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Abstract
We show how the idea of fractal dimensions of phase space variables can be
employed to develop a concept of adaptive resolution treatment of a molecular
liquid. The resulting theoretical framework allows for calculation of statistical
averages of thermodynamic quantities in multiresolution computer simulation
algorithms where the molecular degrees of freedom change on the fly.

PACS numbers: 05.20.Jj, 05.10.−a, 02.70.−c

1. Introduction

Properties of complex molecular systems can be characterized by interconnected phenomena
occurring at different scales. Especially for soft matter this is a key to a better understanding.
For instance the properties of small additives in a polymer matrix are determined by both the
local interaction parameters and the overall morphology of the matrix, which is determined on
a larger scale. In a similar way modern functional materials, of both biological and synthetic
origin, can only be understood and quantitatively characterized if the effects of local coupling
parameters and the overall fluctuations are taken into account [1, 2]. These interdependences
between separate length scales make quantitative theoretical or simulation studies without a
well-defined procedure, which takes into account their often rather delicate interplay, very
difficult, if not impossible. Thus, it is not sufficient to focus on the different scales separately.
On the other hand, one would like to treat a system only at a level of detail, which is necessary.
One way to achieve this is to devise a scheme that allows us to locally adapt the level of
resolution, which is required for the phenomena considered.

In a previous work, we considered a situation for molecular liquids, where in different
spatial regions the system can be viewed with different resolution while the liquid molecules

1 On leave from the National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.

1751-8113/07/150281+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK F281

http://dx.doi.org/10.1088/1751-8113/40/15/F03
mailto:praprot@mpip-mainz.mpg.de
mailto:kremer@mpip-mainz.mpg.de
mailto:dellsite@mpip-mainz.mpg.de
http://stacks.iop.org/JPhysA/40/F281


F282 Fast Track Communication

move freely between the two regions or ‘phases’. This equilibrium between the two ‘phases’
leads to the problem of ‘molecular representation’, which will be discussed in more detail in
the present contribution. Numerically, this has been successfully solved by a robust numerical
algorithm. Examples are a simple liquid of tetrahedral molecules, liquid water and a generic
solvated macromolecule [3–6].

The general model case we study here is a solvent molecule, which in a ‘high resolution’
region contains atomistic details, and when it crosses an ideal boundary and enters into
a domain of ‘lower resolution’ it becomes a simple sphere and the atoms are no longer
‘represented’ (and vice versa). Technically, this change of representation is implemented by
introducing a switching region within which the molecules lose (or acquire, if in the opposite
direction) resolution and thus some of their degrees of freedom (DOFs). In this region, the
change of DOFs can be interpreted as the continuous change of the dimensionality from one to
zero (or vice versa) of the phase space related to the particular DOF we want to switch off/on.
In this sense, the Hamiltonian preserves its expression for DOFs regardless of the resolution
region. Rather it is the dimensionality of the phase space associated with a specific DOF,
which tells us how much of this is ‘represented’. In other words, how such a DOF is counted
in the calculation of statistical averages of physical quantities? In the limit of dimension
equal to one, it is fully counted (the high resolution case), while in the limit of dimension zero
(the low resolution case) it is disregarded2. We showed that this idea is indeed well founded by
applying it to DOFs, which enter quadratically into the Hamiltonian. Then the equipartition
theorem applies to fractional dimensions as well [7].

Here, we extend this concept by generalizing the idea of changing the dimensionality
beyond the quadratic case, meaning that the equipartition theorem represents only a special
case. The robustness of this idea is proven for a class of observables. Next, we discuss
the applicability of these concepts for the adaptive resolution molecular dynamics (MD)
simulations. Finally, the very idea of adaptive representation is illustrated by the bond length
of an ideal diatomic molecule as the statistical observable.

2. The statistical average of an observable in fractional phase space

The terms of the problem are the following: we are interested in changing the resolution of a
generic DOF q. For the moment let us assume that this DOF enters the Hamiltonian in the
form H(q) = |q|m, and that the physical observable we are interested in can be written as
A(q) = Cn|q|n, where Cn is a constant. The statistical average of A in the canonical ensemble
is then given by

〈A〉 =
∫ ∞

0 e−βH(q) A(q) dq∫ ∞
0 e−βH(q) dq

= Cn

∫ ∞
0 e−βqm

qn dq∫ ∞
0 e−βqm dq

, (1)

where β = 1/kBT and T is the temperature. Now let us apply the idea, outlined above, to
reduce the representation of the DOF q. This is formally equivalent to a continuous projection
from a higher to a lower dimensional phase space (or vice versa) [7]. The phase space
associated with q thus acquires a fractional dimension and the fractional volume element
becomes dµα(q) = |q|α−1 dq/�(α) = dqα/α�(α), where � is the gamma function [8–12]
and α is the degree of fractionality. Such a parameter can go from one to zero or vice versa in

2 This passage from the two limiting cases is nothing else than a coarse-graining procedure whose general scheme
and approximations are reported in an example in section 3.
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a continuous way producing the effect of switching off/on a DOF. Within this formalism, the
statistical average becomes

〈A〉α =
∫ ∞

0 e−βH(q) qα−1A(q) dq∫ ∞
0 e−βH(q) qα−1 dq

. (2)

If we take the expression of H(q) = |q|m,m > 0, and A(q) = Cn|q|n, n > 0, then equation (2)
becomes3

〈A〉α = Cn

∫ ∞
0 e−βqm

qα+n−1 dq∫ ∞
0 e−βqm

qα−1 dq
. (3)

By virtue of the integral [13]∫ ∞

0
e−βqm

qk dq = 1

m
β−(k+1)/m�

(
k + 1

m

)
, (4)

we obtain

〈A〉α = Cn�
(

α+n
m

)
�

(
α
m

) β−n/m. (5)

Equation (5) gives the general expression of 〈A〉α . Interestingly for n = m we have the case
of 〈H(q)〉α , i.e. the associated energy and the expression is reduced to

〈H(q)〉α = α

n
β−1. (6)

This means 〈H 〉α = α〈H 〉, i.e. one obtains the expression for the fractional dimension from
the corresponding integer dimension scaled by the parameter of fractionality. The fractional
counterpart of the equipartition theorem emerges naturally for n = 2. In fact, what we found
analytically expresses the concept of gradually counting a DOF and its contribution to the

statistical properties of the system. For n �= m the prefactor
�( α+n

m
)

�( α
m

)
takes care of the switching;

however, it is not necessarily linear in α. Nevertheless 〈A〉α→0 = 0, i.e. the contribution of
completely switched-off DOF to a statistical average is zero. The approach presented above
for switching the DOF q is valid, in general, for any continuous potential (except the Coulomb
or gravitational potential due to their infinite interaction range) and any observable that can be
expanded in a Taylor series. Such a potential, e.g., the Lennard–Jones potential, can always
be fitted piecewise with polynomials (splines) of positive powers so that the above procedure
can be applied.

Note that the virial theorem [16] is also satisfied for this class of potentials. Assume that the
potential V (q) = aqn+1 is a power-law function of q. Then we have 〈T 〉 = − 1

2

〈
∂V
∂q

q
〉 = n+1

2 〈V 〉
for the integer dimension of q, where T is the kinetic energy. For the fractional dimension,
using equation (6), we obtain 〈T 〉α = α〈T 〉 and 〈V 〉α = α〈V 〉. Hence, the relation dictated
by the virial theorem is preserved also in the switching region.

3. Coarse-graining idea in a nutshell

The natural question at this point is whether the concepts shown above can find a practical
application. The way we presented the statistical system implies that each generalized
coordinate {q}, by which we describe the system, represents its DOFs, i.e. they are all

3 In the case of the Coulomb (or gravitational) potential (m = −1), the statistical average is not defined due to an
infinite range of the potential. The potentials with m < −1 that decay faster than the Coulomb potential can be
truncated at a certain distance. For this class of potentials, the statistical average can be evaluated either numerically
or analytically with some approximations, cf the text.
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Figure 1. Molecule a and molecule b interacting at the atomistic level.
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Figure 2. Molecule a and molecule b interacting via effective inter- and intramolecular potentials.
The large circles represent the two molecules in the coarse-grained representation.

independent of each other. Furthermore we require that they are decoupled, i.e. there are no
cross terms of these variables in the Hamiltonian of the system. Otherwise the factorization
of the Boltzmann factor and the analytical integration of the statistical average is not possible
[14]. Given a system of particles, finding such a system of coordinates is generally not a trivial
task. In fact, the factorization procedure typically requires some approximations and loss of
information4. Such a coarse-graining procedure will here be illustrated on the simple example
of diatomic molecules where the two atoms i and j are linked by an elastic potential. Figure 1
shows two such molecules; the inter- and intramolecular potential energies depend on each
other. For figure 1, we have

V (ria, rja, rib, rjb) = Vintra + Vinter

= k|ria − rja|2 + k|rib − rjb|2
+ V (ria, rib) + V (ria, rjb) + V (rib, rja) + V (rjb, rja), (7)

where k is the bond-stretching constant. To separate inter- and intramolecular interactions, we
use the mapping (see also figure 2)

(ria, rja, rib, rjb) → (
Ra, Rb, la, lb, θa1 , θa2 , θb1 , θb2

)
, (8)

4 In the actual numerical implementation of such a coarse graining, DOFs are not only eliminated, but are also
replaced by new interactions between the coarse particles. Thus, the choice of the coarse-graining scheme, which
minimizes interdependences of the DOFs, is essential for a successful application [14].
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where R is the molecular centre of mass, l is the scalar distance between the atom i and atom
j in the molecule and θa1 and θa2 are the two orthogonal angles of rotation for the linear
molecule a, respectively. One must note that we did not reduce the number of DOFs by this
coordinate transformation. Next, we express the potential as a sum of an ‘effective’ potential
plus a correction:

V (ria, rja, rib, rjb) = kl2
a + kl2

b + Veff
(
θa1

)
+ Veff

(
θa2

)
+ Veff

(
θb1

)
+ Veff

(
θb2

)
+ Veff(Ra, Rb) + �V

(
Ra, Rb, la, lb, θa1 , θa2 , θb1 , θb2

)
. (9)

If �V ≈ 0, then the potential can be separated exactly into the inter- and intraparts, and
the coordinates Ra, Rb, la, lb, θa1 , θa2 , θb1 , θb2 are the new set of DOFs. Let us furthermore
assume that the effective potentials associated with rotational DOFs are of the form
Veff(θ) = θm,m > 0. Then, we can write the corresponding Hamiltonian as follows:

H = T + V = αa

(
Tintraa

+ Vintraa

)
+ αb

(
Tintrab

+ Vintrab

)
+ (1 − αa)

(
Tintraa

+ Vintraa

)
+ (1 − αb)

(
Tintrab

+ Vintrab

)
+ Ttransa

+ Ttransb
+ Veff(Ra, Rb)

= Hfractal/explicit + Efractal/internal + Hcg, (10)

where T and V are the total kinetic and potential energies, respectively, Ttrans is the translational
kinetic energy, Tintra is the intramolecular kinetic energy corresponding to molecular rotations
and vibrations [15], Vintra = kl2 + θm

1 + θm
2 is the associated intramolecular potential energy,

Hfractal/explicit is the total energy of both molecules associated with the fractal explicit DOFs that
are switched off/on, α is the degree of fractionality and Hcg = Ttransa

+ Ttransb
+ Veff(Ra, Rb) is

the total coarse-grained Hamiltonian. Efractal/internal is the total internal energy associated with
those fractal DOFs that are no longer explicitly considered upon switching. The subscripts
a and b denote the energy terms corresponding to molecules a and b, respectively. At the
end we are left only with decoupled R, l and θ terms in the intramolecular energy. These can
be treated using equation (6). Note, however, that these terms do not have to be necessarily
harmonic as in the normal mode analysis [15]. The equations of motion for those explicit
DOFs, which are switched off in the coarse-graining procedure, are in this case decoupled
from the equations of motion of the coarse-grained DOFs. Since the total Hamiltonian as
given by equation (10) preserves its form regardless of the resolution regime, the equations of
motion of the switched-off explicit DOFs in the coarse-grained regime remain the same as in
the explicit regime—they are just not considered in the statistical average.

4. Adaptive resolution MD simulation

Recently, we have developed an efficient particle-based MD simulation scheme AdResS [3],
which exploits the theoretical concepts described in the previous two sections and allows
us to change the molecular resolution on demand. This is done by introducing a switching
region where the forces acting on the molecules are obtained as a certain linear combination of
explicit and coarse-grained forces. In this section, we shortly review the basic aspects of the
method and move further by showing analytically that the intuitively more obvious approach
based on the potential rather than the forces, within this scheme, would lead to the violation of
Newton’s Third Law. Let us start by considering a system divided into high and low resolution
domains in the x direction. Usually, in complex physical systems, the Hamiltonian cannot be
separated into the decoupled terms as in equation (10) because the assumptions that we made
in the previous section are only valid to a certain extent. Instead, we use an interpolation
formula for the intermolecular force acting between centres of mass of given molecules a
and b:

Fab = w(xa)w(xb)Fatom
ab + [1 − w(xa)w(xb)]F

cg

ab, (11)
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where xa and xb are the x centre of mass coordinates of the molecules a and b respectively,
Fatom

ab is the sum of all pair atom interactions between explicit atoms of molecule a and explicit
atoms of molecule b and Fcg

ab is the total force between the centres of mass of the respective two
molecules. The function w(x) is a weighting function with the properties such that w(x) = 1
in the high resolution domain and w(x) = 0 in the low resolution region. In order to switch
on/off the DOFs gradually on-the-fly without extra equilibration when moving between the
regions with different resolutions, we introduce the transition regime sandwiched in between
the low and high resolution domains. In the transition regime, where 0 � w(x) � 1, we
deal with fractional DOFs. There the definition of the temperature is obtained by considering,
for each DOF in the system, the fractional analogue of the equipartition theorem as given by
equation (6) for n = 2:

〈T 〉α = αkBT
2

, (12)

where 〈T 〉α is the average kinetic energy of a DOF, corresponding to the level α of resolution.
This is now applied to the transition region, defining a local α(x) = w(x). While moving
through this region, the DOF is continuously switched on or off. The parameter α has to be
considered as the local (constant) value of w(x) in a given infinitesimal (but still large enough
for the equipartition theorem to apply5) interval of the switching region. The ansatz (11)
satisfies Newton’s Third Law and takes into account the transfer of the switched-off explicit
DOF onto the molecular centre of mass. To compensate the free energy density gradient
due to changing the number of DOFs in the transition regime, we need to supply or remove
‘latent’ heat corresponding to the internal energy Efractal/internal at this ‘geometrically induced
phase transition’ [7] using a thermostat. Hence, our system is not conservative and a potential
associated with the force given by equation (11) does not exist [16].

We could, in principle, also define the mixing scheme using the respective potentials
instead of forces as

Vab = w(xa)w(xb)V
atom
ab + [1 − w(xa)w(xb)]V

cg

ab . (13)

However, this approach leads to the violation of Newton’s Third Law. The potential in
equation (13) depends on the absolute positions of the particles and not only on their relative
distances. The associated conservative force, which is defined as the negative gradient of this
potential, acting on the molecule a is

Fab = −∂Vab

∂ra

= w(xa)w(xb)Fatom
ab + [1 − w(xa)w(xb)]F

cg

ab

+

(
∂w(xa)

∂xa

w(xb)
[
V

cg

ab − V atom
ab

]
, 0, 0

)
, (14)

where ∂
∂r = (

∂
∂x

, ∂
∂y

, ∂
∂z

)
, Fatom

ab = − ∂V atom
ab

∂ra
and Fcg

ab = − ∂V
cg

ab

∂ra
. Expression (14) for the force

differs from the corresponding expression (11) by the additional term ∂w(xa)

∂xa
w(xb)

[
V

cg

ab −V atom
ab

]
in the x component of the force. The respective force acting on the molecule b is in this case

Fba = −∂Vab

∂rb

= w(xa)w(xb)Fatom
ba + [1 − w(xa)w(xb)]F

cg

ba

+

(
∂w(xb)

∂xb

w(xa)
[
V

cg

ab − V atom
ab

]
, 0, 0

)
. (15)

5 Large enough means that in the evaluation of equation (12) a locally constant α can be assumed for the averaging of
the velocities, which are associated with the particles in this infinitesimal region. For such a subsystem, the integration
scheme of equation (2ff) can be applied.
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Figure 3. Illustration of the idea of molecular representation. On the vertical axis is reported the
average intramolecular bond l calculated for the fractional dimension, while the horizontal axis
reports the degree of fractionality, or equivalently, the switching resolution parameter α. Note
that the circle around the molecules is the same for all values of α; this reflects the fact that the
molecular excluded volume and consequently the molecular density remain the same regardless of
the resolution.

Using Fatom
ba = −Fatom

ab and Fcg

ba = −Fcg

ab, we obtain

−Fba = w(xa)w(xb)Fatom
ab + [1 − w(xa)w(xb)]F

cg

ab −
(

∂w(xb)

∂xb

w(xa)
[
V

cg

ab − V atom
ab

]
, 0, 0

)
.

(16)

In order that the force given by equation (14) satisfies Newton’s Third Law, i.e. Fab = −Fba ,
we see from equations (14) and (16) that

∂w(xa)

∂xa

w(xb) = −∂w(xb)

∂xb

w(xa), (17)

implying that

1

w(xa)

∂w(xa)

∂xa

= − 1

w(xb)

∂w(xb)

∂xb

= const = 0. (18)

From equation (18) it follows that the force defined by equation (14), although it is conservative,
can satisfy Newton’s Third Law only for a trivial case of w(x) = const, corresponding to
constant resolution simulations. In order that the diffusion of molecules between regions
with different resolution is not perturbed by the resolution change, the conservation of the
momentum dictated by Newton’s Third Law is crucial in adaptive resolution MD simulations.
Starting with equation (13) has thus a clear disadvantage for usage in adaptive resolution MD
simulations. Therefore, in AdResS we follow the scheme of equation (11).

5. A diatomic molecule: an example of the concept of adaptive representation

In order to complete the view of the approach shown, in this section we demonstrate the
meaning of our concept of adaptive representation for the example of the average length of
the diatomic molecule:

〈|l|〉α =
∫ ∞
o

lα e−βl2
dl∫ ∞

o
lα−1 e−βl2 dl

. (19)

Exploiting equation (5), we get

〈|l|〉α = �
(

1
2

)
�

(
α+1

2

)
�

(
α
2

) 〈|l|〉. (20)

The meaning of equation (20) is pictorially illustrated in figure 3. It expresses the idea of
adaptive representation as outlined so far. The limiting cases α = 0 and α = 1 correspond
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to the coarse-grained and atomistic descriptions, respectively. One should imagine to have an
optical magnification and move it closer and closer to the molecule. By doing so one goes
from the coarse grained to the atomistic description (and of course the same idea is applied
for the reverse process).

6. Conclusions

The derivation of the statistical properties of a simple system, where the DOFs are slowly
changed in a given region via the change of the phase space dimensionality, provides some
basic insight into how to define thermodynamic quantities in a fractional phase space. Such
a definition can be used as a basis to calculate important quantities, such as the temperature,
in simulation schemes where DOFs are switched on or off on demand in a given region. The
definition of the temperature, which we obtain via the extension of the equipartition theorem
to fractional dimensions, provides a robust and consistent numerical scheme for adaptive
resolution simulations [5, 6]. In conclusion, we have shown some basic properties of the
idea of changing DOFs on-the-fly in analysing a statistical system. This work lays basic
principles for changing of dimensionality of the phase space and the relative implementation
in multiresolution numerical simulations.
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