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Abstract Simulating complex fluids or in general complex molecular systems requires ap-
proaches covering decades of time and length scales. This usually cannot be achieved within
one simulation model. Over the years many different methods and models have been devel-
oped ranging from rather generic models, representing most efficiently the universal sta-
tistical mechanical properties of e.g. polymers, to all atom models and even quantum me-
chanical treatments. While these allow for scientifically very important studies in their own
right, only a combination and close link between models of different levels allows for a truly
quantitative description of materials and processes. In the present contribution we discuss
an adaptive resolution approach where different levels of detail are treated within one sim-
ulation and the molecules are free to diffuse between different regions in space, where the
molecules interact with different interaction potentials.

Keywords Coarse-graining · Multiscale simulation · Adaptive resolution · AdResS

1 Introduction

Soft matter or complex fluids are abundant in nature as well as in modern technology as
they include all biological tissues as well as synthetic macromolecular materials from sim-
ple plastics to high tech materials in electronics. Despite their importance still many basic
properties are only purely understood. These properties might resemble structural and dy-
namical aspects or, on a more complex level, function such as light harvesting to name one
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of the most complicated ones. In almost all cases these properties are determined by a vari-
ety of processes and interactions originating from a wide range of time and length scales. Of
course eventually everything can be traced back to atomistic interactions based on quantum
mechanics. This however is neither practically possible nor—in most cases—useful when it
comes to complex (macro-)molecular systems. Instead different properties require different
levels of detail in the theoretical investigation of soft matter systems. Global conformational
fluctuations for instance are very slow and coupled to diffusion processes while at the same
time local fast conformational degrees of freedom determine function or drive phase tran-
sitions. Thus a description which bridges scales can be very helpful if one wants to study
specific systems and if one wants to make the step from a rather qualitative or scaling type
of description to a more system/material specific quantitative result or prediction. In order to
achieve such a goal, there has been intense research over the last years employing a number
of different approaches [1, 23, 29, 49, 51].

Scale bridging or multiscale simulations in most cases work sequentially. That means
a system is treated by independent simulations runs on different levels of detail. Start-
ing from an all atom description a coarse grained model can be parameterized in differ-
ent ways in order to reproduce the (to be defined) essential properties of the underly-
ing microscopic model. Typically coarse models are derived by a structure based ansatz
[10, 13, 14, 19, 24, 25, 42, 44, 46, 50] focusing on reproducing structural aspects or based
on free energy mappings [20, 21]. For the first one aims at reproducing for instance char-
acteristic polymer conformations and molecular packing so that atomistic simulations ana-
lyzed within the coarse grained framework match as closely as possible the same structural
properties (e.g. radial distribution functions, chain radius of gyration etc.) of the coarse
grained simulations. These approaches have been quite successful for the study of different
polymer melts in bulk and close to surfaces as well as liquid crystalline systems and more
recently small aggregating biomolecules in solution [28, 52, 53]. Though quite successful, it
is very difficult to study phase transition by such a method, since the equation of state of the
coarse grained and the underlying all atom model usually are different. The reason is quite
simple, as in a practical renormalization group step a coarse graining step integrates out
degrees of freedom and includes necessary approximations. These approximations are state
point dependent and give rise to problems in transferability from one physical situations to
another. This currently is matter of intense research. On the other hand free energy based
methods do better here by the very construction, however there it often is quite difficult if
not impossible to keep a close link to conformations and morphology. This problem also
sometimes is quoted as representability issue of coarse graining.

Though very successful for many questions even including polymer dynamics, the above
short introduction shows that rather inhomogeneous systems or systems subject to strong
fluctuations are difficult to deal with on the basis of a sequential multiscale approach. For
them it would be of advantage to perform a simulation on a rather coarse level and only focus
on “interesting regions” like using a magnifying lens. This is the idea of adaptive resolution
simulations, as illustrated in Fig. 1. Following such a concept as closely as possible however
requires a number of measures. Taking the magnifying glass analogy everywhere the same
Hamiltonian should be used. This however is exactly what one wants to avoid. To treat the
microscopic region as if it was embedded in a truly large environment one first has to assure
full equilibrium with its surrounding, that is molecules can freely diffuse from one regime to
another without experiencing any barrier which might manipulate the fluctuation spectrum.
Second, the system should be set up in a way that any analysis of the microscopically sim-
ulated part of the system should give the same results as any analysis of a full microscopic
simulation on the very same subvolume. This is achieved by the so called AdResS (Adaptive
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Fig. 1 Adaptive resolution
simulation: zooming in/out into a
region of interest

Resolution Simulation) scheme [31, 34, 37]. In the following we first explain some basics of
the approach and then discuss in some more detail some specific problems of the transition
regime, which is needed to interpolate between microscopic and the mesoscopic region.

2 Adaptive Resolution Simulation

To present the underlying idea of adaptive resolution we consider a homogeneous liquid
of N molecules in a box of volume V . We divide the box into two equally large domains
that freely exchange molecules. In the first domain ex, the region of specific interest, we
represent molecules on a high resolution level whereas in the second domain cg we use a
lower coarse-grained representation of the very same molecular system.1 The two domains
are in thermodynamical equilibrium, i.e.,

μex = μcg, pex = pcg, Tex = Tcg, (1)

where μex, pex, Tex and μcg, pcg, Tcg are the chemical potentials, pressures, and tempera-
tures of the liquid in the ex and cg domains, respectively [34, 37, 39]. Based on this together
with the condition of free molecular exchange between the regions, each subsystem sim-
ulation can be considered as run in the (μ,Vsub, T ) ensemble, with Vsub being the volume
of each subsystem. The number n of explicitly considered degrees of freedom (DOFs) per
molecule differs in the different domains and generally is higher in the ex domain than
in the cg domain.2 Accordingly, the value of the free energy, which is an extensive quan-
tity, is higher in the ex domain than in the cg domain. The respective free energy density
F = F(x) profile (associated to the DOFs that we explicitly consider in the simulation)
therefore is expected to take a form as depicted in Fig. 2. In order to facilitate a smooth

1This restriction we will later on not need anymore.
2In the cg model we reduce the many body potential of the ex representation into a reduced effective potential
and retain only two-body terms (higher order terms are omitted for numerical efficiency). We omit the one-
body terms, which depend only on the temperature and hence do not contribute to the intermolecular forces
[17]. These terms can be viewed as the equivalent of a latent heat. If we kept them the free energy profile in
Fig. 2 would be flat.
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Fig. 2 Sketch of the free energy density profile across the system: coupling two different resolutions [39]

transition between the two resolutions when molecules pass from one regime to another
we introduce a transition hyb regime, filled with hybrid molecules (see Fig. 2), at the in-
terface. Consequently the number of explicitly treated DOFs n for each molecule varies
along the x coordinate from nex in the explicit region to ncg the coarse region, respec-
tively, while we have nhyb = n(x), as discussed below. The system is in equilibrium and

hence: limx→d− ∂Fex(x)

∂x
= limx→d+ ∂Fcg(x)

∂x
= 0 �⇒ limx→d− ∂nex(x)

∂x
= limx→d+ ∂ncg(x)

∂x
= 0

and ∂Fex/∂Nex = μex and ∂Fcg/∂Ncg + φ = μcg, where φ is the free energy per molecule
associated with DOFs, which are integrated out. The free energy density profile allows us
to define a weighting function w that determines the level of resolution across the system
[34] (see Fig. 3). We introduce w = w(x) in such a way that w = 1 and w = 0 correspond
to the ex and cg representations, respectively, while the values 0 < w < 1 correspond to the
transition regime. While crossing the transition regime n changes continuously. This leads
to a continuous change in the dimensionality of the phase space associated with a particular
switching DOF [39, 40]. To describe the continuous change of the phase space dimension-
ality in a mathematically consistent way we resort to fractional calculus [3, 11, 27, 47, 48].
Any switching on or off of DOFs simply in terms of amplitude would correspond to a cool-
ing/heating of modes in the system, which is not what we want to do here.

2.1 Transition Regime: Fractional Degrees of Freedom

For computing thermodynamic properties, e.g., temperature, the phase space of a fully
switched-on DOF with w = 1 has its full dimensionality. On the other hand, if a given DOF
is completely switched-off, i.e., w = 0, it does not contribute to any statistical average and
its dimensionality is zero. In the transition regime, a partially switched-on DOF contributes
to statistical averages according to its weight w, can be interpreted as its fractional dimen-
sionality.3 To quantitatively determine this contribution, we divide the transition regime into
thin slabs each with different but constant values w between 0 and 1.

3As mentioned before the weight w is not to be confused with an amplitude. If one “froze out or in” DOFs
that would literally lead to frozen systems, making the free exchange between the two liquids essentially
impossible.
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Fig. 3 The weighting function,
which determines the level of
resolution. The figure is taken
from Ref. [35]. Copyright (2006)
by The American Physical
Society

For a quadratic DOF i with fractional dimension w and amplitude pi we can then write
the partition function as:

exp(−βFi) = C

∫
exp

(−βp2
i /2

)
dVw

= 2C

∫ ∞

0
exp

(−βp2
i /2

)|pi |w−1 dpi

Γ (w)

= 2w/2CΓ (w/2)

Γ (w)
β−w/2 ∼ β−w/2, (2)

where dVw = |pi |w−1 dpi/Γ (w) = dpw
i /(wΓ (w)) is an infinitesimal volume element of the

fractional configurational space and Γ is the gamma function [39] and β = 1/kBT the in-
verse temperature with kB being the Boltzmann constant. Then the average kinetic energy is
given as 〈Kw〉 = d(βFi )

dβ
= w

2β
= wkBT

2 for fractional quadratic DOF i with the weight w. This
generalization of the equipartition principle to fractional quadratic DOFs [39, 40] allows to
define a temperature in the transition regime and in equilibrium Tex = Tcg = Thyb = T with
nw ∼ w. The precise definition of a temperature in the transition region enables us to em-
ploy the local thermostat to control the free energy difference between different levels of
resolution. As shown below this is needed in an adaptive resolution scheme.

The kinetic energy part of the free energy for a generic quadratic switchable DOF i is
[31]

Fi = μkin
i (w) = −kBT log

[∫
e−βp2

i dwpi

]
. (3)

The analytical solution of (3) is:

μkin
i (w) = CkBT

(
w

2

)
log(T ) + kBT log

Γ (w
2 )

Γ (w)
(4)

where C is a constant. Equation (4) is the ideal gas kinetic contribution to the chemical
potential coming from the internal DOFs. The second term in (4) is negligible in the tem-
perature regime of interest [31]. The kinetic part of the free energy thus depends in the first
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order linearly on w, which determines the slope of the free energy density profile in the
transition regime presented in Fig. 2.

The total contribution of the entire set of switchable DOFs per molecule is

μkin(w) =
∑
DOF

μkin
i (w). (5)

As defined by (3) and (5), μkin
cg = μkin(0) + φ(0)kin = μkin

ex . μkin(w) thus represents only the
explicit contribution of the partially switched-on DOFs (with the weight w) to the kinetic
part of the chemical potential and thus usually μkin(0) 	= μkin

cg .4 The remaining (internal)
kinetic part of the chemical potential is included in the kinetic component of φ, i.e., the
latent heat, defined as

φ(w)kin = μkin
ex − μkin(w). (6)

Commonly, in single-resolution simulations the kinetic contribution to the chemical poten-
tial is ignored being only a trivial constant depending only on temperature, i.e. the ideal
gas contribution [17]. In our case, each DOF in the transition region contributes differently
according to the corresponding value of w(x). Hence, the latent heat defined by (6) is cru-
cial for keeping the thermodynamical equilibrium between two levels of resolution in the
adaptive resolution simulations.

3 The Adaptive Resolution Scheme (AdResS)

Following the above considerations, we couple the two levels of resolution in a molecular
dynamics simulation using a force-based scheme AdResS [34]. The interpolation formula
for the pair force between molecules a and b employed in AdResS is

Fab = w(xa)w(xb)Fex
ab + [

1 − w(xa)w(xb)
]
Fcg

ab (7)

where Fex
ab is the total intermolecular atomistic force taking all details of the fine grained

region into account and Fcg
ab is the total intermolecular force obtained from the effective cg

potential, w(x) is the weighting function and depends on the center of mass positions xa and
xb of the two interacting molecules a and b. The above AdResS scheme allows a molecule
to smoothly find its correct orientation in the liquid once it is given a random orientation at
the low resolution/transition regime boundary (see Fig. 2). As the molecule approaches ex
domain the atomistic interactions are gradually turned-on and the molecule on-the-fly finds
its proper orientation based on the interaction with the surrounding.

In (7) forces and not interaction potentials are interpolated. This is crucial for local linear
momentum conservation and proper diffusion of molecules across the transition regime. One
could, in principle, also define the mixing scheme using the respective potentials instead of
forces, which has been attempted in Refs. [7, 26]:

Vab = w(xa)w(xb)V
ex

ab + [
1 − w(xa)w(xb)

]
V

cg
ab . (8)

4In an isolated cg simulation one can omit φ(0)kin term because it depends only on temperature and does
not enter into pair forces. One can then say the cg model has certain DOFs and one starts from there. But
if we keep track that this cg model was derived from a more detailed one then we have to keep the free
energy contribution of those integrated out DOFs because they are still there—we just do not consider them
explicitly. This is the internal part—or what one might consider analogous to a latent heat.
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However, this approach violates Newton’s Third Law [6, 39, 40]. In (8) the potential energies
between two particles depend on their absolute positions of the particles and not only on their
relative distances. The associated conservative force acting on the molecule a is

Fab = −∂Vab

∂ra

= w(xa)w(xb)Fex
ab + [

1 − w(xa)w(xb)
]
Fcg

ab

+
(

∂w(xa)

∂xa

w(xb)
[
V

cg
ab − V ex

ab

]
,0,0

)
, (9)

where ∂
∂r = ( ∂

∂x
, ∂

∂y
, ∂

∂z
), Fex

ab = − ∂V ex
ab

∂ra
, and Fcg

ab = − ∂V
cg
ab

∂ra
. The expression in (9) for the

force differs from the corresponding expression given by (7) by the additional term
∂w(xa)

∂xa
w(xb)[V cg

ab − V ex
ab ] in the x component of the force. The respective force acting on

the molecule b is in this case

Fba = −∂Vab

∂rb

= w(xa)w(xb)Fex
ba + [

1 − w(xa)w(xb)
]
Fcg

ba

+
(

∂w(xb)

∂xb

w(xa)
[
V

cg
ab − V ex

ab

]
,0,0

)
. (10)

Using Fex
ba = −Fex

ab and Fcg
ba = −Fcg

ab we obtain

−Fba = w(xa)w(xb)Fex
ab + [

1 − w(xa)w(xb)
]
Fcg

ab

−
(

∂w(xb)

∂xb

w(xa)
[
V

cg
ab − V ex

ab

]
,0,0

)
. (11)

In order that the force given by (9) satisfies Newton’s Third Law, i.e., Fab = −Fba, we see
from (9) and (11) that

∂w(xa)

∂xa

w(xb) = −∂w(xb)

∂xb

w(ra) (12)

implying that

1

w(xa)

∂w(xa)

∂xa

= − 1

w(xb)

∂w(xb)

∂xb

= const. = 0. (13)

From (13) it follows that the force defined by (9), although it is conservative, can satisfy
Newton’s Third Law only for a trivial case of w(x) = const. corresponding to constant
resolution simulations. In order that diffusion of molecules between regions with different
resolution is not perturbed by the resolution change, the conservation of momentum dictated
by the Newton’s Third Law is crucial in adaptive resolution MD simulations. Hence, start-
ing with (8) has a clear disadvantage in adaptive resolution MD simulations. Therefore in
AdResS we follow the scheme of (7).

Each time a molecule leaves (or enters) the cg region it gradually gains (or loses) its e.g.
vibrational and rotational DOFs while retaining its linear momentum. Note that in the cg do-
main each molecule represents many orientations and conformations of the corresponding
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molecule in the ex domain. Because of this, going back and forth between the representations
in the transition regime, one does not exactly reproduce the atomistic coordinates and ve-
locities. The reverse-mapping thus destroys time-reversibility in the simulation. Since time
reversibility is essential for energy conservation [15], AdResS does not conserve energy.
In particular, the force in (7) is in general not conservative in the transition region (i.e., in
general

∮
Fab · dr 	= 0) [6, 40]. Hence, to supply or remove the latent heat associated with

the switch of resolution (see (6)) a locally acting thermostat is needed, we usually use a
DPD thermostat [16, 45]. The thermostat forces do not enter into the AdResS interpolating
scheme, (7), instead they are added to the AdResS [34].

Once the above requirements are fulfilled the construction of Fcg
ab does not interfere with

the boundary conditions required by (1) in order to keep thermodynamic equilibrium be-
tween the coarse grained and the fine grained regime. Note however that the transition region
itself will require further consideration. Examples of application of the AdResS scheme (7)
are a liquid of tetrahedral molecules [34, 35], a generic macromolecule in solvent [36], and
liquid water [22, 41] and the solvation of fullerenes in water [18].

4 Generalizations and Extensions

4.1 Thermodynamic Force

To practically perform adaptive resolution simulations requires not only thermodynamic
equilibrium between the coarse grained and the fine grained regime. Also the absence of
a barrier is necessary to allow for a free unhindered diffusion between the regions. Such
barrier free exchange of molecules over the molecular resolution boundaries is required to
properly account for fluctuations. Ideally this is fulfilled if the effective equation of state is
the same everywhere. This however is very difficult if not impossible to achieve as various
studies on coarse graining have shown and especially holds for the transition regime [37,
38]. In general, even though (1) is fulfilled, there is no guarantee that this also holds for
the transition region. Actually our studies have shown that this typically is not the case
leading to significant density undulations in the transition region, which in turn can produce
diffusion barriers. Ideally there would be a constant density profile throughout the whole
simulation box. To overcome this problem recently a generalization of AdResS [31] was
introduced. In this generalized approach we extend the original scheme, (7), by subtracting
a thermodynamic force FTD so that the total force Fa acting on particle a reads

Fa =
∑
b 	=a

(
w(xa)w(xb)Fex

ab + [
1 − w(xa)w(xb)

]
Fcg

ab

) − FTD(xa) (14)

where F TD
x = − ∂μexc

∂x
and μexc plays the role of the effective excess chemical potential due

to the intermolecular interactions [31]. The aim is to arrive at a totally flat density profile
throughout the whole system. Because AdResS however is a non-conservative scheme the
potential μexc is not well defined in the transition regime. To circumvent such a problem
and to arrive at a first guess of the thermodynamic force we run m individual simulations
of systems with one fixed value wi of the transition function w between w0 = 0, which
corresponds to the cg region and wm+1 = 1, which corresponds to the ex region, respectively.
At any fixed value of w a Hamiltonian is well defined up to a constant also for the hybrid
system, allowing to calculate μexc by standard particle insertion methods for instance. The
excess chemical potential is then μexc(xi) = μexc

wi
, where the μexc

wi
is the chemical potential of
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Fig. 4 The excess chemical potential μexc and the thermodynamic force. The figure is adopted from Ref. [31]

Fig. 5 Eliminating density
fluctuation in the transition
regime by the thermodynamic
force. Note that the small size of
the cg and ex regions are only for
this test case. In a practical
application the hybrid region
usually is by far smallest.
Reprinted with permission from
Ref. [31]. Copyright 2010,
American Institute of Physics

the molecules in a bulk system of the specific representation of wi . Repeating this procedure
with all values of wi leads to a position dependent excess chemical potential μexc(x), as the
first guess for the second contribution to φ [31]. In the transition region the value of w

in the actual simulations varies continuously. Consequently a molecule never experiences a
constant w environment and the so determined thermodynamic force is practically the initial
guess for a further iterative optimization.

As an example the excess chemical potential μexc for a liquid of tetrahedral molecules
[31] is depicted in Fig. 4. μexc(x) is the same for w = 1 and for w = 0 because the equations
of state are the same in both the ex and cg domains at the temperature and density of the
simulation. Introducing the concept of a thermodynamic force allows to avoid a general
problem of coupling two different systems by a simple linear interpolation of forces [35].
Figure 5 shows the original and improved density profiles in such a simulation after applying
F TD

x (see the inset of Fig. 4).
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Fig. 6 Cartoon of the binary
mixture. The explicit domain
with atomistic tetrahedral
molecules solvating a spherical
solute is on the right, the coarse
grained domain on the left, and
hybrid region in between the two.
The solute, although in all cases
one-sited, is characterized by
different effective interactions
and excluded volume in the
different domains. Reprinted with
permission from Ref. [31].
Copyright 2010, American
Institute of Physics

4.2 Extension to Mixtures and Polymer Solutions

Based on the above improvements of the original approach it is possible to systematically ex-
tend this methodology to mixtures of different molecular species or polymer solutions [30].
Here the problem of avoiding any drift introduced by the transition regime requires special
care and is not always treated in detail [26]. In general let us start from a mixture of two
kinds of molecules for which both an all atom and a coarse grained description is available.
Further let us assume that we are far enough away from any phase transition and that the
coarse grained model has been parametrized by a structure based coarse graining method, so
that e.g. appropriately evaluated radial distribution functions in both representations agree
to each other. An example of such a system is presented in Fig. 6 for a liquid of tetrahedral
molecules, which solvate another species of spherical molecules [31]. We treat the system at
temperature T = ε/k and a liquid density with an atom density of ρ = 0.175/σ 3 ≈ 1.0/σ 3

cg
(σcg is the excluded volume diameter of the coarse-grained molecule). Here σ and ε are the
standard Lennard-Jones parameters of length and energy, respectively. For the force field
parameters and other modeling details see Refs. [34, 35]. A coarse grained model of both
solvent and solute are derived from the pure atomistic simulation [31].

The treatment of a binary mixture deserves a more careful treatment, as it was shown
in the previous subsection for the case of the chemical potential. Without any correction
through the thermodynamic force, one observes significant density undulations in the tran-
sition region. Above we have given a theoretical interpretation of this additional force, which
for mixtures would also contain cross terms between the different species. The fastest con-
vergence however in a practical application is found in correcting the thermodynamic force
of only one component per iteration, where the force is proportional to the gradient of its
own density. The procedure begins from the most concentrated to the most dilute of the
species. The proposed iterative formula for the thermodynamic force of component α is

FTDi+1

α = Cα

1

ρt

∂p

∂ρα

∇ρi
α + FTDi

α (15)

where ρt is the total particle number density and Cα is a numerical prefactor, between 0
and 1 that will moderate the effects of the force, assuring the numerical stability of the
whole process. Such a coefficient is required since the effects of mixing are neglected in
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Fig. 7 Density profiles for solvent (top) and solute (bottom) using Cα = 0.3

this approach. For the present example a prefactor of Cα = 0.3 turns out to be appropriate
and leads in only a few iteration steps to the desired flat density profile as illustrated in
Fig. 7. Actually an additional “fine tuning” correction can be applied by reducing the value
of Cα for the last iterations. The convergence also can be improved if one compensates the
effect of the solvent correction in the solute and takes mixed terms into account. While not
affecting the final result, less iterations are needed to obtain the required accuracy of the
density profile. In general also the extension of this procedure to systems composed of more
than two components is straightforward.
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Fig. 8 A solvated polymer chain
spanning through domains with
different resolution

4.2.1 Polymer Solutions: Treatment of Bonded Interactions

While mixtures of relatively small molecules already offer many opportunities for interest-
ing studies applying adaptive resolution schemes, eventually one wants to deal with huge
molecules, where only a (small) part of it is treated on an all atom basis and the rest on a
more coarse level. To test such a situation we extend the above described framework to the
case of a polymer chain made up of the “solutes” of the previous study solvated in a liquid
of tetrahedral molecules, as illustrated in Fig. 8. Since the treatment of non-bonded interac-
tions has already been performed for the above two component systems, we here only have
to add intra molecular interactions. Because we want to be able to eventually apply this to
“real” chemical species, we consider bond length, bond angle and torsion potentials.

The coarse-grained bonded potential was obtained by means of an Iterative Boltzmann
Inversion calculation. Starting from the potential of mean force, the procedure converged
after three iterations for a polymer composed of N = 20 monomers solvated in 2800 tetra-
hedral molecules within a cubic box of side length 25.261σ . The obtained potential gener-
ates a bond distribution that shows very good agreement with a chain of the same length
in explicit solvents. Also for chains composed of 50 and more monomers the bond length
distribution did not change, indicating that N = 20 was sufficient to parameterize the coarse
grained model.

The adaptive resolution simulations then were performed on a chain of 50 monomer
beads solvated in 7000 tetrahedral molecules in a box of dimensions 36 × 33.458 ×
33.458σ 3. Since we are especially interested in the influence of the transition region on
the average monomer density, we kept the central monomer fixed at the center of the hy-
brid region. The width of the hybrid region was 12σ . The results are compared for AdResS
simulations where thermodynamic force was determined previously for a mixture of solutes
(monomers) and solvent at the same concentration. These forces can be further refined, par-
ticularly on the solute, by applying the iterative procedure described in the previous section.
However as the results below display, for most applications that probably is not needed.

First the most simple polymer model with out any bond bending and torsion potential
was tested. The static properties are listed in Table 1. There a full microscopic simulation
is compared to two versions within the adaptive resolution scheme. The mean squared end
to end distances, the radius of gyration as well as the hydrodynamic radius of the chain
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Table 1 Static properties of a
single freely jointed chain of
length N = 50 in a tetrahedral
solvent for different adaptive
resolution setups as indicated

System Explicit AdResS AdResS (TF)

〈R2
E

〉1/2 16.2 ± 0.6 15.5 ± 0.4 15.7 ± 0.6

〈R2
G

〉1/2 7.06 ± 0.2 6.7 ± 0.2 6.8 ± 0.2

〈R−1
H

〉−1 6.09 ± 0.09 5.9 ± 0.1 5.9 ± 0.1

ν 0.56 0.56 0.54

Fig. 9 Bond distributions of the
model polymer under different
representations

Fig. 10 Form factor of the
model polymer under different
representations

agree within the error bars. Also the bond length distribution is not altered in the different
simulations as shown in Fig. 9. The effective scaling exponent ν for the chain extension as
a function of chain length N , which asymptotically in good solvent is close to 0.59 in three
dimensions agrees within the error bar and shows that the chain is in a good, but not very
good solvent, meaning that the asymptotic regime is reached only for significantly larger
chains. The exponent ν can directly be derived from the intermediate regime of the chains
form factor S(q). For 2π/RE < q < 2π/σ one expects for a self similar fractal S(q) ∼ q−ν

as also shown in Fig. 10.
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Fig. 11 Density profiles for
solvent (top) and monomers
(bottom) in the polymer system.
The high density peak in the
middle comes from the fixed
position of the central monomer
in the hybrid region

Not only the average properties of the chain are not affected within the error bars by the
transition region, there is, even more important for practical applications, also now tendency
for a density variation as Fig. 11 shows, a criterion crucial for the soundness of the method.

So far only two body interactions have been considered. However for many polymer
simulations it is important to consider angular interaction potentials as well. For the present
first test we consider three and four body interactions, namely a bond and a dihedral angle
interaction, which is kept the same for the polymer in both the fine and the coarse grained
regime. These angular potentials are given by

Ua(θ) = kθ

2
(θ − θ0)

2 (16)

with kθ = 3 rad−2ε and θ0 = 2
3π , while the dihedrals are defined by

Ut(φ) = Kφ(1 + cosφ) (17)

where Kφ = 2ε. The angle and dihedral distributions change considerably with respect to the
original polymer model. However, in this case, these interactions require no reparametriza-
tion in the coarse-grained representation.
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Fig. 12 Bond distribution of the
model polymer under different
representations, including angle
and dihedral interactions

Fig. 13 Angle distribution of the
model polymer under different
representations, including angle
and dihedral interactions

Once simulated under the AdResS scheme, the thermodynamic force on the solute re-
quires an additional correction of two iterations. We show the bond, angle and dihedral
distributions in Figs. 12, 13 and 14, respectively. Finally, the static properties are listed in
Table 2. In all cases, we obtain good agreement with the results of the explicit simulations.

4.3 AdResS-HybridMD: Coupling to Continuum

Recently, the AdResS scheme described in the previous section has been extended to cou-
ple to a continuum model of a liquid [4, 5]. We have derived the triple-scale scheme by
combining two dual-scale schemes: AdResS, introduced above, and a hybrid flux-exchange
based continuum-MD scheme (HybridMD) developed by Delgado-Buscalioni et al. [9]. The
resulting triple-scale model consists of a particle-based MD region, which consists of a cen-
tral ex and surrounding cg domains, and a macroscopic region modeled by the Navier-Stokes
equation. The simulation setup is presented in Fig. 15 for the liquid of tetrahedral molecules.
The central idea of the triple-scale method is to gradually increase the resolution as one ap-
proaches to the region of interest, i.e., ex region. The continuum and MD domains exchange
information via mass and momentum fluxes. These fluxes are conserved across the interface
between continuum and MD regions.
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Fig. 14 Dihedral distribution of
the model polymer under
different representations,
including angle and dihedral
interactions

Table 2 Static properties of the
polymer with angle and dihedral
interactions

System Explicit AdResS AdResS (TF)

〈R2
E

〉1/2 16.8 ± 1 16.4 ± 0.5 18.2 ± 0.6

〈R2
G

〉1/2 8.8 ± 0.3 8.9 ± 0.3 9.3 ± 0.2

〈R−1
H

〉−1 7.5 ± 0.2 7.6 ± 0.1 7.7 ± 0.1

Fig. 15 Concurrent triple-scale simulation of liquid of tetrahedral molecules. Reprinted with permission
from Ref. [4]. Copyright 2008, American Institute of Physics

To test the momentum flux conservation by the triple-scale scheme we performed simu-
lations of a simple Couette flow and analyzed the resulting steady velocity profile [4]. Since
any significant difference in the fluid viscosity as one crosses from one model to another
would induce a change in the slope of the velocity profile we matched the viscosities of ex-
plicit, coarse-grained, and hybrid models using a Transverse DPD thermostat [16] presented
briefly below. The velocity profile displayed in Fig. 16 shows a perfectly linear velocity
profile with no slope change and in agreement with the expected Couette flow.

Our triple-scale approach is designed for molecular simulations of open domains with
relatively large molecules, either in the grand canonical ensemble or under nonequilibrium
conditions.
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Fig. 16 Velocity profile at the
particle region of a hybrid
simulation of a Couette flow of a
tetrahedral fluid. The viscosities
of coarse-grained (cg) and the
hybrid (hyb) fluid models were
tuned using the Transverse DPD
thermostat [16] as to match that
of the explicit model (ex).
Reprinted with permission from
Ref. [4]. Copyright 2008,
American Institute of Physics

4.3.1 Tuning the Transport Properties of Coarse-Grained Models

To synchronize the timescales of the all-atom and coarse-grained regimes in the adaptive
resolution simulations, where the diffusion constants and viscosities of the coarse-grained
models are due to softer interaction potentials typically too high/low, respectively, com-
pared to all-atom simulations, the coarse-grained dynamics has to be slowed down. In the
first attempt we have achieved this by increasing the effective friction in the coarse-grained
system using the position dependent Langevin thermostat [22]. Since the Langevin thermo-
stat does not reproduce the correct hydrodynamics, i.e., the hydrodynamic interactions are
nonphysically screened, in order to tune the transport coefficient of liquids we exploited the
dissipative particle dynamics (DPD) [8, 12]. To this end, we extended the standard DPD
thermostat [45] by including the damping of the transverse components of the relative ve-
locity [16]. Our basic assumption is that in contrast to the standard DPD the viscosity is
very sensitive to the damping perpendicular to the interatomic axis. This damping mimics
the shear of those degrees of freedom (DOFs) that were integrated out in the coarse-graining
procedure.

We introduce the Transverse DPD thermostat as [16]:

ṗi = FC
i + FD

i + FR
i , (18)

where FC, FD, and FR are conservative, damping, and random forces, respectively [8]. The
damping force is defined as

FD
ij = −ζwD(rij )

←→
P ij (rij )vij (19)

and the random force as

FR
ij = σwR(rij )

←→
P ij (rij )θ ij . (20)

Here ζ and σ are the friction constant and the noise strength, respectively. The projection
operator

←→
P is symmetric in the particle indices (

←→
P ij = ←→

P ji ). On the other hand, the noise
vector θ ij

〈
θ ij (t) ⊗ θ kl

(
t ′
)〉 = 2

←→
I (δikδjl − δilδjk)δ

(
t − t ′

)
, (21)
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Fig. 17 Time evolution of mean
square displacements time for the
all-atom and several
coarse-grained water models with
different ζ⊥s of the Transverse
DPD thermostat. Varying ζ⊥ we
can tune the coarse-grained
dynamics to have the same
diffusion coefficient as the
all-atom one. The figure is taken
from Ref. [16]. Reproduced by
permission of The Royal Society
of Chemistry

is antisymmetric in the particle indices according to the fluctuation-dissipation theorem. The
projection along the interatomic axis between particle i and j

←→
P ij (rij ) = r̂ij ⊗ r̂ij retains

the standard DPD thermostat while
←→
P ij (rij ) = ←→

I − r̂ij ⊗ r̂ij yields the Transverse DPD
thermostat.

Results of our simulations have revealed that the transport coefficient are indeed pretty
much insensitive to ζ ‖ for damping the central relative velocities. On the other hand, they
are very sensitive to ζ⊥ for damping the transverse relative velocities used in the Transverse
DPD thermostat as Fig. 17 shows for the diffusion coefficient of liquid water [16].

5 Conclusions

In this contribution we have shortly reviewed some theoretical concepts which current adap-
tive resolution molecular dynamics simulations are based on. The basic idea is to employ
a simulation scheme, where depending on the problem requirement, the local resolution of
the simulation can vary, while keeping the full equilibrium between the different regions.
Unlike in solid state systems [2, 43] for soft matter or complex fluids in general the free
exchange of molecules or parts of molecules between the different regions is essential, as
these fluctuations are characteristic for many properties and functions of these systems. This
requires special attention to the transition region, which interpolates between more coarse
and more fine grained regions of resolution. The transition of hybrid regime has to assure
the free exchange without any kinetic barrier. In addition in general the equations of state
of the more coarse and the more fine grained parts are not identical and special measures
have to be taken. First, as shown, one cannot interpolate the Hamiltonians of the two regions
but the forces derived from these Hamiltonians, second a thermostat is needed to take care
of the “latent heat” related to the DOFs which are changed throughout the transitions. For
that the concept of fractional degrees of freedom is needed in order to have a well defined
temperature. Still this interpolation usually will lead to (strong) density undulations within
the transitions regime, which can be eliminated by the thermodynamic force introduced.
Within this framework a number of model systems have been studied so far. Most recently
this setup was used to investigate the influence of bulk water on the solvation shell close
to the surface of a series of C60 to C2160 icosahedral fullerenes for two different frequently
employed water carbon potentials [18]. By coupling the AdResS scheme to continuum first
steps towards open systems molecular dynamics simulations are introduced.
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Taking these considerations into account in the present paper we extended the adaptive
resolution simulations to mixtures of model systems and polymer solutions, where the poly-
mer chain spans through all three regions. By fixing the center bead to the middle of the
transition region we could demonstrate that the appropriately iterated thermodynamic force
cancels any remaining drift of the polymer beads into or out of any region, unlike it would be
in the uncorrected case. Currently we are extending these studies in general to couple rather
different systems and to explore solvation free energies of a variety of hydrophobic solutes,
where either experimental or theoretical date or both are very difficult to obtain otherwise.
In another recent very interesting extension Poma and Delle Site extended the above concept
towards a central quantum mechanical region, where the quantum degrees of freedom are
considered on a path integral level [32], which currently also has been extended for a first
adaptive resolution study of para hydrogen [33].
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