum of individual resistances, while
in the case of parallel resistors the total resistance is the sum of their reciprocal
values. The total heat conductivity λc of two serial heat resistors with the heat
conductivities λ1 and λ2 is therefore

2

λc
=

1

λ1
+

1

λ2
. (19)

For solving (2) or (3) we use the standard explicit finite difference scheme
(14), where λi±1/2 are determined as in (19)

2

λi±1/2
=

1

λi
+

1

λi±1
. (20)

Note that λi+1/2 is equal to λi−1/2 of the next grid element and need not
be calculated separately.

2.4. New Explicit Finite Difference Scheme

In developing the new explicit finite difference scheme a similar approach to
that in deriving the analytical solution is used. The heat conduction equation
without the trouble some gradient term ∂λ

∂x · ∂T
∂x is solved for each grid element

of the conductor separately because they are homogeneous. The separate solu-
tions are then smoothly matched by transient conditions at the contact. The
transient condition for the equality of the temperatures at the contact point is
fulfilled by introducing a new intermediate grid point Ti+1/2 that lies on the
boundary between grid elements as shown in Figure 2. The temperature at
the boundary Ti+1/2 is derived from the transient condition for the heat flux
density using (6)

λi
∂Ti

∂x
|Ω = λi+1

∂Ti+1

∂x
|Ω, (21)

λi

Ti+1/2 − Ti

∆x
2

= λi+1

Ti+1 − Ti+1/2

∆x
2

, (22)

Ti+1/2 =
λiTi + λi+1Ti+1

λi + λi+1
, (23)

where Ω denotes the boundary and index i the grid point, where the jump in
thermal conductivity occurs. The second derivative of the temperature at the
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Figure 2: Grid elements with different λ, ρ, and cp, denoted by different
patterns in the grid elements

grid points far from the boundary is computed as

∂2Ti

∂x2
=

Ti+1 − 2Ti + Ti−1

∆x2
, (24)

while at the grid point near the boundary it is defined as

∂2Ti

∂x2
=

Ti+1/2−Ti
∆x
2

−
Ti−Ti−1/2

∆x
2

∆x
=

2(Ti+1/2 − 2Ti + Ti−1/2)

∆x2
. (25)

In (25) the left and right differences were used for the first derivatives in the
grid points Ti+1/2 and Ti−1/2, respectively. Thus only the temperatures from
the same grid element are used in order to avoid the troublesome gradient term
∂λ
∂x · ∂T

∂x . If λi = λi−1 = λi+1 then (25) simplifies to (24). Ti−1/2 is, analogously
to (23), defined as

Ti−1/2 =
λiTi + λi−1Ti−1

λi + λi−1
. (26)

An iterative solution procedure is as follows: first, Ti+1/2 and Ti−1/2 are
computed from the temperatures from the previous step by (23) and (26).
Note that Ti+1/2 is equal to Ti−1/2 of the next grid element and need not be
calculated separately. Then (25) is used to compute the second derivatives
in the heat conduction equation (2). In this manner the separate solutions for
each grid element, which itself is homogeneous, are smoothly matched together.
The troublesome gradient term ∂λ

∂x · ∂T
∂x is thus omitted in the heat conduction

equation, (2). One does not have to consider how and to what extent the heat
conductivity varies with position. The transient conditions are also considered
implicitly. Some unnecessary extra computation is performed for calculating
Ti+1/2 and Ti−1/2 in parts where the substance is homogeneous. It is interesting
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that (25) for an inhomogeneous substance is similar to (24) for a homogeneous
substance. The only difference is the use of weighted temperature averages in
(25), as expressed in (26) and (23).

The new explicit finite difference scheme is defined as

ρicpi

T n+1
i − T n

i

∆t
= λi

2(T n
i+1/2 − 2T n

i + T n
i−1/2)

∆x2
, (27)

where Ti+1/2 and Ti−1/2 are computed according to (23) and (26), respectively.
Note that the new scheme, (27), gives the same solution as the standard scheme,
(14), only here Ti+1/2 and Ti−1/2 are computed instead of λi+1/2 and λi−1/2.
This has the advantage of increasing the resolution of the temperature grid,
which is the solution of the problem, as opposed to the standard scheme, where
the extra calculation provides no additional information. The computational
complexity of the new scheme remains the same as in the standard scheme.

For the 3-D example (2) is generalized to

ρcp
∂T

∂t
= λ

(

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

+
∂λ

∂x
·
∂T

∂x
+

∂λ

∂y
·
∂T

∂y
+

∂λ

∂z
·
∂T

∂z
, (28)

where λ = λ(x, y, z) and T = T (x, y, z). (28) is a 3-D analogue of (2) in the
case of 1-D. (28) can be rearranged to

ρcp
∂T

∂t
=

(

λ
∂2T

∂x2
+

∂λ

∂x
·
∂T

∂x

)

+

(

λ
∂2T

∂y2
+

∂λ

∂y
·
∂T

∂y

)

+

(

λ
∂2T

∂z2
+

∂λ

∂z
·
∂T

∂z

)

. (29)

By comparing (29) with (2) and by virtue of (27), the new explicit finite differ-
ence scheme for a inhomogeneous 3-D example yields the form

ρi,j,kcpi,j,k

T n+1
i,j,k − T n

i,j,k

∆t
= 2λi,j,k

(T n
i+1/2,j,k − 2T n

i,j,k + T n
i−1/2,j,k

∆x2

+
T n

i,j+1/2,k − 2T n
i,j,k + T n

i,j−1/2,k

∆y2

+
T n

i,j,k+1/2 − 2T n
i,j,k + T n

i,j,k−1/2

∆z2

)

. (30)
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Indices i, j, k denote the spatial discretization in the x, y, and z directions,
respectively, ∆x,∆y,∆z are the corresponding step sizes, and

Ti±1/2,j,k =
λi,j,kTi,j,k + λi±1,j,kTi±1,j,k

λi,j,k + λi±1,j,k
. (31)

Ti,j±1/2,k and Ti,j,k±1/2 are defined similarly.

3. Results

All four approaches for solving the heat conduction equation described in the
previous section were tested on the 1-D heat conductor presented in Figure 1.
The temperature profile was also computed for the case of neglecting ∂λ

∂x · ∂T
∂x in

(2) in order to check the importance of this term.

The new explicit scheme, generalized to 3-D, was also applied to computing
the temperature distribution in heart muscle. It was compared to the standard
scheme and to previous results [13], where the gradient term was neglected.

3.1. 1-D Heat Conductor

In order to better understand the heat conduction in a complex system of heart
muscle the substance constants λ1, ρ1, and cp1 were chosen to correspond to
water and λ2, ρ2, and cp2 to pericardium (see Table 1).

λ
[

W
Km

]

ρ
[

kg
m3

]

cp

[

J
kgK

]

Water 0.555 1000 4219
Blood 0.490 1010 3826
Blood vessels 0.360 1100 3826
Muscle tissue 0.590 1100 3966
Pericardium 0.360 1100 2761
Fat 0.200 1100 2275
Air 0.025 1.29 716

Table 1: λ, ρ, and cp of substances in human heart [13] (pericardium is
the thin membrane that surrounds the heart)

All the constants and the temperatures TL = 273.2K, TR = 285K were
taken from the experimental values for heart muscle [13]. The length of the
time step was set to ∆t = ∆x2/(6Dmax), and the computation was stopped
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Figure 3: Results for a 1-D heat conductor composed of water and peri-
cardium. Figure (a) shows the temperature profile. The temperature
is dimensionless and is measured in units of the temperature of water
at the left boundary of the conductor. On the x axis the normalized
length of the conductor is presented. Figure (b) shows relaxation of
the temperature in the grid element next to the contact between water
and pericardium until the convergence condition is fulfilled. The time
is measured in t0 = l2/Dwater units. The length of the time step is
1.6667 · 10−5 t0.

when the convergence condition T n+1
n−1 − T n

n−1 < ǫ = 10−15 was fulfilled. The
resulting temperature profile is presented in Figure 3(a). Tanal is the analytical
solution, Tgrad is the numerical solution using (12), Tstand is the numerical so-
lution using the standard finite difference scheme, (14), Tglue is the numerical
solution obtained by the new finite difference scheme, (27), and Tdiff is the nu-
merical solution obtained by neglecting the gradient term in (2). It can be seen
from Figure 3(a) that the gradient term plays an important role, since the so-
lution Tdiff corresponds to the solution of a homogeneous conductor regardless
of the thermal conductivity of the conductor. If the gradient term is considered
as in (12) then the solution agrees with the analytical solution. Because wa-
ter and pericardium have similar thermal conductivities no stability problems
occur. Figure 3(a) shows that solutions obtained by the standard and new ex-
plicit finite difference schemes also agree with the analytical solution. Figure
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3(b) displays the time relaxation to the stationary value of the temperature at
the grid element next to the contact between water and pericardium. It can be
seen that solutions obtained by different numerical schemes converge equally
fast to the stationary temperature.

The temperature profile and relaxation were also computed for the example
of a 1-D heat conductor composed of water and air (see Table 1) with boundary
conditions TL = 273.2K, TR = 295K, where the difference between thermal
conductivities is much larger than in the case of water and pericardium. The
numerical solution obtained by (12) is not stable in this case due to the large
value of ∂λ

∂x · ∂T
∂x at the contact between water and air. On the contrary Figure

4(a) shows that the numerical solutions obtained by the standard and the new
finite difference scheme accurately determine the temperature profile. In Figure
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(a)
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Figure 4: The temperature profile for a 1-D heat conductor composed of
water and air (a) and relaxation of the temperature in the grid element
next to the contact between water and air (b). The axes and units are
the same as in Figure 3. The length of the time step is 8.1079 · 10−8 t0.

4(b) the time relaxation of the temperature to the stationary value in the grid
element next to the contact between water and air value is presented. Note
that the standard and the new schemes converge equally fast.

In Figure 5(a) the example of a heat conductor composed of water and peri-
cardium and one grid point of air in between them is presented. The boundary
conditions were chosen as TL = 273.2K, TR = 285K. As can be seen from Fig-
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Figure 5: The temperature profile for a 1-D heat conductor composed
of water and pericardium with an isolation grid point of air (a) and
relaxation of the temperature in the air grid point (b). The axes and
units are the same as in Figure 3. The length of the time step is
8.1079 · 10−8 t0.
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ure 5(a) the standard and the new scheme give the same temperature profile
for this example also. The insulative nature of air can also be observed. Figure
5(b) shows the time relaxation of the temperature at the air grid point. From
Figures 3,4 and 5 it can be concluded that the total relaxation time in the case
when air is present in the system is shorter. The total number of iterations,
however, is higher due to the shorter time step used.

3.2. Heart Muscle

The new scheme for the 3-D example (30) was also tested on a heart cooling
simulation. During a non-beating heart operation, local hypothermia is used to
slow down the tissue metabolism and thus allow for a longer operation without
damaging the tissue [2]. In order to provide adequate protection to all heart
tissues, they have to be uniformly cooled down and no part of the heart tissue
should stay warm. Uniform temperature distribution is also important because
areas with different temperatures are often origins of cardiac arrhythmias. One
of the ways to cool the tissues is local topical cooling, which is applied with
cold saline solution, with or without ice slush, around the heart.

A three-dimensional computer heart model, derived from Visible Human
Dataset, National Library of Medicine was used. The model is made from
cubes with spatial resolution of 1 mm. Figure 6 shows a heart cross-section
and the initial conditions used, which were the same as those taken in [13].
The temperature profile resulting from simulations with the new scheme can be
seen in Figure 7(b). We compared it to the results from [13], where the gradient
term in (28) was neglected (see Figure 7(a)) but which cannot be dismissed as
incorrect without seeing the correct results. Only after careful comparison can
one find out that neglecting the gradient term in (2) overestimates heat transfer
from the heart to the cooling media by a significant amount. The same effect
as in a 1-D heat conductor (Figure 3) is also noticeable, i.e. the results are the
same as if all the materials had the same thermal diffusivity, thus object shapes
are not reflected in the temperature profile. The difference is more readily
seen in Figure 8, where dark and light shading represent the areas, where the
scheme with the neglected gradient term gives lower and higher temperatures,
respectively.
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20°C

30°C

36°C

273 K

283 K

293 K

303 K

309 K

Figure 6: Initial temperature profile of the heart (308 K) before cool-
ing. The cooling media are water (constant temperature 273 K) below
the heart and air (initial temperature 295 K) above it. The model is
surrounded by a box with constant temperature 308 K.

(a) (b)

Figure 7: Temperature profile of the heart after 1 hour neglecting the
gradient term (a) and using the new scheme (b). The temperature scale
is the same as in Figure 6.
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-7 K

0 K

+7 K

Figure 8: The error resulting from neglecting the gradient term in a
1-hour heart cooling simulation.

4. Conclusions

In this paper a new explicit finite difference scheme for inhomogeneous diffusion
problems is developed and compared to standard schemes. The new approach
is similar to the analytical solution in that two solutions for homogeneous parts
are smoothly matched together by a transient condition. In this approach, each
separate grid point is considered as the homogeneous part, and the transient
condition is used to obtain the solution. The method was illustrated on an
example of a 1-D heat conductor composed of different substances found in
heart muscle and its environment. It was also generalized to 3-D and applied to
computating the temperature profile in a heart muscle. The simulation results
show that the new scheme not only accurately determines the temperature
profile, but gives the same solution as the standard scheme with improved
resolution. The computational complexity of the two schemes is the same. In
the standard scheme the additional computation of weighted average of heat
conductivities has to be performed, which provides no additional information.
In the new scheme, however, the weighted average of temperatures is computed,
which doubles the resolution of the temperature grid.
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