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For the study of complex synthetic and biological molecular systems by computer simulations one is still
restricted to simple model systems or by far too small time scales. To overcome this problem multiscale
techniques are being developed. However, in almost all cases, the regions and molecules of different resolution
are kept fixed and are not in equilibrium with each other. We here give a basic theoretical framework for an
efficient and flexible coupling of the different regimes. The approach leads to a concept, which can be seen as
a geometry-induced phase transition, and to a counterpart of the equipartition theorem for fractional degrees of
freedom. This represents the initial step in developing a general theoretical framework for computer simulation
methods applying simultaneously different levels of resolution.
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A long-standing and often most challenging problem in
condensed matter physics is to understand the microscopic
origin of macroscopic properties. While in certain cases a
microscopic scale can be clearly separated from a macro-
scopic one, this is not the case for many experimental sys-
tems, where details of the local interaction and generic uni-
versal aspects are closely related. Already the proper
determination of the fracture energy and crack propagation in
crystalline materials requires a hierarchical and interrelated
description, which links the breaking of the interatomic
bonding in the fracture region to the response of the rest of
the system on a micron scale �1�. The presence of micro-
scopic chemical impurities in many metals and alloys
changes their macroscopic mechanical behavior �2,3�. Even
more complicated are synthetic and biological soft matter
systems. Whether one is dealing with the morphology, the
glass transition of a polymeric system, the function of a mo-
lecular assembly—e.g., for electronic applications or studies
ligand-protein recognition or protein-protein interaction—in
all cases the generic soft matter properties, such as matrix or
chain conformation fluctuations, and details of the local
chemistry apply to roughly the same length scales. For all
these problems, which due to their complexity are heavily
studied by computer simulations, there is a common under-
lying physical scenario: the number of degrees of freedom
�DOF� involved is very large and exhaustive exploration of
the related phase space is prohibitive. For many questions,
however, such a deep level of detail in the description is only
required locally.

Theoretical methods employed to study these systems
span from quantum-mechanical to macroscopic statistical ap-
proaches. Their efficiency and scope increase significantly if
two or more such different approaches are combined into
hybrid multiscale schemes. This is the case for dual-scale
resolution techniques �4–17� aiming at bridging the atomistic
and mesoscale length scales as well as for the quantum-based

quantum-mechanical/molecular-mechanical �QM/MM� ap-
proach �18�. However, the common feature and limitation of
all these methods is the fact that the regions or parts of the
system treated at different level of resolution are fixed and do
not allow for free exchange. It is exactly this constraint one
has to overcome in order to study typical complex, fluctuat-
ing molecular systems with a higher computational effi-
ciency. What is needed is an approach that allows one to
zoom into a specific area which, even though the number of
DOF treated is different, stays in equilibrium with the more
coarse-grained surrounding. In computational terms such a
simulation translates into a scheme of changing the number
of DOF on demand and on the fly in a selected region. Tech-
nically the requirement above has been fulfilled for first test
cases by the recently introduced classical AdResS scheme
�19,20� and somewhat different in a related Monte Carlo
scheme �21�. The underlying concept, however, still requires
this to be put into a solid, rigorous theoretical framework,
making it applicable also for the other schemes mentioned
before. In the present communication we report the first step
to do this for classical systems. The continuous transition
from a less to a more coarse-grained description �and vice
versa� is illustrated in terms of a “geometry-induced first-
order phase transition,” where the similarity with a standard
phase transition is further put into the context of noninteger
dimensions of the phase space as DOF are slowly switched
off and on. In this way the present approach is based on a
generalization the equipartition theorem to noninteger di-
mensions. This shows how to obtain relevant thermodynamic
quantities within a continuous variable resolution of the
phase space. In this sense, the original problem of high-
dimensional systems, multiscale in nature, can be consider-
ably simplified on the basis of a general and rigorous statis-
tical mechanics framework.

Without loss of generality let us assume a system of mol-
ecules in a volume V, modeled on a rather coarse-grained
level. Now let us further assume that in a certain subvolume
V� a higher resolution is needed—i.e., to study some func-
tion. This is a typical situation, which one encounters— e.g.,
in proteins or functional molecular assemblies. In statistical
terms this translates into saying that the resolution employed
in one region is lower �or higher� than in the rest. Thus the
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number of DOF of the molecular model in such a region is
lower �or higher�. For simplicity, we divide the volume V
into two parts A and B. In region A, each molecule is char-
acterized by nA DOF and in region B by nB. For example, in
region A one has higher resolution and a molecule can be
considered as a collection of atoms linked by springs while
in B the molecule consists only of its center of mass and a
spherical excluded volume as in our previous numerical ex-
ample �19,20�. The natural question now is how to reach true
thermodynamic equilibrium between the two regions with
the same overall structure of the system on both sides. At this
point we assume, tested numerically in previous work
�19–28�, that for a state point �� ,T� it is in general possible
to reduce the many-body potential of the higher-resolution
representation into a dimensionally reduced effective poten-
tial. The latter, when applied to a system composed exclu-
sively of molecules with lower resolution, reproduces the
statistical properties of a system composed exclusively of
highly resolved molecules, when analyzed accordingly.
However, treating one overall system with regions of differ-
ent resolution requires special attention. The problem of the
changing DOF must be addressed in a way that A and B are
in equilibrium with each other and, additionally, the general
overall structure is the same, even though the free energy per
molecule will be different. To address this we visualize the
free energy F as a function of the position x. �In order to do
so we can divide the system into “large enough” equal slabs,
so that F�x� is a truly extensive quantity of the slab; cf. Fig.
1.� The free energy is a thermodynamic potential and hence
in thermodynamic equilibrium F�x�=FA, constant in region
A, and F�x�=FB, constant in region B. In general, FA�FB,
since F is extensive and nA�nB �29�. Note, however, that
despite this free energy difference, which stems exclusively
from the different levels of a molecular representation in
regions A and B, the chemical potentials must be equal in
both regions. This guarantees that the molecules experience
no spurious driving force which would pull them from one
region into the other due to the choice of the level of reso-
lution. Figure 1 sketches a “typical” free energy profile
across the system.

Let us now focus on the transition regime � between the
two subsystems—i.e., −d�x� +d, where the points −d and
+d denote the boundaries of � with regions A and B, respec-

tively; see Fig. 1. In � we gradually change the level of
resolution and consequently the value of F�x�. The width of
� is set by the range of the effective pair potential between
molecules �19�. Our system is in equilibrium, which implies
that at the boundaries

lim
x→d−

�FA�x�
�x

= lim
x→d+

�FB�x�
�x

= 0. �1�

If this condition did not hold, a molecule would “see” a free
energy gradient along x within the same level of resolution,
leading to a drift along the x axis. Next, let us write

�FA

�x

=
�FA

�NA

�NA

�nA

�nA

�x and the same for B,
�FB

�x =
�FB

�NB

�NB

�nB

�nB

�x . Here NA and
NB are the numbers of molecules in A and B, respectively.
�NA /�nA and �NB /�nB are two nonzero constants, while
�FA /�NA=�A and �FB /�NB=�B, where � is the chemical
potential. Note that due to equilibrium, �A=�B�0. The con-
dition of Eq. �1� is hence reduced to

lim
x→d−

�nA�x�
�x

= lim
x→d+

�nB�x�
�x

= 0. �2�

Thus, the switching on and off of a given DOF via a weight-
ing function w�x� requires that w�x�=1, ∀x�A and w�x�
=0, ∀x�B, with zero slope at the boundaries of �. In ac-
cordance with Eq. �2�, this requires w�x� to be continuous up
to the first derivative. The additional requirement of w�x� to
monotonically vary between 1 and 0 reflects the fact that we
want to switch gradually on the fly without extra equilibra-
tion from more to less �or vice versa� DOF �30�. The switch-
ing procedure implies that in the transition regime, where
0�w�x��1, we deal with fractional DOF; i.e., by switching
on and off a DOF we continously change the dimensionality
of the phase space. To rigorously describe this we resort here
to fractional calculus �31–35�. According to Refs. �33–35�
and to the formula for dimensional regularization �36�, the
infinitesimal volume element of the fractional configura-
tional space is defined as dV�=d�x��� /2� / ���/2�����
= �x��−1dx /����=dx� / ������� where the positive real pa-
rameter � denotes the order of the fractional coordinate dif-
ferential and � is the gamma function. To make the connec-
tion with the switching on and off of DOF we consider in our
case each � as a value that w�x� can take and apply the
formalism to each DOF separately. Hence, we have to go
beyond Refs. �34,35� so that each DOF can take its own
value of parameter � according to the level to which the
particular DOF is switched on. Such a formulation leads to
an interpretation of the switching as a “geometrically in-
duced phase transition.” Here, we deal with a representation-
driven geometrical transition, which has formal similarities
to the concept of a first-order phase transition �29,37�. In this
context the switching function w�x� can be viewed as an
order parameter. In fact, while in a standard first-order phase
transition we have a latent heat—e.g., of solidification—in
this case we have a latent heat due to the fact that the free
energy depends on the position of the slab and we need to
furnish or remove “latent” heat from an external bath to com-
pensate the free energy gradient due to changing the number
of DOF in �.

FIG. 1. The free energy F as a function of x. A and B are the
regions with high and low levels of detail, respectively, while � is a
transition regime. The constant values of FA and FB are arbitrary
and do not play any role in the following treatment.
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To explain this concept in more detail we define the tem-
perature in A in the usual way as TA=2�KA� /nA and in B,
TB=2�KB� /nB, where �KA� and �KB� are the average kinetic
energies of a molecule in regions A and B, respectively; since
we have equilibrium, TA=TB. In a similar way we would also
like to define the temperature in the interface region � as
T�=2�K�� /n� with �K�� and n� being the average kinetic
energy and the number of DOF of a molecule in a given slab
x in �, respectively. However, for such a definition we first
need to determine how K� and n� scale with w�x�. Let us
demonstrate this with a simple example. In Fig. 2 we show a
disk representing a two-dimensional molecule with three
DOF in the high-resolution region A—i.e., two translational
DOF of the center of mass R= �Rx ,Ry� and one rotational
DOF around the center of mass characterized by angle 	, the
transition representation of the molecule in the region �, and
the coarse-grained molecule in region B with only two trans-
lational DOF. The kinetic energy in region A, setting the
mass, the molecule’s radius, and the Boltzmann constant

m=r=kB=1, is KA= �Ṙ2+ p	
2 � /2= �Ṙx

2+ Ṙy
2+	̇2� /2 and, in re-

gion B, KB= Ṙ2 /2= �Ṙx
2+ Ṙy

2� /2. Here p	 denotes the angular
momentum. According to the equipartition theorem each full
quadratic DOF—i.e., Rx, Ry, and 	—contributes to the ki-
netic energy with an amount of T /2. Hence, TA=2�KA� /3,
TB=2�KB� /2. In the region �, however, 	 is not a full DOF,
because its weight varies between 0 and 1. This has to be
considered when calculating the local temperature. To deter-
mine such a contribution one should account for the follow-
ing: Let us consider a given value w�x�=� and use � as a
variable parameter. The instantaneous kinetic energy of a
fractional DOF should gradually vanish as the DOF is slowly
switched off �or vice versa�; thus, in the region �, our ansatz
for the kinetic energy associated with 	 is f���p	

2 /2, where
f��� is a monotonic function in � with f�1�=1 and f�0�=0.
Apart from these requirements we do not need to specify the
exact form of f��� at this point. Accordingly, the kinetic
energy in the position with coordinate x in region � is K�

= �Ṙx
2+ Ṙy

2+ f���p	
2 � /2. For the fractional quadratic DOF 	

we can then write the partition function as

exp�− 
F�� = C� exp�− 
f���p	
2 /2�dV�

= 2C�
0

�

exp�− 
f���p	
2 /2��p	��−1 dp	

����

=
2�/2C���/2�

����
f���−�/2
−�/2 	 
−�/2, �3�

where C is a normalization constant, 
=1/T, and F� the free
energy associated with the fractional DOF 	, respectively
�38�. The consequence of Eq. �3� is the fractional analog of
the equipartition theorem:

�K�� =
d�
F��

d

=

�

2

=

�T

2
, �4�

where �K�� is the average kinetic energy per fractional qua-
dratic DOF with the weight �. Thus, for �=0,1 we obtain

the correct limits in the coarse-grained and fully resolved
regimes, respectively, with the correct contributions to the
kinetic energy. Furthermore, we have T�=2�K�� /n�= �2
+��T /n�. To satisfy the equilibrium condition TA=TB=T�

=T we must set n�=2+�, which is in accordance with the
“intuitive” definition in Ref. �19�. The number of quadratic
DOF and the average kinetic energy thus scale linearly with
w�x�. Equation �4� also tells us that, although the equiparti-
tion is independent of the specific choice of f���, since the
average kinetic energy scales as �, also the instantaneous
one should scale in the same way. This means that f���=�
and it is determined by the fractional character of the phase
space. Note that for nonquadratic DOF the functional form
of f��� is generally more complicated �39�; however, it is not
needed for the present purpose.

Recently we have developed an efficient particle-based
molecular dynamics simulation scheme �19,20�, which is in
accordance with the above considerations. For intermolecu-
lar force calculations we use an interpolation formula for the
force acting between centers of mass of given molecules �
and 
:

F�
 = w�x��w�x
�F�

atom + �1 − w�x��w�x
��F�


cg , �5�

where x� and x
 are the center-of-mass coordinates of the
molecules � and 
, respectively, F�


atom is the sum of all pair
atom interactions between explicit atoms of molecule � and
explicit atoms of molecule 
, and F�


cg is the total force be-
tween the centers of mass of the respective two molecules
�19,20�. This ansatz satisfies Newton’s third law and takes
into account the transfer of the turned-off explicit DOF onto
the molecular center of mass �40�. Each time a given mol-
ecule crosses a boundary between different regimes it gains
or loses �depending on whether it leaves or enters the region
B� its equilibrated rotational DOF while retaining its linear
momentum. By extension of the equipartition theorem to
fractional DOF we are able to define the means to supply the
latent heat, which is required or removed for the transition
from coarse grained to high resolution or vice versa. Since
this generalized equipartition theorem also applies to the
fractional quadratic DOF, standard thermostats based on the
fluctuation-dissipation theorem are applicable.

FIG. 2. The molecular resolution of a simple two-dimensional
circular molecule in the high- and low-resolution regions A and B
and the transition region �, respectively.
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In conclusion, we provided a formal basis for an efficient
computational scheme that concurrently couples different
length scales via different levels of resolution—i.e., atomistic
and mesoscopic length scales—by adapting the resolution on
demand. The transition region is well defined by the here-
introduced generalization of the equipartition theorem for-
fractional dimension of phase space. While it directly applies
to a scheme recently tested �19,20�, it in the same way
should also serve as the first step towards a general theoret-
ical framework to extend other commonly used schemes

�11,15,16� into a truly adaptive multiscale simulation
method.
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