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The authors report adaptive resolution molecular dynamics simulations of a flexible linear polymer
in solution. The solvent, i.e., a liquid of tetrahedral molecules, is represented within a certain radius
from the polymer’s center of mass with a high level of detail, while a lower coarse-grained
resolution is used for the more distant solvent. The high resolution sphere moves with the polymer
and freely exchanges molecules with the low resolution region through a transition regime. The
solvent molecules change their resolution and number of degrees of freedom on the fly. The authors
show that their approach correctly reproduces the static and dynamic properties of the polymer chain
and surrounding solvent. © 2007 American Institute of Physics. �DOI: 10.1063/1.2714540�

I. INTRODUCTION

The structural properties of polymers, i.e., long chain
molecules of either synthetic or biological origin, in solution
are crucial for many technical and biological processes and
properties. Depending on the chemical nature of the chains,
they can be solvated in a polar �e.g., water� or nonpolar �e.g.,
oil� solvent, where the details strongly depend on tempera-
ture, salt content, etc. In general the structure of polymers in
solution is determined by the local solvent molecule-polymer
bead interaction. In the case of a polymer in a solvent, one
typically distinguishes three regions of solvent quality: good,
� or marginal, and poor. In the case of a good solvent the
solvent-solvent, solvent-polymer, and polymer-polymer in-
teractions effectively result in a situation where the chain
monomers repel each other �excluded volume effect�. As a
result the chains are extended in their overall conformation
and the average size �R2�N�� scales as �R2��N2� with N be-
ing the number of monomers and � being a universal critical
exponent with ��0.6 in three dimensions. For poor solvent
we observe just the opposite and the chains collapse into a
dense globule, �R2��N2/3. In the � regime the effects of the
mutual excluded volume of the beads and the mutual effec-
tive attraction due to the presence of the solvent just cancel.
As a consequence to a first approximation the chains adopt a
random walk conformation, i.e., �R2��N. In the limit of N
→� the � point is a tricritical point. For charged polymers,
such as polyelectrolytes the situation is more complicated
and will not be discussed here. As long as the solvent does
not induce special local correlations beyond a rather unspe-
cific attraction/repulsion and as long as one is not studying
dynamical properties, polymer solutions are usually studied
with an implicit solvent. There the solvent is omitted com-
pletely and the complicated local interactions are accounted
for by an effective interaction potential between the chain
beads. Studies of that kind have a long tradition in polymer

science and lead to the establishment of a rather complete
picture of the overall phase diagram.1,2 Beyond that there
are, however, many situations where it becomes difficult or
even questionable to ignore the local structure of the solvent.
The solvent can play an important role for the functional
properties of macromolecules. For example, dehydration
studies of proteins solvated in water demonstrated that at
least a monolayer of water is needed for full protein
functionality.3 On the other hand, a very important issue of
macromolecule solvation is its influence on the structure and
dynamics of the surrounding solvent. Therefore, a detailed
study of interactions of a macromolecule with a solvent be-
yond effective coupling parameters is quite often required for
an understanding of the macromolecule’s structure, dynam-
ics, and function. To determine the interactions of a solvent
with a macromolecular solute chemistry specific interactions
on the atomic level of detail have to be considered. However,
the resulting solvating phenomena manifest themselves at
mesoscopic and macroscopic scales4 and thus the overall
structure of the chains. Due to large number of atoms and the
corresponding degrees of freedom �DOFs� such systems are
difficult to tackle using all-atom computer simulations.5

Moreover, the vast majority of the simulation time typically
is spent treating the solvent and not the polymer or protein. A
step to bridge the gap between the time and length scales
accessible to simulations at an atomistic level of detail and
solvating phenomena on longer/larger time and length scales
is given by hybrid multiscale schemes that concurrently
couple different physical descriptions of the system �see,
e.g., Refs. 6–13�.

Recently, we have proposed an adaptive resolution mo-
lecular dynamics �MD� scheme �AdResS� that concurrently
couples the atomistic and mesoscopic length scales of a ge-
neric solvent.14–16 In a first application we studied a liquid of
tetrahedral molecules where an atomistic region was sepa-
rated from the mesoscopic one by a flat or a spherical bound-
ary. The two regimes with different resolutions freely ex-
changed molecules while maintaining the thermodynamical
equilibrium in the system. The spatial regions of different
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resolutions remained constant during the course of the simu-
lations. More recently this approach was extended to the
study of water.17 In the present paper, we generalize our ap-
proach to the study of a polymer chain in solution. The chain
is surrounded by solvent with “atomistic” resolution. When
the chain moves around, the sphere of atomistically resolved
solvent molecules moves together with the center of mass of
the chain. By this the chain is free to move around, although
the explicit resolution sphere is much smaller than the over-
all simulation volume. This enables us to efficiently treat
solvation phenomena, because only the solvent in the vicin-
ity of a macromolecule is always represented with a suffi-
ciently high level of detail so that the specific interactions
between a solvent and a solute are correctly taken into ac-
count. The solvent farther away from the polymer, where the
high resolution is no longer required, is represented on a
more coarse-grained level. In this work, a macromolecule is
represented by a generic flexible polymer chain18 embedded
in a solvent of tetrahedral molecules introduced in Refs. 14
and 15. This study represents a first methodological step to-
wards adaptive resolution MD simulations also of systems of
biological relevance, e.g., a protein in water.

The paper is organized as follows: In Sec. II the dual
scale model of a polymer chain in a liquid is presented. The
hybrid numerical scheme and computational details are given
in Sec. III. The results and discussion are reported in Sec. IV,
followed by a summary and outlook in Sec. V.

II. MULTISCALE MODEL

We study a single generic bead-spring polymer solvated
in a molecular liquid, as illustrated in Fig. 1. Solvent mol-
ecules within a distance r0 from the polymer’s center of mass
are modeled with all atomistic details to properly describe
the specific polymer-solvent interactions. For the description
of the solvent farther away, where the high resolution is not
required, we use a lower resolution. The solvent molecules
then, depending on their distance to the polymer’s center of
mass, automatically adapt their resolution on the fly.

The model solvent is a liquid of n tetrahedral molecules,
as introduced in Refs. 14 and 15. The solvent molecules in
the high resolution regime are composed of four equal atoms
with mass m0. Their size � is fixed via the repulsive Weeks-
Chandler-Andersen potential

Urep
atom�ri�j��

= �4����/ri�j��12 − ��/ri�j��6 + 1
4� , ri�j� 	 21/6�

0, ri�j� 
 21/6� ,
	

�1�

with the cutoff at 21/6�. � and � are the standard Lennard-
Jones units for lengths and energy, respectively. ri�j� is the
distance between the atom i of the molecule � and the atom
j of the molecule �. The neighboring atoms in a given mol-
ecule � are connected by finite extensible nonlinear elastic
bonds

Ubond
atom�ri�j�� = �− �1/2�kR0

2 ln�1 − �ri�j�/R0�2� , ri�j� 	 R0

� , ri�j� 
 R0,
	
�2�

with divergence length R0=1.5� and stiffness k=30� /�2, so
that the average bond length is approximately 0.97� for
kBT=�, where T is the temperature of the system and kB is
Boltzmann’s constant. For the coarse-grained solvent model
in the low resolution regime we use one-site spherical mol-
ecules interacting via an effective pair potential,15 which was
derived such that the statistical properties, i.e., the center of
mass radial distribution function and pressure, of the high
resolution liquid are accurately reproduced. This is also
needed for the present study, since the motion of the high
resolution sphere should not be linked to strong rearrange-
ments in the liquid. The high and low resolutions freely ex-
change molecules through a transition regime containing hy-
brid molecules �see Fig. 1�, where the molecules with no
extra equilibration adapt their resolution and change the
number of DOFs accordingly.14–16

The polymer is modeled as a standard bead-spring poly-
mer chain.18 It contains N monomers, which represent
chemical repeat units, usually comprising several atoms. The
interactions between monomers �beads� are defined using
Eqs. �1� and �2� with the rescaled values �b=1.8�, R0b
=R0�b /�=1.5�b, and kb=k�2 /�b

2=30� /�b
2, such that the

size of the polymer bead �b is approximately the same as the
size of the solvent molecule.15 The average bond length be-
tween beads is rescaled accordingly. The bead mass is also
increased mb=5m0 to make them behave more like Brownian
particles. Standard Lorentz-Berthelot mixing rules19 are used
for the interaction between monomers and the “atoms” of the
solvent molecules.

Note that for studying the polymer chain in the coarse-
grained solvent, one would have to parametrize a new poly-
mer model as well in order to arrive at the same overall
conformational properties. The lengths down to which the
models then produce the same properties are important when
one wants to switch between levels of resolution. This was
done for polymeric melts20 where coarse-grained trajectories

FIG. 1. �Color online� A schematic plot of a solvated generic bead-spring
polymer. The solvent is modeled on different levels of detail: solvent mol-
ecules within a certain radius from the polymer’s center of mass are repre-
sented with a high �atomistic� resolution while a lower mesoscopic resolu-
tion is used for the more distant solvent. The high resolution sphere moves
with the polymer’s center of mass. The polymer beads are represented
smaller than the solvent molecules for presentation convenience; for details
see text.
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were employed to generate long time atomistic trajectories
for polycarbonate. This, however, is beyond the scope of the
present paper.

III. NUMERICAL SCHEME AND COMPUTATIONAL
DETAILS

To smoothly couple the regimes of high and low levels
of detail of the description of the solvent molecules, we ap-
ply the recently introduced AdResS scheme.14 There the mol-
ecules can freely move between the regimes; they are in
equilibrium with each other with no barrier in between. The
transition is governed by a weighting function w�r�� �0,1�
that interpolates the molecular interaction forces between the
two regimes and assigns the identity of the solvent molecule.
We resort here to the weighting function defined in Ref. 15,

w�r� = 
 1, r0 
 r � 0

0, r � r0 + d

cos2��/2d�r − r0�� , r0 + d 
 r � r0,
� �3�

where r0 is the radius of the high resolution region and d the
interface region width, cf. 1. The radius r0 must be chosen
sufficiently large so that the whole polymer always stays
within the high resolution solvent regime. w�r� is defined in
such a way that w=1 corresponds to the high resolution, w
=0 to the low resolution, and values 0w1 to the transi-
tion regime. This leads to intermolecular force acting be-
tween centers of mass of solvent molecules � and �,

F�� = w��R� − R��w��R� − R��F��
ex

+ �1 − w��R� − R��w��R� − R���F��
cg . �4�

F�� is the total intermolecular force acting between centers
of mass of the solvent molecules � and �. F��

ex is the sum of
all pair atom interactions between explicit tetrahedral atoms
of the solvent molecule � and explicit tetrahedral atoms of
the solvent molecule �, F��

cg is the effective pair force be-
tween the two solvent molecules, and R�, R�, and R are the
centers of mass of the molecules �, �, and the polymer,
respectively. Note that one has to interpolate the forces and
not the interaction potentials in Eq. �4� if Newton’s third law
is to be satisfied.16 To suppress the unphysical density and
pressure fluctuations emerging as artifacts of the scheme
given in Eq. �4� within the transition zone we employ an
interface pressure correction.15 The latter involves a re-
parametrization of the effective potential in the system com-
posed of exclusively hybrid molecules with w=1/2. Each
time a solvent molecule crosses a boundary between the dif-
ferent regimes it gains or looses on the fly �depending on
whether it leaves or enters the coarse-grained region� its
equilibrated rotational and vibrational DOFs while retaining
its linear momentum.16,21–23 This change in resolution re-
quires to supply or remove “latent heat” and thus must be
employed together with a thermostat that couples locally to
the particle motion.14,16 This is achieved by coupling the par-
ticle motion to the dissipative particle dynamics �DPD�
thermostat.24 This bears the additional advantage of preserv-
ing momentum conservation and correct reproduction of hy-
drodynamics in our nVT MD simulations. Because of the

freely moving polymer chain and solvent molecules, the
above scheme requires the center of the high resolution
sphere to move with the polymer but slowly compared to the
surrounding solvent molecules, so that they at the boundary
between different regimes have enough time to adapt to the
resolution change. The validity condition for our approach
thus requires Dpolymer�Dsolvent, where Dpolymer and Dsolvent

are the corresponding diffusion constants. This condition is
trivially fulfilled in polymeric solutions and thus also in our
simulations �see the next section�.

We conducted all MD simulations using the ESPRESSO

package.25 We integrated Newtons equations of motion by a
standard velocity Verlet algorithm with a time step �t
=0.005� and coupled the motion of the particles to a DPD
theromstat24 with the temperature set to T=� /kB. The DPD
friction constant �=0.5�−1, where �= �� /m0�2�−1/2, and the
DPD cutoff radius was set equal to the cuttoff radius of the
effective pair interaction between solvent molecules, i.e.,
3.5�.15 The width of the transition regime is 2.5�.15 Periodic
boundary conditions and the minimum image convention19

were employed. After equilibration, trajectories of 5000�
were obtained, with configurations stored every 5�. These
production runs were performed with a 109� /� force capping
to prevent possible force singularities that could emerge due
to overlaps with the neighboring molecules when a given
molecule enters the transition layer from the coarse-grained
side.14 The temperature was calculated using the fractional
analog of the equipartition theorem

�K�� =
�kBT

2
, �5�

where �K�� is the average kinetic energy per fractional qua-
dratic DOF with the weight w�r�=�.16 Via Eq. �5� the tem-
perature is also rigorously defined in the transition regime in
which the vibrational and rotational DOFs are partially
“switched on/off.” The molecular number density of the sol-
vent is �=0.175/�3, which corresponds to a typical high
density Lennard-Jones liquid.15 We considered three differ-
ent system sizes with corresponding cubic box sizes: L
=25.0� ,30.6� ,34.2�. The reduced Lennard-Jones units19

are used in the remainder of the paper.

IV. RESULTS AND DISCUSSION

To validate the AdResS approach for the present
polymer-solvent system, we carried out the analysis of the
structural and dynamic properties of a polymer chain in the
hybrid multiscale solvent compared to the corresponding
fully explicit system where all solvent molecules are mod-
eled with a high level of detail, i.e., as tetrahedral molecules.

A. Statics of the polymer chain and solvent

First, we focus on the explicit �ex� systems where the
solvent is modeled with the high resolution all over the simu-
lation box. These results are considered as the reference to
check how well AdResS produces the same physics as the
all-atom MD simulation. The reference average thermody-
namic properties of the corresponding ex systems �polymer
+explicitly resolved solvent� are listed in Table I.
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The static properties of the solvent are characterized by
the solvent radial center of mass distribution function �RDF�
depicted in Fig. 2�a�. This distribution function is within the
thickness of the lines the same for all systems studied, in-
cluding the hybrid ones. This is to be expected from our
previous studies and the fact that the polymer fraction of
volume is very small compared to that of the solvent.

The statistical properties of polymers are conveniently
described by a number of quantities, namely, the radius of
gyration

�RG
2 � =

1

N


i

��ri − R�2� , �6�

where ri is the position vector of the ith monomer and R
=N−1iri is the polymer’s center of mass, the end-to-end
distance

�RE
2� = ��rN − r1�2� , �7�

and the hydrodynamic radius

� 1

RH
� =

1

N2
i�j
� 1

rij
� , �8�

where rij = �ri−r j�.
26

�RG
2 � and �RE

2� scale as

�RG
2 � � �RE

2� � N2�, �9�

with the number of monomers N, where �=0.5 in � solvent
and ��0.588 in good solvent conditions1,27,28 with rather
small finite size corrections, while the hydrodynamic radius
is known to show significant deviations from asymptotic be-
havior up to very long chains.29

The single-chain static structure factor S�q�

S�q� =
1

N�
ij

exp�iq · �ri − r j��� �10�

probes the self-similar structure within the scaling regime
and thus provides an accurate way to determine �. S�q�
scales as

S�q� � q−1/� → q2S�q� � q2−1/� �11�

in the regime RG
−1�q�b−1, where b is the typical bond

length. By fitting a power law to the computed q2S�q� plotted
in Fig. 2�b� we obtained the values for � reported in Table II.
Table II summarizes the values of all quantities defined
above, which characterize the static properties of the poly-

mer chain. The calculations were performed for N
=10,20,30.

Another property, which directly reveals the fractal
structure of the chains, is the correlation hole, which is
shown in Fig. 2�c�. It directly shows, to which distance from
the center of mass of the chains, the solvent density is per-
turbed by the chain beads. For the later application of the
hybrid scheme it is important to define the explicit solvent
regime large enough in order to cover the correlation hole
completely.

The values of � actually differ slightly from the asymp-

TABLE I. Thermodynamic properties of the fully explicit systems �ex� of
different chain lengths N and box sizes L: average total pressure �p�, average
total temperature of the system �T�, average temperature of the polymer
�Tpolymer�, and average temperature of the solvent �Tsolvent�.

N
L

10
25.0

20
30.6

30
34.2

�p� 2.01±0.04 2.01±0.03 2.02±0.01
�T� 1.0±0.01 1.0±0.01 1.0±0.01

�Tpolymer� 1.0±0.5 1.0±0.3 1.0±0.2
�Tsolvent� 1.0±0.01 1.0±0.01 1.0±0.01

FIG. 2. �a� The solvent center of mass RDF for three different polymer
lengths �N=10,20,30�, �b� the static structure factor of the polymer in the
Kratky representation, and �c� the solvent density around the center of mass
of the chains, which illustrates the so-called correlation hole.
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totical value for the good solvent due to the finite chain
lengths. Nevertheless, the agreement improves with the in-
creasing N, as expected.

Let us now turn our attention to the hybrid solvent stud-
ied by MD simulation using AdResS.

To assure that the polymer is surrounded only by the
explicitly resolved molecules, we determine first the maxi-
mal monomer distance from the polymer’s center of mass,
�rmax, as shown in Fig. 3 for all chain lengths studied. As
shown �rmax always stays within the high resolution regime.

Because for N=30 �rmax gets rather close to r0, we
checked the static polymer properties for that case again. In
Fig. 4 we compare the all explicit simulation to the two
hybrid simulation schemes �with �ex-cgic� and without �ex-
cg� the pressure correction15 in the transition regime� for the
chain form factor and the correlation hole. The agreement is
excellent, showing that the proposed scheme should at least
be capable of properly reproducing the conformational sta-
tistics of the embedded polymer in solution.

This is first checked by comparing the average thermo-
dynamic properties as given in Table III for the hybrid ex-cg
and ex-cgic systems �polymer+hybrid solvent�. While the
temperatures are identical the pressure correction in the in-
terface layer reduces the pressure slightly, so that the hybrid
system now also there agrees quite well with the all explicit

simulation. The agreement with the reference values from
Table I is very good. This is in line with the general static
properties of the polymers, which are given in Tables IV and
V, and compare very well to the data from Table II.

From the presented results we can conclude that AdResS
faithfully reproduces the reference statics obtained from the
simulations with a polymer embedded in the explicitly re-
solved solvent.

B. Dynamics of the polymer chain and solvent

While the conformational properties of the polymer in
solution are well understood and properly described by the

TABLE II. Summary of some polymer �embedded in the explicitly resolved
ex solvent� properties: number of polymer beads N, size of the simulation
box L, average maximal distance of a monomer from the polymer’s center
of mass ��rmax�, radius of gyration RG, end-to-end distance RE, hydrody-
namic radius RH, the static exponent �, the exponent 2 /z, where z is the
dynamic exponent, and the longest relaxation time � calculated using data
from Table VI. The error bar for the exponents � and 2/z is roughly 10%.

N
L

10
25.0

20
30.6

30
34.2

��rmax� 4.2±0.8 5.7±1.0 8.1±1.4
RG= �RG

2 �1/2 2.7±0.5 3.8±0.6 5.0±0.8
RE= �RE

2�1/2 6.7±2.0 8.6±3 12±3
RH= �RH

−1�−1 3.3±0.3 4.0±0.3 4.7±0.4
� 0.63 0.54 0.57

2/z 0.59 0.71 0.67
�=RG

2 / �6D� 152 481 1390

FIG. 3. �Color online� Time evolution of the maximal monomer distance
from the polymer’s center of mass, �rmax, for polymers with N=10 beads
and the radius of the high resolution regime r0=7.0 �red line�, N=20 and
r0=11.0 �green line�, and N=30 and r0=12.0 �blue line�.

FIG. 4. �a� The static structure factor of the polymer with N=30 in the
Kratky representation for all three cases studied: the fully explicit, the
AdResS scheme with and without the interface pressure correction. �b� The
correlation hole for the same systems as in �a�.

TABLE III. Thermodynamic properties of systems with the polymer sol-
vated in the hybrid ex-cg solvent and the hybrid ex-cgic solvent: average
total pressure �p�, average total temperature of the system �T�, average tem-
perature of the polymer �Tpolymer�, and average temperature of the solvent
�Tsolvent�. For the temperatures the results cannot be distinguished.

N
L

10
25.0

20
30.6

30
34.2

�p�ex-cg 2.03±0.02 2.04±0.01 2.04±0.03
�p�ex-cgic

2.01±0.01 2.01±0.01 2.01±0.01
�T� 1.0±0.02 1.0±0.01 1.0±0.01

�Tpolymer� 1.0±0.5 1.0±0.3 1.0±0.2
�Tsolvent� 1.0±0.02 1.0±0.01 1.0±0.01
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adaptive resolution approach, the situation for the dynamics
is much less clear. By changing the DOFs not only the struc-
ture but also the dynamical properties are altered, however,
in a way which is less understood. It is also not a priori clear,
whether an approach, which produces a precise coarse grain-
ing for structural properties, does this for dynamical proper-
ties as well. In a recent study of small additive molecules to
a polymer melt it was shown that while the length scaling is
identical, the time scaling can be different.30 In the present
situation the influence of the transition regime poses addi-
tional difficulties.

In order to determine the dynamical properties of the
solvent and solute we calculated the respective diffusion co-
efficients. The diffusion coefficient of a species is computed
from the center of mass displacements using the Einstein
relation

D =
1

6
lim
t→�

��Ri�t� − Ri�0��2�
t

=
1

6
lim
t→�

��R2�
t

, �12�

where Ri�t� is the center of mass position of the molecule i
�which can be either a solvent or a solute molecule� at time t,
and averaging is performed over all choices of time origin
and, in the case of solvent, over all solvent molecules.

Figure 5 shows this for the solvent molecules’ centers of
mass as a function of time for the different systems indi-
cated. All the curves in Fig. 5, except the one for the coarse-

grained solvent, coincide. Thus the effect of the polymer on
the diffusivity of the solvent molecules is negligible. In other
words, the dilution is strong enough that the polymer effect
on the solvent dynamics is very small. However, the coarse-
grained solvent molecules move faster than the explicit ones.
This is a consequence of the reduced number of DOFs caus-
ing a time scale difference in the dynamics of the coarse-
grained system.14,15 While this can be very advantageous in
some cases, one can also adjust D by an increased back-
ground friction in the DPD thermostat.18,31 The diffusion co-
efficient D of the solvent was obtained by fitting a linear
function to the curves depicted in Fig. 5 and the obtained
values are Dbulkex

=0.036 and Dbulkcg
=0.057 for the explicit

and coarse-grained solvent, respectively. The question to ask
here is to what extent does this have any influence on the
dynamics of the embedded polymer.

Within the Zimm model27 for polymer chain dynamics,
which is known to describe the scaling of the dynamics in
dilute solutions of polymers rather well and which takes into
account the hydrodynamic interactions, the polymer diffu-
sion coefficient scales as

D � N−� � RH
−1 � RG

−1. �13�

The longest relaxation time �=RG
2 / �6D�, i.e., the Zimm time

�Z�RG
3 =RG

z , is the time the chain needs to move its own size.
z=3 is the dynamic exponent. Note that the motion of inner
monomers within the appropriate scaling regime should be
independent of N. A scaling analysis immediately yields for
the mean square displacement of a monomer i,

��r2� = ��ri�t� − ri�0��2� � t2/z = t2/3 �14�

for distances significantly larger than the bond length and
smaller than �R2�, i.e., times smaller than �Z. For the center
of mass of the chains a diffusive behavior for the mean
square displacement ��R2�t�� is always observed. Although
the chains are relatively short, at least for N=30 one expects
a behavior relatively close to the above mentioned idealized
scheme.29 Figure 6 shows ��r2�t�� and ��R2�t�� for polymer
chains with N=10,20,30 embedded in the different solvent
scenarios studied.

TABLE IV. Summary of some polymer �embedded in the hybrid ex-cg
solvent� properties: number of polymer beads N, size of the simulation box
L, radius of the high resolution regime r0, average maximal distance of a
monomer from the polymer’s center of mass ��rmax�, radius of gyration RG,
end-to-end distance RE, hydrodynamic radius RH, the static exponent �, the
exponent 2 /z, where z is the dynamic exponent, and the longest relaxation
time � calculated using data from Table VI. The error bar for the exponents
� and 2/z is roughly 10%.

N
L

10
25.0

20
30.6

30
34.2

r0 7.0 11.0 12.0
��rmax� 4.2±0.8 6.6±1.2 7.7±1.3

RG= �RG
2 �1/2 2.7±0.4 4.0±0.6 4.6±0.7

RE= �RE
2�1/2 6.7±2.0 10.4±2.8 10.8±2.5

RH= �RH
−1�−1 3.3±0.3 4.0±0.3 4.5±0.4

� 0.63 0.58 0.54
2/z 0.56 0.69 0.62

�=RG
2 / �6D� 122 381 882

TABLE V. Same data as in Table IV, but now for the hybrid ex-cgic, where
interface pressure correction is applied.

N
L

10
25.0

20
30.6

30
34.2

r0 7.0 11.0 12.0
��rmax� 4.0±0.8 5.9±1.2 8.6±1.5

RG= �RG
2 �1/2 2.7±0.5 3.9±0.7 5.2±0.8

RE= �RE
2�1/2 6.6±2.1 9.4±3.0 13.3±3.3

RH= �RH
−1�−1 3.2±0.3 4.0±0.4 4.8±0.4

� 0.59 0.55 0.57
2/z 0.69 0.71 0.77

�=RG
2 / �6D� 152 362 1127

FIG. 5. Log-log plot of the time dependence of the mean square displace-
ment of the solvent molecule’s center of mass in the time interval: �0,5000�:
explicitly resolved �bulkex� and coarse-grained �bulkcg� solvents without sol-
vated polymer and the explicitly resolved solvent for the systems with three
different lengths of the solvated polymer �N=10,20,30�.
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In all cases the observed exponents for ��r2�t�� and
��R2�t�� are close to 0.7±0.05 and 1±0.05, respectively.
Also the amplitudes of the displacements of the inner beads
are almost the same for all chain lengths studied. This is in
good agreement with earlier studies on different generic
polymer models in an explicit solvent as well as studies of
chains in a hybrid lattice Boltzmann solvent.8,29 This is to be
expected since we preserve the hydrodynamic interactions by
employing the DPD thermostat in our simulations. This sug-
gests that our hybrid scheme is also applicable to study dy-
namic properties of a polymer in a solution. Small deviations

occur in the diffusion constant itself. The diffusion constants
for the polymers with N=10,20,30 were obtained by fitting
the straight curve to the polymer’s center of mass mean
square displacement presented in Fig. 6. The fit yields data
listed in Table VI. The corresponding static and dynamic
exponents and the longest relaxation times are given in
Tables II, IV, and V.

While the ratio of the diffusion constants for different
chain lengths roughly follow the expected scaling, even
though it cannot hold precisely due to the different box sizes,
we here observe a tendency to a weakly accelerated diffusion
in the hybrid regime. This is most evident for the hybrid
ex-cg case. Two different aspects might play a role here.
First the viscosity in the coarse-grained outer regime is
smaller, which must have an effect on the diffusion. Second,
the small pressure and density fluctuations in the transition
regime might contribute to the effect as well.

Although this is only a very first and incomplete test, it
shows that within the AdResS scheme essential aspects of
the dynamical properties of the embedded polymer chain are
reasonably well reproduced.

V. SUMMARY AND OUTLOOK

In this paper we presented a hybrid multiscale MD simu-
lation of a generic macromolecule in a solvent using the
recently proposed AdResS method. The solvent surrounding
the macromolecule is represented with a sufficiently high
level of detail so that the specific interactions between the
solvent and the solute are correctly taken into account. The
solvent farther away from the macromolecule, where the
high resolution is not needed, is represented on a coarse-
grained level. The high and low resolution regimes freely
exchange solvent molecules, which change their resolution
accordingly. To correctly simulate momentum transport
through the solvent, we use the DPD thermostat. The simu-
lation results show that AdResS accurately reproduces the
thermodynamic and structural properties of the system. The
presented methodology is an extension of AdResS to simu-
lations of a solvation cavity and represents a first step to-
wards the treatment of more realistic systems such as bio-
macromolecules embedded in water. Work along these lines
is already underway.17

FIG. 6. Log-log plot of the time dependence of the mean square displace-
ment of a single monomer �considered are only monomers near the chain’s
center of mass� for polymers and their centers of mass with N=10,20,30
solvated in �a� the ex solvent, �b� the hybrid ex-cg solvent, and �c� the
ex-cgic solvent as indicated.

TABLE VI. Diffusion constant of the polymer chain embedded in three
different solvents: explicitly resolved ex, hybrid ex-cg, and hybrid ex-cgic.
Though the statistics of the data is rather poor we can estimate the error bar
roughly to 10–15%. For comparison, the diffusion coefficients of the explicit
and coarse-grained solvents are Dbulkex

=0.036, and Dbulkcg
=0.057 respec-

tively, with an effect of the polymers too small to determine here. Hence
Dpolymer�Dsolvent.

N 10 20 30

D�ex� 0.008 0.005 0.003
D�ex-cg� 0.009 0.006 0.0045

D �ex-cgic� 0.0085 0.006 0.0035
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