REFERENCES

REFERENCES FROM THE BOOK
APPENINDEX REFERENCES
LINKS

REFERENCES FROM THE BOOK:
D. Janežič, A. Miličević, S. Nikolić and N. Trinajstić, Graph Theoretical Matrices in Chemistry, Mathematical Chemistry Monographs. (2007)

[1] N. Trinajstić and I. Gutman, Mathematical chemistry, Croat. Chem. Acta 75 (2002) 329-356. (public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_329_356_TRINAJS.pdf)
[2] N. Trinajstić, Chemical Graph Theory, 2nd edition, CRC, Boca Raton, FL,1992.
[3] A. Cayley, Über die analytischen Figuren, welche in der Mathematik Bäume gennant werden und ihre Anwendung auf die Theorie chemischer Verbindungen, Ber. Dtsch. Chem. Ges. 8 (1875) 1056-1059.
[4] J.J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantities, - with three appendices, Am. J. Math. 1 (1878) 64-125.
[5] J.J. Sylvester, Chemistry and algebra, Nature 17 (1877-8) 284.
[6] A. Crum Brown, On the theory of isomeric compounds, Trans. Roy. Soc. (Edinburgh) 23 (1864) 707-719.
[7] A. Crum Brown, On an application of mathematics to chemistry, Proc. Roy. Soc. (Edinburgh) VI (No. 73) (1866-1867) 89-90.
[8] D.H. Rouvray, The pioneering contributions of Cayley and Sylvester to the mathematical description of chemical structure, J. Mol. Struct. (Theochem) 185 (1989) 1-14.
[9] J. Karle, Letter of welcome (dated 10. October, 1986) to D.H. Rouvray on the occasion of the first issue of the Journal of Mathematical Chemistry. Jerome Karl and Herbert Aaron Hauptman were awarded Nobel Prize for Chemistry in 1985 for their work in mathematical chemistry, more specifically for developing the mathematical approach by which they solved the phase-problem in the x-ray christallography.
[10] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145-254. Translation of this paper appeared in the book form: G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer, New York, 1987.
[11] R.J. Wilson, Introduction to Graph Theory, Oliver and Boyd, Oxford, 1972.
[12] F. Harary, Graph Theory, 2nd printing, Addison-Wesley, Reading, MA, 1971.
[13] D.E. Johnson and J.R. Johnson, Graph Theory with Engineering Applications, Ronald, New York, 1972.
[14] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland/Elsevier, Amsterdam, 1976.
[15] D.H. Rouvray, The topological matrix in quantum chemistry, in: Chemical Applications of Graph Theory, A.T. Balaban, Ed. Academic, London, 1976, pp. 175-221.
[16] G. Chartrand, Graphs as Mahematical Models, Prindle,. Weber and Schmidt, Boston, 1977.
[17] D. Cvetkovic, M. Doob, Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.
[18] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading, MA, 1990.
[19] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs – Theory and Applications, 3rd edition, Johann Ambrosius Barth Verlag, Heidelberg, 1995).
[20] H. Poincaré, Second complément à l'Analysis Situs, Proc. London Math. Soc. 32 (1900) 277-308.
[21] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. (http://www.amazon.com/Handbook-Molecular-Descriptors-Roberto-Todeschini/dp/3527299130#reader)
[22] J. Devillers and A. T. Balaban, Eds., Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
[23] M.V. Diudea, I. Gutman and J. Lorentz, Molecular Topology, Nova, Huntington, N.Y., 2001.
[24] O. Ivanciuc, T. Ivanciuc and M. V. Diudea, Molecular graph matrices and derived structural descriptors, SAR QSAR Environ. Res. 7 (1997) 63-87.
[24a] M. Randic, M. Vracko and M. Novic, Eingenvalues as molecular descriptors, in QSPR/QSAR Studies by Molecular Descriptors, M.V. Diudea, Ed., Nova, Huntington, N.Y., 2001, pp. 147-211.
[25] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
[26] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[27] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, 2000.
[28] M.V. Diudea, Ed., QSPR/QSAR Studies by Molecular Descriptors, Nova, Huntington, N.Y., 2001.
[29] To our knowledge, the abbreviation QSPR has been used for the first time in print in A. Sabljic and N. Trinajstic, QSAR: The role of topological indices, Acta Pharm. Jugosl. 31 (1981) 189-214.
[30] To our knowledge, the abbreviation QSAR has been used for the first time in print in the following book: M. Tichy, Ed., Quantitative Structure-Activity Relationships, Akademiai Kiado, Budapest, 1976. This book is a collection of papers based on the reports presented at The Conference on Chemical Structure-Biological Activity Relationships: Quantitative Approach, Prague, June 1973.
[31] M. Randic, On the recognition of identical graphs representing molecular topology, J. Chem. Phys. 60 (1974) 3920-3928.
[32] J. B. Hendrickson and A.G. Toczko, Unique numbering and cataloging of molecular structures, J. Chem. Inf. Comput. Sci. 23 (1983) 171-177.
[33] I. Lukovits, A compact form of the adjacency matrix, J. Chem. Inf. Comput. Sci. 40 (2000) 1147-1150.
[34] I. Lukovits, The generation of formulas for isomers, in: Topology in Chemistry: Discrete Mathematics of Molecules, D.H. Rouvray and R.B. King, Eds., Horwood, Chichester, 2002, pp. 327-337.
[35] I. Lukovits, I. Gutman, On Morgan trees, Croat. Chem. Acta 75, 2002, pp.563-576(public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_563_576_LUKOVIT.pdf )
[36] I. Lukovits, Constructive enumeration of chiral isomers of alkanes, Croat. Chem. Acta 77 (2004) 295-300.
[37] D.J. Klein, D. Babić and N. Trinajstić, Enumeration in Chemistry, in Chemical modeling: Applications and Theory, Vol. 2, A. Hinchliffe, Ed., The Royal Society of Chemistry, Cambridge, 2002, pp. 56-95. (http://books.google.si/books?id=WDIOaSD84pMC&pg=PA56&lpg=PA56&dq=DJ+KLEIN,+D.+BABIC+AND+N.+TRINAJSTIC+Enumeration+in+Chemistry&source=web&ots=SXp-JZti1f&sig=bw2CrkpLK4APuFxRZ3NCGqfONk8&hl=sl&sa=X&oi=book_result&resnum=2&ct=result#PPA56,M1)
[38] D. Babić, D.J. Klein, J. von Knop and N. Trinajstić, Combinatorial Enumeration in Chemistry, in Chemical modeling: Applications and Theory, Vol. 3, A. Hinchliffe, Ed., The Royal Society of Chemistry, Cambridge, 2004, pp. 126-170. (www.rsc.org/images/CM003004_tcm18-15988.pdf)
[39] A. Miličević and N. Trinajstić Combinatorial Enumeration in Chemistry, in Chemical modeling: Applications and Theory, Vol. 4, A. Hinchliffe, Ed., The Royal Society of Chemistry, Cambridge, 2006, pp. 408-472.(www.rsc.org/images/405_469_tcm18-67839.pdf )
[40] M. Randic, Novel graph theoretical approach to heterosystems in quantitative structure-activity relationships, Chemom. Intell. Lab. Syst. 10 (1991) 213-227.
[41] R.B. Mallion, Some graph-theoretical aspects of simple ring current calculations on conjugated systems, Proc. Roy. Soc. (London) A 341 (1975) 429-449.
[42] D. König, Theorie der endlichen and und unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig, 1936. p. 170.
[43] C.A Coulson and G.S. Rushbroke, Note on the method of molecular orbitals, Proc. Camb. Phil. Soc. 36 (1940) 193-200.
[44] M. Barysz, D. Plavšic and N. Trinajstic, A note on topological indices, MATCH Commun. Math. Comput. Chem. 19 (1986) 89-116.
[45] G. Rücker and C. Rücker, Counts of all walks as atomic and molecular descriptors, J. Chem. Inf. Comput. Sci. 33 (1993) 683-695.
[46] G. Rücker and C. Rücker, On topological indices, boiling points and cycloalkanes, J. Chem. Inf. Comput. Sci. 39 (1999) 788-802.
[47] I. Gutman, G. Rücker and C. Rücker, On walks in molecular graphs, J. Chem. Inf. Comput. Sci. 41 (2001) 739-745.
[48] I. Lukovits, A. Milicevic, S. Nikolic, and N. Trinajstic,
On Walk Counts and Complexity of General Graphs, Internet Electron. J. Mol. Des. 2002, 1, 388-400 (http://www.biochempress.com/av01_0388.html)
[49] I. Lukovits and N. Trinajstic, Atomic walk counts of negative order, J. Chem. Inf. Comput. Sci. 43 (2003) 1110-1114.
[50] G. Rücker and C. Rücker, Walking backward: Walk counts of negative order, J. Chem. Inf. Comput. Sci. 43 (2003) 1115-1120.
[51] R.A. Marcus, Additivity of heats of combustion, LCAO resonance energies and bond orders of conformal sets of conjugated compounds, J. Chem. Phys. 43 (1963) 2643-2654.
[52] M. Randic, Random walks and their diagnostic value for characterization of atomic environment, J. Comput. Chem. 4 (1980) 386-399.
[53] G. Rücker and C. Rücker, On using the adjacency matrix power method for perception of symmetry and for isomorphism testing of highly intricate graphs, J. Chem. Inf. Comput. Sci. 31 (1991) 123-126.
[54] M. Randic, W. L. Woodworth and A. Graovac, Unusual random walks, Int. J. Quantum Chem. 24 (1983) 435-452.
[55] G. Rücker and C. Rücker, Walk counts, labirinthicity and complexity of acyclic and cyclic graphs and molecules, J. Chem. Inf. Comput. Sci. 40 (2000) 99-106.
[56] G. Rücker and C. Rücker, Substructure, subgraph and walk counts as measures of the complexity of graphs and molecules, J. Chem. Inf. Comput. Sci. 41 (2001) 1457-1462.
[57] S. Nikolic, N. Trinajstic, I.M. Tolic, G. Rücker and C. Rücker, On molecular complexity indices, in: Complexity in Chemistry- Introduction and Fundamentals, D. Bonchev and D. H. Rouvray, Eds., Taylor and Francis, London, 2003, pp. 29-76
[58] S. Nikolic, N. Trinajstic and I.M. Tolic, Complexity of molecules, J. Chem. Inf. Comput. Sci. 40 (2000) 920-926.
[59] M. Randic, On Complexity of Transitive Graphs Representing Degenerate Rearrangements, Croat. Chem. Acta 74, 2001, pp.683-705 (http://public.carnet.hr/ccacaa/CCA-PDF/cca2001/v74-n3/cca_74_2001_683-705_Randic.pdf)
[60] M. Randic and D. Plavšic, On the Concept of Molecular Complexity, Croat. Chem. Acta 75, 2002, pp.107-116 (http://public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n1/CCA_75_2002_107-116_Randic.pdf)
[61] M. Randic and D. Plavšic, Characterization of molecular complexity, Int. J. Quntum Chem. 91 (2003) 20-31.
[62] J. Konc, M. Hodošcek and D. Janežic, Molecular surface walk, Croat. Chem. Acta 79 (2006), in press.
[63] M. Razinger, Discrimination and ordering of chemical structures by the number of walks, Theoret. Chim. Acta 70 (1986) 365-378.
[64] J.K. Percus, One more technique for the dimer problem, J. Math. Phys. 10 (1969) 1881-1884.
[65] J.K. Percus, Combinatorial Methods, Springer, Berlin, 1971.
[66] D. Cvetkovic, I. Gutman and N. Trinajstic, Kekulé structures and topology, Chem. Phys. Lett. 16 (1972) 614-616.
[67] D. Cvetkovic, I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. VII. The role of resonance structures, J. Chem. Phys. 61 (1974) 2700-2706.
[68] F. Torrens, Computing the Kekulé structure count for alternant hydrocarbons, Int. J. Quantum Chem. 88 (2002) 392-397.
[69] D. Bonchev, Overall connectivity - a next generation molecular connectivity, J. Mol. Graphics Modell. 20 (2001) 65-75.
[70] H. Narumi, New topological indices for finite and infinite systems, MATCH Commun. Math. Comput. Chem. 22 (1987) 195-207.
[71] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538
[72] I. Gutman, B. Rušcic, N. Trinajstic and C.F. Wilcox, Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[73] S. Nikolić, G. Kovačević, Ante Miličević, and Nenad Trinajstić, The Zagreb Indices 30 Years After, Croatica chemica acta, 2003, vol. 76,  pp. 113-124. (public.carnet.hr/ccacaa/CCA-PDF/ca2003/v76-n2/CCA_76_2003_113-124_nikolic.pdf)
[74] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[75] K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
[76] B. Zhou, Zagreb indices, MATCH Comm. Math. Comput. Chem. 52 (2004) 113-118.
[77] I. Gutman, B. Furtula, A.A. Toropov and A.P. Toropova, The graph of atomic orbitals and its basic properties. 2. Zagreb indices, MATCH Commun. Math. Comput. Chem. 53 (2005) 225-230.
[78] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233-239.
[79] M. Randic, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[80] L.B. Kier and L.L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic, New York, 1976.
[81] L.B. Kier and L.L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[82] E.Estrada, Graph theoretical invariant of Randic revisited, J. Chem. Inf. Comput. Sci. 35 (1995) 1022-1025.
[83] L. Pogliani, From molecular connectivity to semiempirical terms: Recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827-3858.
[84] M. Randic, The connectivity index 25 years after, J. Mol. Graphics Modell. 20 (2001) 19-35.
[85] X. Li and I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Mathematical Chemistry Series, Kragujevac, 2006.
[86] M. Gordon and G. R. Scantlebury, Non-random polycondensation statistical theory of the substitution effect, Trans Faraday Soc. 60 (1964) 604-621.
[97] J.R. Platt, Influence of neighbor bonds on additive bond properties in paraffins, J. Chem. Phys. 15 (1947) 419-420.
[88] D. M. Cvetkovic and I. Gutman, Note on branching, Croat. Chem. Acta 49 (1977) 115-121.
[89] R.C. Read, The enumeration of acyclic chemical compounds, in: Chemical Applications of Graph Theory, A.T. Balaban, Ed., Academic, London, 1976, pp. 25-61.
[90] J.V. Knop, K. Szymanski, W.R. Müller, H.W. Kroto and N. Trinajstic, Computer enumeration and generation of physical trees, J. Comput. Chem. 8 (1987) 549-554.
[91] J. von Knop, W.R. Müller, K. Szymanski and N. Trinajstic, Computer Generation of Certain Classes of Molecules, SKTH, Zagreb., 1985.
[92] N. Trinajstic, The role of graph theory in chemistry, Reports in Molecular Theory 1 (1990)185-213.
[93] N. Trinajstic, S. Nikolic, J. von Knop, W. R. Müller and K. Szymanski, Computational Chemical Graph Theory - Characterization, Enumeration and Generation of Chemical Structures by Computer Methods, Horwood/Simon & Schuster, New York, 1991, pp. 263-266.
[94] M. Randic, Compact molecular codes. Journal of Chemical Information and Computer Sciences 26(3): 136-148 (1986) (http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/1986/26/i03/f-pdf/f_ci00051a010.pdf?sessid=6006l3)
[95] M. Randic, S. Nikolic and N. Trinajstic, Compact molecular codes for polycyclic systems, J. Mol. Struct. (Theochem) 165 (1988) 213-228.
[96] S. Nikolic and N. Trinajstic, Compact molecular codes for annulenes, aza-annulenes, annulenoannulenes, aza-annulenoannulenes, cyclazines and aza-cyclazines, Croat. Chem. Acta 63 (1990) 155-169.
[97] L. Spialter, The atom connectivity matrix (ACM) and its characteristic polynomial (ACMCP): A new computer-oriented chemical nomenclature, J. Am. Chem. Soc. 85 (1963) 2012-2013.
[98] L. Spialter, The Atom Connectivity Matrix (ACM) and Its Characteristic Polynomial (ACMCP), J. Chem. Doc. 4 (1964), pp. 261-269 (http://pubs.acs.org/cgi-bin/abstract.cgi/jci001/1964/4/i04/f-pdf/f_c160015a018.pdf)
[99] L. Spialter, The Atom Connectivity Matrix Characteristic Polynomial (ACMCP) and Its Physico-Geometeric (Topological) Significance, J. Chem. Doc. 4 (1964), pp. 269-274 (http://pubs.acs.org/cgi-bin/abstract.cgi/jci001/1964/4/i04/f-pdf/f_c160015a019.pdf)
[100] J. von Knop, I. Gutman and N. Trinajstic, Application of graphs in chemistry. VII. The representation of chemical structures in documentation, Kem. ind. (Zagreb) 24 (1975) 25-29.
[101] A.A. Balandin, Structral algebra in chemistry, Acta Physicochim. USSR 12 (1940) 447-479.
[102] M. Randic and N. Trinajstic, Notes on some less known early contributions to chemical graph theory, Croat. Chem. Acta 67 (1994) 1-35.
[103] G.W. Wheland, Syllabus for Advanced Organic Chemistry 321, University of Chicago, Chicago, 1946; see also G.W. Wheland, Advanced Organic Chemistry, Wiley, New York, 1949.
[104] N. Trinajstic and T. Toth, Interactions between users and the secondary sources of information: A case study of Chemical Abstract services, Kem. ind. (Zagreb) 35 (1986) 527-550.
[105] L.C. Ray and R.A. Kirsch, Finding chemical records by digital computers, Science 126 (1957) 814-819.
[106] D.J. Gluck, A chemical structure storage and search system developed at Du Pont, J. Chem. Doc. 5 (1965) 43-51.
[107] E. Meyer, The IDC system for chemical documentation, J. Chem. Doc. 9 (1969) 109-113.
[108] I. Gutman, Lj. Petrovic, E. Estrada and S.H. Bertz, The line graph model. Predicting physico-chemical properties of alkanes, ACH-Models in Chemistry 135 (1998) 147-155.
[109] A. Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Mol. Diversity 8 (2004) 393-399.
[110] Xiao-Ling Peng, , Kai-Tai Fang, Qian-Nan Hu, Yi-Zeng Liang, Impersonality of the Connectivity Index and Recomposition of Topological Indices According to Different Properties. Molecule, 2004, 9, 1089-1099. (http://www.mdpi.org/molecules/papers/91201089.pdf)
[111] E. Estrada, Edge adjacency relationships and a novel topological index related to molecular volume, J. Chem. Inf. Comput. Sci. 35 (1995) 31-33.
[112] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996) 541-543.
[113] R. B. Mallion, A. J. Schwenk and N. Trinajstic, A graphical study of heteroconjugated molecules, Croat. Chem. Acta 46 (1974) 171-182.
[114] R. B. Mallion, N. Trinajstic and A. J. Schwenk, Graph theory in chemistry. Generalization of Sachs' formula, Z. Naturforsch. 29a (1974) 1481-1484.
[115] R. B. Mallion, A. J. Schwenk and N. Trinajstic, On the characteristic polynomial of a rooted graph, in: Recent Advances in Graph Theory, M. Fiedler, ed, Academia, Prague, 1975, pp. 345-350
[116] A. Graovac, O. E. Polansky, N. Trinajstic and N. Tyutyulkov, Graph theory in chemistry. II. Graph-theoretical description of heteroconjugated molecules, Z. Naturforsch 30a (1975) 1696-1699.
[117] A. Graovac and N. Trinajstic, Möbius molecules and graphs, Croat. Chem. Acta 47 (1975) 95-104.
[118] A. Graovac and N. Trinajstic, Graphs in chemistry, MATCH Commun. Math. Comput. Chem. 1 (1975)159-170.
[119] A. Graovac and N. Trinajstic, Graphical description of Möbius molecules, J. Mol. Struct. 30 (1976) 416-420.
[120] I. Gutman, Electronic properties of Möbius systems, Z. Naturforsch. 33a (1978) 214-216.
[121] E. Heilbronner, Hückel molecular orbitals of Möbius-type conformations of annulenes, Tetrahedon Lett. (1964) 1923-1928.
[122] F.S. Roberts, Graph theory and the social sciences, in: Applications of Graph Theory, R.J. Wilson and L.W. Beineke, Eds., Academic, Lodon, 1979, pp. 255-291.
[123] K. Balasubramanian, Applications of edge-colorings of graphs and characteristic polynomials to spectroscopy and quantum chemistry, J. Mol. Structure (Theochem) 185 (1989) 229-248.
[124] M. Randic, On computation of optimal parameters for multivariate analysis of structure-property relationship, J. Comput. Chem. 12 (1991) 970-980.
[125] M. Randic, D. Plavšic and N. Lerš, Variable connectivity index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 41 (2001) 657-662.
[126] Ante Miličević and Sonja Nikolić, On Variable Zagreb Indices, Croat. Chem. Acta 77, 2004, pp.97-101(http://public.carnet.hr/ccacaa/CCA-PDF/cca2004/v77-n1_n2/CCA_77_2004_97-101_milicevic.pdf)
[127] Sonja Nikolica , Ante Milicevic, Nenad Trinajstic and Albin Juric, On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons, Molecules 2004, 9, 1208-1221. (http://www.mdpi.org/molecules/papers/91201208.pdf)
[128] Randic and S. C. Basak, On the use of the variable connectivity index vχf in QSAR: Toxicity of aliphatic ethers, J. Chem. Inf. Comput. Sci. 41 (2001) 614-618.
[129] C. Yang and C. Zhong, Modified connectivity indices and their application to QSPR study, J. Chem. Inf. Comput. Sci. 43 (2003) 1998-2004.
[130] Milan Randić, Matevž Pompe, Denise Mills and Subhash C. Basak, Variable Connectivity Index as a Tool for Modeling Structure-
Property Relationships
, Molecules 2004, 9, pp. 1177-1193(http://www.mdpi.org/molecules/papers/91201177.pdf)
[131] E. Estrada, Edge adjacency relationships in molecular graphs containing heteroatoms: A new topological index related to molecular volume, J. Chem. Inf. Comput. Sci. 35 (1995) 701-707.
[132] M. Randic, Similarity based on extended basis descriptors, J. Chem. Inf. Comput. Sci. 32 (1992) 686-692.
[133] M. Randic, On molecular identification numbers J. Chem. Inf. Comput. Sci. 24 (1984) 164-175.
[134] K. Szymanski, W.R. Müller, J. von Knop and N. Trinajstic, On Randic’s molecular identification numbers, J. Chem. Inf. Comput. Sci. 25 (1985) 413-415.
[135] M. Randic, Nonempirical approach to structure-activity studies, Int. J. Quantum Chem. Quantum Biol. Symp. 11 (1984) 137-153.
[136] S. Carter, N. Trinajstic and S. Nikolic, A note on the use of ID numbers in QSAR studies, Acta Pharm. Jugosl. 37 (1987) 37-42.
[137] Y.-Q. Yang, L. Xu and C.-Y. Hu, Extended adjacency matrix indices and their applications, J. Chem. Inf. Comput. Sci. 34 (1994) 1140-1145.
[138] E. Hückel, Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen, Z. Phys. 70 (1931) 204-286.
[139] E. Hückel, Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polaritäten, Z. Phys. 72 (1932) 310-337.
[140] E. Hückel, Quantentheoretische Beiträge zum Problem der aromatischen und ungsesättigten Verbindugen. III., Z. Phys. 76 (1932) 628-648.
[141] A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961.
[142] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52 (1929) 555-600.
[143] F. Bloch, Zur Theorie des Ferromagnetismus, Z. Phys. 61 (1930) 206-219.
[144] Douglas J. Klein and Anirban Misra, Minimally Kekulenoid π-Networks and Reactivity for Acyclics, Croat. Chem. Acta 77, 2004, pp. 179–191. (http://public.carnet.hr/ccacaa/CCA-PDF/cca2004/v77-n1_n2/CCA_77_2004_179-191_Klein.pdf)
[145] N. Trinajstic, Hückel Theory and Topology, in: Semiempirical Methods of Electronic Structure Calculations – Part A: Techniques, G.J. Segal, Ed., Plenum Press, New York, 1977, pp. 1-27.
[146] A. Graovac, I. Gutman and N. Trinajstic, Topological Approach to the Chemistry of Conjugated Molecule, Springer, Berlin, 1977.
[147] H. Hosoya, Mathematical foundation of the organic electron theory – how do π-electrons flow in conjugated systems? J. Mol. Struct. (Theochem) 461-462 (1999) 473-482.
[148] H. Hosoya, From how to why. Graph-theoretical verification of quantum-mechanical aspects of π-electron behaviors in conjugated systems, Bull. Chem. Soc. Jpn. 76 (2003) 2233-2252.
[149] D. M. Cvetkovic, I. Gutman and N. Trinajstic, Conjugated molecules having integral spectra, Chem. Phys. Lett. 29 (1974) 65-68.
[150] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Topics Curr. Chem. 42 (1973) 49-93.
[151] W.C. Herndon, Isospectral molecules, Tetrahedron Lett. (1974) 671-674.
[152] T. Živkovic, M. Randic and N. Trinajstic, On conjugated molecules with identical topological spectra, Mol. Phys. 30 (1975) 517-532.
[153] W.C. Herndon and M.L. Ellzey, Jr., Isospectral graphs and molecules, Tetrahedron 31 (1975) 99-107.
[154] M. Randic, N. Trinajstic and T. Živkovic, Molecular graphs having identical spectra, J. Chem. Soc. Farady Trans. II (1976) 244-256.
[155] S.S. D'Amato, B.M. Gimarc and N. Trinajstic, Isospectral and subspectral molecules, Croat. Chem. Acta 54 (1981) 1-52.
[156] N. Trinajstic, Chemical Graph Theory, CRC, Boca Raton, FL, 1983, Vol. I, Chapters 7 and 8.
[157] W.C. Herndon and M.L. Ellzey, Jr., The construction of isospectral graphs, MATCH Commun. Math. Comput. Chem. 20 (1986) 53-79.
[158] M. Randic, M. Barysz, J. Nowakowski, S. Nikolic and N. Trinajstic, Isospectral graphs revisited, J. Mol. Struct. (Theochem) 185 (1989) 95-121.
[159] B. Mohar, Laplacian matrices of graphs, in: MATH/CHEM/COMP 1988, A. Graovac, ed., Elsevier, Amsterdam, 1989, pp. 1-8.
[160] M. Kunz, A Möbius inversion of the Ulam subgraphs conjecture, J. Math. Chem. 9 (1992) 297-305.
[161] M. Kunz, On topological and geometrical distance matrices, J. Math. Chem. 13 (1993) 145-151.
[162] M. Kunz, An equivalance relation between distance and coordinate matrices, MATCH Comm. Math. Comput. Chem. 32 (1995) 193-203.
[163] J.W. Moon, Counting Labelled Trees, Canadian Mathematical Monographs, Ottawa, 1970, Vol. 1, Chapter 5.
[164] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme gefürt wird, Ann. Phys. Chem. 72 (1847) 497-508; English translation «On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents» appeared in J.B. O’Toole, Trans I.R.E.. CT-5 (1958) 4-7.
[165] S. Nikolic, N. Trinajstic, A. Juric, Z. Mihalic and G. Krilov, Complexity of some interesting (chemical) graphs, Croat. Chem. Acta 69 (1996) 883-897.
[166] O.N. Temkin, A.V. Zigarnik and D. Bonchev, Chemical Reaction Networks: A Graph-Teoretical Approach, CRC, Boca Raton, FL, 1996.
[167] Edward C. Kirby, Douglas J. Klein, Roger B. Mallion, Paul Pollak, and Horst Sachs, A Theorem for Counting Spanning Trees in General Chemical Graphs and its Particular Application to Toroidal Fullerenes, Croat. Chem. Acta 77, 2004, pp.263–278(http://public.carnet.hr/ccacaa/CCA-PDF/cca2004/v77-n1_n2/CCA_77_2004_263-278_Kirby.pdf)
[168] N. Trinajstic, D. Babic, S. Nikolic, D. Plavšic, D. Amic and Z. Mihalic, The Laplacian matrix in chemistry, J. Chem. Inf. Comput. Sci. 34 (1994) 368-376.
[169] B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graphs Comb. 7 (1991) 53-64.
[170] B Mohar, D Babic, N Trinajstic, A novel definition of the Wiener index for trees, Journal of Chemical Information and Computer Sciences, 1993, vol. 33, pp. 153-154. (http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/1993/33/i01/f-pdf/f_ci00011a023.pdf?sessid=6006l3)
[171] S. Markovic, I. Gutman and Ž. Bancevic, Correlation between Wiener and quasi-Wiener indices in benzenoid hydrocarbons, J. Serb. Chem. Soc. 60 (1995) 633-636.
[172] R. B. Mallion and N. Trinajstic, Reciprocal spanning-tree density: A new index characterising the intricacy of (poly)cyclic molecular-graph, MATCH Comm. Math. Comput. Chem. 48 (2003) 97-116.
[173] I. Gutman, R.B. Mallion and J.W. Essam, Counting spanning trees of a labelled molecular-graph, Mol. Phys. 50 (1983) 859-877.
[174] J.B. Listing, Der Census räumlicher Complexe, Nachr. K. Ges. Wiss. Göttingen (1861) 352-358.
[175] N.L. Biggs, E.K. Lloyd and R.J. Wilson, Graph Theory 1736-1936, reprinted with corrections, Clarendon Press, Oxford, 1977.
[176] P.R. Bryant, Graph theory and electrical networks, in: Applications of Graph Theory, R.J. Wilson and L.W. Beineke, eds., Academic, KLondon, 1979, pp.81-119.
[177] D.J. Klein, A. Milicevic and N. Trinajstic, Incidence, dissidence and comparator matrices, manuscript in preparation.
[178] D. Bonchev and N. Trinajstic, Information theory, distance matrix and molecular branching, J. Chem. Phys. 67 (1977) 4517-4533.
[179] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Wiley, Chichester, 1983.
[180] V.R. Magnuson, D.K. Harris and S.C. Basak, Topological indices based on neighbor symmetry: chemical and biological applications, in: Chemical Applications of Topology and Graph Theory, R.B. King, ed., Elsevier, Amsterdam, 1983, pp.178-191.
[181] V.A. Skorobogatov and A.A. Dobrynin, Metric analyses of graphs, MATCH Commun. Math.Comput. Chem. 23 (1988) 105-151.
[182] M.V. Diudea, Molecular topology. 16. Layer matrix in molecular graphs, J. Chem. Inf. Comput. Sci. 34 (1994) 1064-1071.
[183] M.V. Diudea, Layer matrices and distance property descriptors, Ind. J. Chem. 41A (2003) 1283-1294.
[184] M.V. Diudea and B. Pârv, Molecular topology. 3. A new centric connectivity index, MATCH Commun. Math.Comput. Chem. 23 (1988) 65-87.
[185] M.V. Diudea, O.M. Minailiuc and A.T. Balaban, Molecular topology. 4. Regressive vertex degrees (new graph invariants) and derived topological indices, J. Comput. Chem.12 (1991) 527-535.
[186] M.V. Diudea, M. Topan and A. Graovac, Molecular topology. 17. Layer matrices of walk degrees, J. Chem. Inf. Comput. Sci. 34 (1994) 1072-1078.
[187] M.V. Diudea and O. Ursu, Layer matrices and distance property descriptors, Ind. J. Chem. 42A (2003) 1283-1294.
[188] A.A. Dobrynin, Degeneracy of some graph invariants, J. Math. Chem. 14 (1993) 175-184.
[189] C.-Y. Hu and L. Xu, On highly discriminating molecular topological index, J. Chem. Inf. Comput. Sci. 36 (1996) 82-90.
[190] Y. Yang, J. Lin and C. Wang, Small regular graphs having the same path layer matrix, J. Graph Theory 39 (2002) 219-221.
[191] M. Randic, Algebraic Kekulé structures for benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 44 (2004) 365-372.
[192] A. Milicevic, S. Nikolic and N. Trinajstic, Coding and ordering Kekulé structures, J. Chem. Inf. Comput. Sci. 44 (2004) 415-421.
[193] Z. Mihalic, D. Veljan, D. Amic, S. Nikolic, D. Plavšic and N. Trinajstic, The distance matrix in chemistry, J. Math. Chem. 11 (1992) 223-258.
[194] F. Harary, Combinatorial problems in graphical enumeration, in: Applied Combinatorial Mathematics, E.F. Beckenbach, Ed., Wiley, New York, 1964, pp. 185-220
[195] F. Harary, Applications of Pólya theorem to permutations groups, in: A Seminar on Graph Theory, F. Haray and L.W. Beineke, eds., Holt, Rinehart and Winston, New York, 1967, pp. 25-33.
[196] S.L. Hakimi and S.S. Yau, Distance matrix of a graph and its realizability, Quart. Appl. Math. 12 (1965) 305-317.
[197] A.N. Patrinos and S.L. Hakimi, The distance matrix of a graph and its tree realization, Quart. Appl. Math. 30 (1973) 255-269.
[198] J. K. Kruskal, Jr., On the shortest spanning subtree of a graph and the traveling salesman, Proc. Amer. Math. Soc. 7 (1956) 48-50
[199] W. R. Müller, K. Szymanski, J. von Knop and N. Trinajstic, An Algorithm for construction of the molecular distance matrix, J. Comput. Chem. 8 (1987) 170-173
[200] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[201] D.H. Rouvray, Predicting chemistry from topology, Sci. Am. 254 (9) (1986) 40-47.
[202] I. Gutman, Y. N. Yeh, S .L. Lee and Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.
[203] S. Nikolic, N. Trinajstic and Z. Mihalic, The Wiener index: Development and application, Croat. Chem. Acta 68 (1995) 105-129.
[204] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and application, Acta Appl. Math. 66 (200) 211-249.
[205] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994) 9-15.
[206] I. Gutman, W. Linert, I. Lukovits and Ž. Tomovic, On the multiplicative Wiener index and its possible chemical applications, Monat. Chem. 131 (2000) 421-427.
[207] I. Gutman, W. Linert, I. Lukovits and Ž. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci. 40 (2000). 113-116.
[208] B. Lucic, I. Lukovits, S. Nikolic and N. Trinajstic, Distance-related indexes in the quantitative structure-property relationship modeling, J. Chem. Inf. Comput. Sci. 41 (2001) 527-535.
[209] M. Randic, Novel molecular descriptor for structure-property studies,Chem. Phys. Lett. 211 (1993) 478-483.
[210] I. Lukovits and W. Linert, A novel definition of the hyper-Wiener index for cycles, J. Chem. Inf. Comput. Sci. 34 (1994) 899-902.
[211] D. J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
[212] Ivan Gutman, A New Hyper-Wiener Index, Croat. Chem. Acta 77, 2004, pp.61-64. (http://public.carnet.hr/ccacaa/CCA-PDF/cca2004/v77-n1_n2/CCA_77_2004_61-64_gutman.pdf)
[213] A. T. Balaban, Highly discriminating distance-based topological index, Chem. Phys. Lett. 89 (1989) 399-404.
[214] A. T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl. Chem. 55 (1983) 199-206.
[215] P. G. Seybold, Topological influences on the carcinogenecity of aromatic hydrocarbons. I. Bay region geometry, Int. J. Quantum Chem. : Quantum Biol. Symp. 10 (1983) 95-101.
[216] H. Hosoya, U. Nagashima and S. Hyugaji, Topological twin graphs. Smallest pair of isospectral polyhedral graphs with eight vertices, J. Chem. Inf. Comput. Sci. 34 (1994) 428-431.
[217] H. Hosoya, K. Ohta and M. Satomi, Topological twin graphs. II.Isospectral polyhedral graphs with nine and ten vertices, MATCH Commun. Math. Comput. Chem. 44 (2001) 183-200.
[218] M. V. Diudea, Walk numbers eWM: Wiener-type numbers of higher rank, J. Chem. Inf. Comput. Sci. 36 (1996) 535-540.
[219] M. V. Diudea, Wiener and hyper-Wiener numbers in a single matrix, J. Chem. Inf. Comput. Sci. 36 (1996) 833-836.
[220] M. Randic, G.M. Brissey, R.B. Spencer and C.L. Wilkins, Search for all self-avoiding paths for molecular graphs, Comput. Chem. 3 (1979) 5-13.
[221] Alexandru T. Balaban, Denise Mills, Ovidiu Ivanciuc, and Subhash C. Basak, Reverse Wiener Indices, Croat. Chem. Acta 73, 2000, pp.923-941. (http://public.carnet.hr/ccacaa/CCA-PDF/cca2000/v73-n4/cca_73_2000_923-941_Balaban.pdf)
[222] M. Randic and J. Zupan, On interpretation of well-known topological indices, J. Chem. Inf. Comput. Sci. 41 (2001) 550-560.
[223] S. Nikolic, D. Plavšic and N. Trinajstic, On the Balaban-like topological indices, MATCH Commun. Math. Comput. Chem. 44 (2001) 361-386.
[224] M. Randic and M. Pompe, The variable molecular descriptors based on distance-related indices, J. Chem. Inf. Comput. Sci. 41 (2001) 575-581.
[225] B. Lucic, A. Milicevic, S. Nikolic and N. Trinajstic, On variable Wiener index, Ind. J. Chem. 42A (2003) 1279-1282.
[226] M. Barysz, G. Jashari, R. S. Lall, V. K. Srivastava and N. Trinajstic, On the distance matrix of molecules containing heteroatoms, in: Chemical Applications of Topology and Graph Theory, R. B. King, Elsevier, Amsterdam, 1983, pp. 222-230.
[227] M. Randic, A. Sabljic, S. Nikolic and N. Trinajstic, A rational selection of graph-theoretical indices in the QSAR, Int. J. Quantum Chem. Quantum Biol. Symp. 15 (1988) 267-285.
[228] O. Ivanciuc, T. Ivanciuc and A. T. Balaban, Vertex- and edge-weighted molecular graphs and derived structural descriptors, in: Topological Indices and Related Descriptors in QSAR and QSPR, J. Devillers and A. T. Balaban, Eds., Gordon & Breach, Amsterdam, 1999, pp. 169-230.
[229] A. T. Balaban, Chemical graphs. 48. Topological index J for heterom-containing molecules taking in to account periodicities of element properties, MATCH Commun. Math. Comput. Chem. 21 (1986) 115-122.
[230] A. T. Balaban and O. Ivanciuc, FOTRAN 77 computer program for calculating the topological index J for molecules containing heterotoams, in: MATH/CHEM/COMP 1988, A. Graovac, Ed., Elsevier, Amsterdam, 1989, pp. 193-211
[231] R.T. Sanderson, Polar Covalence, Academic, New York, 1983.
[232] O. Ivanciuc, Design of Topological Indices. Part 12. Parameters for vertex- and edge-weightd molecular graphs, Rev. Roum. Chim. 45 (2000)289-301.
[233] J.K. Nagle, Atomic polarizability and electronegativity, J. Am. Chem. Soc. 112 (1990) 4741-4747.
[234] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs, J. Chem. Inf. Comput. Sci. 40 (2000) 1412-1422.
[235] O. Ivanciuc, T. Ivanciuc and A.T. Balaban, Design of topological indices. Part 10. Parameters based on electronegativity and covalent radius for the computation of molecular graph descriptors for heteroatom-containing molecules, J. Chem. Inf. Comput. Sci. 38 (1998) 395-401.
[236] O. Ivanciuc, T. Ivanciuc and A.T. Balaban, The complementary distance matrix, a new molecular graph metric, ACH-Model. Chem. 137 (2000) 57-82.
[237] D. Amic and N. Trinajstic, On the detour matrix, Croat. Chem. Acta 68 (1995) 53-62.
[238] N. Trinajstic, S. Nikolic, B. Lucic. D. Amic and Z. Mihalic, The detour matrix in chemistry, J. Chem. Inf. Comput. Sci. 37 (1997) 631-638
[239] G. Rücker and C. Rücker, Symmetry-aided computation of the detour matrix and the detour index, J. Chem. Inf. Comput. Sci. 38 (1998) 710-714.
[240] Milan Randic, Luz M. DeAlba and Frank E. Harris,Graphs with the Same Detour Matrix, Croat. Chem. Acta 71, 1998, pp.53-68 (http://public.carnet.hr/ccacaa/CCA-PDF/cca1998/v71-n1/CCA_71_1998_53_68_RANDIC.pdf)
[241] I. Lukovits and M. Razinger, On calculation of the detour index, J. Chem. Inf. Comput. Sci. 37 (1997) 283-286.
[242] N. Trinajstic, S. Nikolic and Z. Mihalic, On computing the molecular detour matrix, Int. J. Quantum Chem. 65 (1997) 415-419.
[243] S. Nikolic, N. Trinajstic, A. Juric and Z. Mihalic, The detour matrix and the detour index of weighted graphs, Croat. Chem. Acta 69 (1996) 1577-1591.
[244] S. Nikolic, N. Trinajstic, J.von Knop, W.R. Müller and K. Szymanski, On the concept of the weighted spanning tree of dualist, J. Math. Chem. 4 (1990) 357-375.
[245] I. Lukovits, The detour index, Croat. Chem. Acta 69 (1996) 873-882.
[246] S. Nikolic, N. Trinajstic and Z. Mihalic, The detour matrix and the detour index, in: Topological Indices and Related Descriptors in QSAR and QSPR J. Devillers and A. T. Balaban, eds., Gordon & Breach, Amsterdam, 1999, pp. 279-306.
[247] B. Lucic, I. Lukovits, S. Nikolic and N. Trinajstic, Distance-related indexes in the quantitative structure-property relationship modeling, J. Chem. Inf. Comput. Sci. 41 (2001) 527-535.
[248] N. Trinajstic, S. Nikolic, S. C. Basak and I. Lukovits, Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling, SAR QSAR Environ. Res. 12 (2001) 31-54.
[249] O. Ivanciuc, A. T. Balaban. Design of Topological Indices. Part 8. Path Matrices and Derived Molecular Graph Invariants. MATCH (Commun. Math. Chem.) 1994, 30, 141-152. (http://www.ivanciuc.org/Files/Reprints/p0015_mcmc_1994_30_141.pdf)
[250] M. Randic, V. Katovic and N. Trinajstic, Symmetry properties of chemical graphs. VII. Enantiomers of a tetragonal-pyramidal rearrangement in: Symmetries and Properties of Non-Rigid Molecules: A Comprehensive Survey, J. Maruani and J. Serre, Eds., Elsevier, Amsterdam, 1983, pp. 399-408.
[251] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
[252] H.E. Dudeney, Amusements in Mathematics, Nelson, London, 1917.
[253] S. Lloyd, Jr., Sam Lloyd and His Puzzles, Barse, New York, 1928.
[254] C Liang, K Mislow, Topological Chirality of Proteins, Journal of the American Chemical Society, 116, 1994, pp.3588-3592 (http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/1994/116/i08/f-pdf/f_ja00087a052.pdf?sessid=6006l3)
[255] D. Plavšic, S. Nikolic, N. Trinajstic and Z. Mihalic, On Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
[256] T. S. Balaban, P. A. Filip, O. Ivanciuc. Computer Generation of Acyclic Graphs Based on Local Vertex Invariants and Topological Indices. Derived Canonical Labelling and Coding of Trees and Alkanes. J. Math. Chem. 1992, 11, pp.79-105. (http://www.ivanciuc.org/Files/Reprints/p0006_jmc_1992_11_79.pdf)
[257] Z. Mihalic and N. Trinajstic, A graph-theoretical approach to structure-property relationships, J. Chem. Educ. 69 (1992) 701-712.
[258] O. Ivanciuc, T.-S. Balaban, A. T. Balaban. Design of Topological Indices. Part 4. Reciprocal Distance Matrix, Related Local Vertex Invariants and Topological Indices. J. Math. Chem. 1993, 12, 309-318. (http://www.ivanciuc.org/Files/Reprints/p0011_jmc_1993_12_309.pdf)
[259] V. Diudea, Indices of reciprocal properties or Harary indices, J. Chem. Inf. Comput. Sci. 37 (1997) 292-299.
[260] B. Lucíc, A. Milicevíc, S. Nikolíc, N. Trinajstíc, Harary index—twelve years later. Croat. Chem. Acta . 2002, 75, pp.847–868. (http://public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n4/cca_75_2002_847-868_Lucic.pdf )
[261] S. Nikolic, D. Plavšic and N. Trinajstic, On the Balaban-like topological indices, MATCH Commun. Math. Comput. Chem. 44 (2001) 361-386.
[262] O. Ivanciuc. Design of Topological Indices. Part 11. Distance-Valency Matrices and Derived Molecular Graph Descriptors. Rev. Roum. Chim. 1999, 44, 519-528. (http://www.ivanciuc.org/Files/Reprints/p0052_rrc_1999_44_519.pdf)
[263] O. Ivanciuc. Design of Topological Indices. Part 14. Distance-Valency Matrices and Structural Descriptors for Vertex- and Edge-Weighted Molecular Graphs. Rev. Roum. Chim. 2000, 45, pp.587-596. (http://www.ivanciuc.org/Files/Reprints/p0068_rrc_2000_45_587.pdf)
[264] O. Ivanciuc. Design on Topological Indices. Part 1. Definition of a Vertex Topological Index in the Case of 4-Trees. Rev. Roum. Chim. 1989, 34, 1361-1368. (http://www.ivanciuc.org/Files/Reprints/p0003_rrc_1989_34_1361.pdf) [265] D. Janežic, S. Nikolic, A. Milicevic and N. Trinajstic, The distance-degree descriptors and their use in QSPR, unpublished.
[266] D. J. Klein and M. Randic, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
[267] J. A. Edminster, Electric Circuits, McGraw-Hill, New York, 1965.
[268] D. Bonchev, A. T. Balaban, X. Liu and D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20.
[269] D.J. Klein and H.-Y. Zhu, Distances and volumina for graphs, J. Math. Chem. 23 (1998) 179-195.
[270] O. Ivanciuc and T. Ivanciuc, Matrices and structural descriptors computed from molecular graph distances, in: Topological Indices and Related Descriptors in QSAR and QSPR, J. Devillers and A. T. Balaban, eds., Gordon & Breach, Amsterdam, 1999, pp. 221-277.
[271] I. Lukovits, S. Nikolic and N. Trinajstic, Resistance distance in regular graphs, Int. J. Quantum Chem. 71 (1999) 217-225.
[272] I. Lukovits, S. Nikolic and N. Trinajstic, Note on the resistance distances in the dodecahedron, Croat. Chem. Acta 73 (2000) 957-967.
[273] P. W. Fowler, Resistance distances in fullerene graphs, Croat. Chem. Acta 75 (2002) 401-408.
[274] D.J. Klein, Resistance-distance sum rules, Croat. Chem. Acta 75 (2002) 633-649.
[275] I. Gutman, D. Vidovic and B. Furtula, Chemical applications of the Laplacian spectrum. VII. Studies of the Wiener and Kirchhoff indices, Ind. J. Chem. 42A (2003) 1272-1278.
[276] W. Xiao and I. Gutman, On resistance matrices, MATCH Comm. Math. Comput. Chem. 49 (2003) 67-81.
[277] D. Babic, D. J. Klein, I. Lukovits, S. Nikolic and N. Trinajstic, Resistance-distance matrix: A computional algorithm and its application, Int. J. Quantum Chem. 90 (2002) 166-176.
[278] I. Gutman and B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985.
[279] I. Gutman, S.-L. Lee, C.-H. Chu and Y.-L. Luo, Chemical applications of the Laplacian spectrum of molecular graphs: Studies of the Wiener number, Ind. J. Chem. 33A (1994) 603-608.
[280] M. Randic, A.F. Kleiner and L.M. DeAlba, Distance/distance matrices, J. Chem. Inf. Comput. Sci. 34 (1994) 277-286.
[281] M. Randic, Molecular topographic descriptors, in: MATH/CHEM/COMP 1987, R.C. Lacher, ed., Elsevier, 1988, pp. 101-108.
[282] K. Balasubramanian, Geometry-dependent characteristic polynomials of molecular structures, Chem. Phys. Lett. 169 (1990) 224-228.
[283] S. Nikolic, N. Trinajstic, Z. Mihalic and S. Carter, On the geometric-distance matrix and the corresponding structural invariants of molecular systems, Chem. Phys. Lett. 179 (1991) 21-28.
[284] B. Bogdanov, S. Nikolic and N. Trinjstic,. On the three-dimensional Wiener number, J. Math. Chem 3 (1989) 299-309.
[285] R.A. Horn and C.R. Johnson, Matrix Analysis, University Press, Cambridge, 1985.
[286] M. Randic and G. Krilov, Characterization of 3-D sequences of proteins, Chem. Phys. Lett. 272 (1997) 115-119.
[287] M. Randic and G. Krilov, On a characterization of the folding of proteins, Int. J. Quantum Chem. 75 (1999) 1017-1026.
[288] H. P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes J. Chem. Inf. Comput. Sci. 29 (1989) 227-281.
[289] W. R. Müller, K. Szymanski, J. von Knop and N. Trinajstic, Molecular topological index, J. Chem. Inf. Comput. Sci. 30 (1990) 160-163.
[290] Z. Mihalic, S. Nikolic and N. Trinajstic, Comparative study of molecular descriptors derived from the distance matrix, J. Chem. Inf. Comput. Sci. 32 (1992) 28-37
[291] Z. Mihalic and N. Trinajstic, Graph-theoretical approach to strcture-property relationships, J. Chem. Educ. 69 (1992) 701-712.
[292] A. Juric, M. Gagro, S. Nikolic and N. Trinajstic, Molecular topological index: An application in the QSAR study of toxicity of alcohols, J. Math. Chem. 11 (1992) 179-186.
[293] D. J. Klein, Z. Mihalic, D. Plavšic and N. Trinajstic, Molecular topological index: A relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (1992) 304-305.
[294] D. Plavšic, S. Nikolic, N. Trinajstic and D.J. Klein, Relation between the Wiener index and the Schultz index for several classes of chemcial graphs, Croat. Chem. Acta 66 (1993) 345-353.
[295] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
[296] I. Gutman and S. Klavžar, Bounds for the Schultz molecular topological index of benzenoid systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37 (1997) 741-744.
[297] H. P. Schultz, E. B. Schultz and T. P. Schultz, Topological organic cheimistry. 2. Graph theory, matrix determinants and eigenvalues, and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 30 (1990) 27-29.
[298] J. von Knop, W. R. Müller, K. Szymanski and N. Trinajstic, On the determinant of the adjacency matrix as the topological index characterizing alkanes, J. Chem. Inf. Comput. Sci. 31 (1991) 83-84.
[299] E. Estrada and I. Gutman, A topological index based on distances of edges of molecular graphs, J. Chem. Inf. Comput. Sci. 36 (1996) 850-853.
[300] K. Szymanski, W.R. Müller, J. von Knop and N. Trinajstic, On the identification numbers for chemical structures, Int. J. Quantum Chem. Quantum Chem. Symp. 20 (1986) 173-183.
[301] B. Bogdanov, S. Nikolic, A. Sabljic, N. Trinajstic and S. Carter, On the use of the weighted identification numbers in QSAR study of the toxicity of aliphatic ethers, Int. J. Quantum Chem. : Quantum Biol. Symp. 14 (1987) 325-330.
[302] M. Randic, X. Guo, T. Oxley and H. Krishnapriyan, Wiener matrix: source of novel graph invariants, J. Chem. Inf. Comput. Sci. 33 (1993) 709-716.
[303] M. Randic, X. Guo, T. Oxley, H. Krishnapriyan and L. Naylor, Wiener matrix invariants, J. Chem. Inf. Comput. Sci. 34 (1994) 361-367.
[304] S. Nikolic, N. Trinajstic and M. Randic, Wiener index revisited, Chem. Phys. Lett. 333 (2001) 319-321.
[305] I. Gutman, D. Vukicevic and J. Žerovnik, A class of modified Wiener indices, Croat. Chem. Acta 77 (2004) 103-109.
[306] M.V. Diudea, O.M. Minailiuc, G. Katona and I. Gutman, Szeged matrices and related numbers, MATCH Commun. Math. Comput. Chem. 35 (1997) 129-143.
[307] P.V. Khadikar, N.V. Deshpande, P.P. Kale, A.A. Dobrynin, I. Gutman and G. Dömötör, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547-550.
[308] I. Gutman and S. Klavžar, An algorithm for for the calculation of the Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 35 (1995) 1011-1014.
[309] J. Žerovnik, Computing the Szeged index, Croat. Chem. Acta 69 (1996) 837-843.
[310] J. Žerovnik, Szeged index of symmetric graphs, J. Chem. Inf. Comput. Sci. 39 (1999) 77-80.
[311] M. V. Diudea, Cluj matrix invariants, J. Chem. Inf. Comput. Sci. 37 (1997) 300-305.
[312] M.V. Diudea, Cluj matrix: Source of various graph descriptors, MATCH Commun. Math. Comput. Chem. 35 (1997) 169-183.
[313] M. V. Diudea, Cluj Matrix CJu: Source of various descriptors, MATCH Comm. Math. Comput. Chem. 35 (1997) 169-183.
[314] M. V. Diudea and I. Gutman, Wiener-type topological indices, Croat. Chem. Acta 71 (1998) 21-51.
[315] M. V. Diudea, G. Katona, I. Lukovits and N. Trinajstic, Detour and Cluj-detour indices, Croat. Chem. Acta 71 (1998) 459-471.
[316] M. Randic, Hosoya matrix – A source of new molecular descriptors, Croat. Chem. Acta 67 (1994) 415-429.
[317] O. Ivanciuc and J. Devillers, Algorithms and software for the computation of topological indices and structure-property models, in: Topological Indices and Related Descriptors in QSAR and QSPR, J. Devillers and A. T. Balaban, Eds., Gordon & Breach, Amsterdam, 1999, pp. 779-804.
[318] S. Nikolic, D. Plavšic and N. Trinajstic, On the Z-counting polynomial for weighted graphs, J. Math. Chem. 9 (1992) 381-387.
[319] D. Plavšic, M. Šoškic, Z. Ðakovic, I. Gutman and A. Graovac, Extension of the Z matrix to cycle-containing and edge-weighted molecular graphs, J. Chem. Inf. Comput. Sci. 37 (1997) 529-534.
[320] A. Milicevic, S. Nikolic, D. Plavšic and N. Trinajstic, On the Hosoya Z-index of general graphs, Internet Electron. J. Mol. Des. 2 (2003) 160-178.
[321] M. Randic, Generalized molecular descriptors, J. Math. Chem. 7 (1991) 155-168.
[322] M. Randic and N. Trinajstic, In search of graph invariants of chemical interest, J. Mol. Struct. 300 (1993) 551-571.
[323] O. Mekenyan, D. Bonchev and A.T. Balaban, Topological indices for molecular fragments and new graph invariants, J. Math. Chem. 2 (1988) 347-375.
[324] M. Randic, Z. Mihalic, S. Nikolic and N. Trinajstic, Graphical bond orders: Novel structural descriptors, J. Chem. Inf. Comput. Sci. 37 (1997) 1063-1071.
[325] D. Plavšic, M. Šoškic, I. Landeka and N. Trinajstic, On the relation between the P’/P index and the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 1123-1126.
[326] I. Lukovits, An all-path version the Wiener index, J. Chem. Inf. Comput. Sci. 38 (1998) 125-129.
[327] S.S. Tratch, I.V. Stankevich and N.S. Zefirov, Combinatorial models and algorithms in chemistry. The expanded Wiener number – a novel topological index, J. Comput. Chem. 11 (1990) 899-908.
[328] O. Ivanciuc, M.V. Diudea and P. Khadikar, New topological matrices and their polynomials, Ind. J. Chem. 37A (1998) 574-585.
[329] D. Janežic, A. Milicevic, S. Nikolic and N. Trinajstic, On expanded matrices and related matrices, manuscript in preparation.
[330] M. Randic, On characterization of cyclic structures, J. Chem. Inf. Comput. Sci. 34 (1994) 403-409.
[331] D. Plavšic, N. Trinajstic, D. Amic and M. Šoškic, Comparison between the structure-boiling point relationships with different descriptors for condensed benzenoids, New J. Chem. 22 (1998) 1075-1078.
[332] D.J. Klein and O. Ivanciuc, Graph cyclicity, excess conductance and resistance deficit, J. Math. Chem. 30 (2002) 271-288.
[333] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, MAA, Washington, DC, 1984.
[334] D. J. Klein, J. L. Palacios, M. Randic and N. Trinajstic, Random walks and chemical graph theory, J. Chem. Inf. Comput. Sci. 44 (2004) 1521-1525.
[335] A.S. Shalabi, Random walks: Computations and applications to chemistry, J. Chem. Inf. Comput. Sci. 31 (1991) 483-491.
[336] J. L. Palacios, Resistance distance in graphs and random walks, Int. J. Quantum Chem. 81 (2001) 29-33.
[337] M. V. Diudea and O. Ursu, Layer matrices and distance property descriptors, Ind. J. Chem. 41A (2003) 1283-1294.
[338] R. T. Ross, Steady state of stiff linear kinetic systems by a Markov matrix method, J. Comput. Phys. 24 (1977) 70-80.
[339] F.R.K. Chung, Spectral Graph Theory, AMM, Providence, Rhode Island, 1997.
[340] E.H. Lieb, Solution of the dimer problem by the transfer matrix method, J. Math. Phys. 8 (1967) 2339-2341.
[341] D.J. Klein, T.G. Schmalz, G.E. Hite and W.A. Seitz, Resonance in C60, Buckminsterfullerene, J. Am. Chem. Soc. 108 (1986) 1301-1302.
[342] D.J. Klein, G.E. Hite, W.A. Seitz and T.G. Schmalz, Dimer coverings and Kekulé structures on honeycomb lattice strips, Theoret. Chim. Acta 69 (1986) 409-423.
[343] D.J. Klein, T.G. Schmalz and. G.E. Hite, Transfer-matrix method for subgraph enumeration: Application to polypyrene fusenes, J. Comput. Chem. 7 (1986) 443-456.
[344] D. Babic and A. Graovac, Enumeration of Kekulé structures in one-dimensional polymers, Croat. Chem. Acta 59 (1986) 731-744.
[345] N. Trinajstic, D.J. Klein and M. Randic, On some solved and unsolved problems of chemical graph theory, Int. J. Quantum Chem. : Quantum Chem. Symp. 20 (1986) 699-742.
[346] D.J. Klein, T.P. Živkovic and N. Trinajstic, Resonance in random p-network polymers, J. Math. Chem. 1 (1987) 309-334.
[347] W.A. Seitz and T.G. Schmalz, Benzenoid polymers, in: Valence Bond Theory and Chemical Structure, D.J. Klein and N. Trinajstic, Eds., Elsevier, Amsterdam, 1990, pp. 525-551.
[348] G.E. Hite, T.P. Živkovic and D.J. Klein, Conjugated circuit theory for graphite, Theoret. Chim. Acta 74 (1988) 349-361.
[349] D.J. Klein, W.A. Seitz and T.G. Schmalz, Conjugated circuit computations for conjugated hydrocarbons, in: Computational Chemical Graph Theory, D.H. Rouvray, ed., Nova, New York, 1990, pp. 127-147.
[350] D.J. Klein, Resonating Valence-Bond theories for carbon π-networks and classical/quantum connections, in: Valence Bond Theory, D.L. Cooper, ed., Elsevier, Amsterdam, 2002, pp. 447-502.
[351] I. Lukovits and D. Janežic, Enumeration of conjugated circuits in nanotubes, J. Chem. Inf. Comput. Sci. 44 (2004) 410-414.
[352] M. Randic, Conjugated circuits and resonance energies of benzenoid hydrocarbons, Chem. Phys. Lett. 38 (1976) 68-70.
[353] M. Randic, Aromaticity and conjugation, J. Am. Chem. Soc. 99 (1977) 444-450.
[354] M. Randic, A graph-theoretical approach to conjugation and resonance energies of hydrocarbons, Tetrahedron 33 (1977) 1905-1920.
[355] M. Randic, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 (2003) 3449-3605.
[356] A. Tesár and L. Fillo, Transfer Matrix Method, Kluwer, Dordrecht, 1988.
[357] M. Randic, N. Basak and D. Plavšic, Novel graphical matrix and distance-based molecular descriptors, Croat. Chem. Acta 77 (2004) 251-257.
[358] M. Randic, D. Plavšic and M Razinger, Double invariants, MATCH Commun. Math. Comput. Chem. 35 (1997) 243-259.
[359] S. Nikolic, A. Milicevic and N. Trinajstic, Graphical matrices in chemistry, Croat. Chem. Acta 78 (2005) 241-250.
[360] S. Nikolic, A. Milicevic and N. Trinajstic, Graphical matrices in chemistry, WSEAS Trans. Inf. Sci. Appls. 4 (2005) 1228-1231.
[361] N. Trinajstic, S. Nikolic, D. Babic and Z. Mihalic, The vertex- and edge-connectivity indices of Platonic and Archimedean molecules, Bull. Chem. Technol. Macedonia 16 (1997) 43-51.
[362] S. Nikolic, N: Trinajstic and I. Baucic, Comparison between the vertex- and edge-connectivity indices for benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 38 (1998) 42-46.
[363] D.J. Klein and N. Trinajstic, Foundations of conjugated-circuits models, Pure Appl. Chem. 61 (1989) 2107-2115. http://www.iupac.org/publications/pac/1989/pdf/6112x2107.pdf
[364] I. László, Topological aspects beyond Hückel theory, Internet Electronic J. Mol. Des. 3 (2004) 182-188. http: www.biochempress.com
[365] D.J. Klein, Graph theoretically formulated electronic-structure theory, Internet Electronic J. Mol. Des. 2 (2003) 814-834. http://www.biochempress.com

 

APPENINDEX REFERENCES

[366] A. Hinchliffe, chemical modelling: Applications and Theory, Royal Society of Chemistry, 2004 (http://books.google.si/books?id=8LafX5yBPTwC)
[367] P. Hansen and D. Vukiević, Comparing the Zagreb Indices, Croatica chemica acta, 2007, vol. 80 no2, pp.165-168 (hrcak.srce.hr/file/19705 )
[368] N. Kezele, L. Klasinc, J.V. Knop, S. Ivaniš, S. Nikolić, Computing the variable vertex-connectivity index, Croatica chemica acta, 2002, vol. 75,  pp. 651-661. (public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_651_661_KEZELE.pdf )
[369] D. Bonchev, On the Complexity of Platonic Solids, Croatica chemica acta, 2004, vol. 77,  pp. 167-173. (public.carnet.hr/ccacaa/CCA-PDF/cca2004/v77-n1_n2/CCA_77_2004_167-173_bonchev.pdf )
[370] Qian-Nan Hu1, Yi-Zeng Liang and Kai-Tai Fang, The Matrix Expression, Topological Index and Atomic Attribute of Molecular Topological Structure, Journal of Data Science, 2003 vol. 1, pp. 361-389 (www.sinica.edu.tw/~jds/JDS-172.pdf )
[371] R. Aringhieri, P. Hansen, F. Malucelli, Chemical Tree Enumeration Algorithms, Universit a di Pisa, Dipartimento di Informatica, 1999. (compass2.di.unipi.it/TR/files/TR-99-09.ps.gz )
[372] S. Nikolić, N. Trinajstić, and S. Ivaniš, The Connectivity Indices of Regular Graphs, Croat. Chem. Acta 72, 1999, pp.875-883 (http://public.carnet.hr/ccacaa/CCA-PDF/cca1999/v72-n4/CCA_72_1999_875-883_NIKOLIC.pdf)
[373] Rainer Herges, Topology in Chemistry: Designing Mo1bius Molecules, Chem. Rev. 2006, 106, pp. 4820-4842 (http://chem.pdx.edu/~wamserc/C335W07/ChemRev2006.pdf)
[374] Cai Hua NI, Xian Yu ZENG, He HUANG, Studies on the Physical Properties of Alkanes Using Edge-adjacency Information Topological Index, Chinese Chemical Letters Vol. 16, No. 5, pp 709-710, 2005. (http://www.imm.ac.cn/journal/ccl/1605/160541-709-03-0600-p2.pdf)
[375] Ivan Gutman, Molecular Graphs with Minimal and Maximal Randić Indices, Croat. Chem. Acta 75, 2002, pp.357-369. (http://public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_357_369_GUTMAN.pdf)
[376] Dušanka Janežič, Ante Miličević,b Sonja Nikolić, Nenad Trinajstić, and Damir Vukičević, Zagreb Indices: Extension to Weighted Graphs Representing Molecules Containing Heteroatoms, Croat. Chem. Acta 80, 2007, pp.541-545. (http://hrcak.srce.hr/file/29083)
[377] I. Gutman, B. Furtula and J. Belic, Note on the Hyper-Wiener Index, J.Serb.Chem.Soc. 68,2003, pp.943–948. (http://www.shd.org.yu/htdocs/shd/Vol68/No12/V68-No12-04.pdf)

LINKS

http://mathworld.wolfram.com/
http://www.math.fau.edu/locke/
http://en.wikipedia.org/wiki/
http://old.iupac.org/
http://www.moleculardescriptors.eu/
http://www.biochempress.com/
http://www.rsc.org/
http://www.chem.qmul.ac.uk/iupac/
http://goldbook.iupac.org/
http://www.chem.ucalgary.ca/SHMO/

<< . . . >>