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This paper shows that the maximal size of the integration time step of the Split Integration Symplectic
Method (SISM) for molecular dynamics (MD) integration, a combination of the analytical solution of the
high-frequency harmonic part of the Hamiltonian and the numerical solution of the low-frequency remaining
part, depends on the system density. This approach was tested on a system of linear chain molecules. The
numerical results indicate that the integration time step used by the SISM is limited by atoms’ motion
generated by the electrostatic and Lennard-Jones interactions in the system. As the density of the system
increases, the size of the integration time step allowed by the SISM thus becomes smaller but remains
significantly larger than possible by standard methods of the same order and complexity.

1. INTRODUCTION of the total Hamiltonian into the high-frequency harmonic
d and low-frequency remaining part was first introduced in
ref 9. It was assumed there that bond stretching satisfactorily
describes all vibrational motions of a molecule. The vibra-

the Hamilton equations of motion are integrated to compute tional motion, which was described by the high-frequency

the particles’ trajectories in phase space, which is (:omposedh"?‘rmomc.part of the Hamﬂtomqn, was solved analytically
of the coordinates and momenta of all the particles. To with the aid of the normal coordinates. In ref 10 the method

perform an MD simulation of a system with a finite number devised in ref 9 was extended to also treat systems of linear

; : : lecules. The generalization of this symplectic method was
of degrees of freedom, the Hamilton equations of motion mole ; ; .
9 q first introduced in ref 11. The crucial difference from the

dp sH da  gH ) approach described in refs 9 and 10 was that normal modes

T ag dt op i=1.d (1) with frequency zero were used for describing the rotational

: : and translational motion of molecules. This approach was

are solved, wheréi is the Hamiltoniang and p; are the also extended to a system of linear molecules for which it

coordinate and momentum, respectively, diiglthe number ~ ¢an be assfumed th_at both bond.stretching and angle bending
of degrees of freedom. The MD simulation thus provides an satisfactorily describe all V|brat|onal motion of molecules.
insight into the microscopic behavior of complex molecular The performance and the properties of the method, such as
systems. These systems, which are studied by MD simula-the maximal allowed integration time step, have not yet been
tion, are in the class of classical many-body problems. The fully explored. _ _

analytical solution usually does not exist for these dynamical N this article, which builds upon ref 11, a study of
systems, and a number of MD algorithms for finding the integration time step dependence on thg system densﬁy for
numerical solution have been propogedA major obstacle ~ SISM***for MD integration, which combines the analytical

in the development of efficient algorithms to propagate Solution of the high-frequency harmonic part of the Hamil-
numerical trajectories of complex molecular systems is that tonian and the numerical solution of the remaining part, is
these Hamiltonian systems consist of both fast and slow Présented. Because the high-frequency degrees of freedom
degrees of freedom. Because the fastest degrees of freedorfi® treated analytically, i.e., independently of the size of the
in the system limit the size of the allowed integration time intégration time step, the SISM can employ a significantly
step in standard methods, studying processes that are sever#'ger integration time step size than can be used by the
orders of magnitude longer than the fastest motion in the Standard leapfrog Verlet (LFV) method.

system is difficult despite growing CPU power. Therefore,

MD simulation algorithms that allow the use of larger 2. METHODOLOGY

integration time steps are required. Due to their property of  The SISM, which is schematically presented in Figure 1,

conserving a system’s energy, the symmetric and symplecticis derived in terms of the Lie algebraic language. The
integrators, which are also time reversible, are a suitable Hamilton equations 1 can be written in the form

choice in achieving this godl.

Molecular dynamics (MD) simulation is a widely use
computational method for simulating the physical properties
of complex molecular systemd-or each atom of the system,

A new efficient symplectic integration algorithm for MD ax _ {x, H} = % @)
simulations of isolated linear molecules using the splitting dt ' H
* Corresponding author e-mail: dusa@cmm.ki.si. whereLy is the Poisson bracket operator aner (q,p) is a
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Normal Modes Preparatory step matrix of the bond stretching and angle bending part of the
: potential functiort® N is the number of atoms in each
! molecule. A
--------------------- il et R LR LR « Analytical solution [propagation by exp{t/2L)]: the
A2 Evolve with HO Analytical solution normal coordinates at the beginning of the integration step,
Vibration, Rotation, Translation (First half) P QO are rotated in phase space by the corresponding
-------- vibrational frequencyw; for At/2:
+
— . . P/ P
At Evolve with Hr = Hr (q) Numerical solution =R (6)
Force calculation Qi Q 0
________ 1
i
W - _ [costiAv2) —osinAV)]
_ = [Wow)sinwAr2)  cospAU2) (7)
At/2 Vib Evolve .w1th HO . Analytical solution
ibration, Rotation, Translation (Second half)

..................... == S where w; = 0 defines the vibrations of atoms in each
molecule andw; = 0 defines translations and rotations of
molecules. The normal coordinates of the normal modes with
frequency zero (lim-gsin x/x = 1 for w; = 0) evolve as

Physical Properties

i i r __ p0
Figure 1. Solution scheme for SISM. P=P (8)
vector of the coordinates and momenta of all the particles. . oAt 0
The formula Q=R5+Q 9)
Xl ar = EXPALL )X, 3 Coordinate transformatian the normal coordinateB,

Q, are transformed to the Cartesian displacement coordi-
is the formal solution of the Hamiltonian system (2) in terms natesAp;, Ag; (m are the atoms' masses):
of Lie operators and represents the exact time evolution of
a trajectory in phase space frano t+At, whereAt is the Ap = \/a AP (10)
integration time stef® Symplectic integration replaces exp- ' Z Kk
(AtLy) by a product of symplectic maps that approximate

exp(AtLy) to a given ordef. 1 )
We split the HamiltoniarH into two part§ Ag=— ZAika (11)
I
H=Hy+ H, (4)

o Numerical solution [evolution by eprtI:Hr)]: momenta
whereH is the pure harmonic part arntd} is the remaining in the Cartesian coordinates are numerically integrated
part of the total Hamiltonian. aH

Then the following second-order approximation, known A r
J PP Pi=p— At( ) (12)

as the generalized leapfrog schethean be used in (3) E

~ At" P At" 1 ~f aHr —
ot ¥ eXF(?'—HO) exp@tLy) eXF(ELHO)Xlt (5) q'=q + At ol Gi (13)

This describes how to propagate from one point in phase  Only one force calculation per integration step must be
space to another. First, the system is propagated for a halfoerformed. SinceH; = H.(q) and @H./dp) = O, only

integration time step bydo, then for a whole step b, momenta change in this part. _ '
and finally for another half step biylo. The whole integration Back-transformation the Cartesian displacement coordi-
time step thus combines the analytical evolutiorHgfwith natesApy, Aq, are back-transformed to the normal coordi-

Ul

a correction arising from thél, performed by numerical  natesP;; Q
integration. This integration scheme was used as the basis
for the development of the SISM which reads for each _ 1 "
molecule in the s : Pi= Z_AikApk
ystem as follows:

o Preparatory step: at the outset of calculation, vibra- \/TTk
tional frequencies and normal modesHy; represented by
the normal coordinate3, Q; (i = 1,..., ), are determined. Q'= Z\/RAILAQL' (15)
The initial normal coordinates are obtained from the initial
atoms’ velocities and the initial displacements of the atoms .
from their equilibrium positions by means of the transfor- « Analytical solution [propagation by exgt/2Ly,)]: the
mational matrixA. The columns ofA are the eigenvectors  normal coordinates are again rotated in phase spac#tfor
of the Hessian, the root-mass-weighted second derivative2:

(14)
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Pil_ P 1 ' ' '
[Qi] - R[Qi”] (16)

0.8

This concludes one full SISM integration step, which is
repeated until the desired number of integration steps is 06
reached.

In this study we used a model MD Hamiltonfan © 04
p? 0.2
|
H=3 4 > kb= + > k(7= 09"+
—2M  bbrds angles 0
€g o\ (o
— A= = 1— 0.2 : : :
; r. * ; A r. r. (17) 50 100 150 200 250
! ! ! time [ps]
wherei andj run over all atomsm is the mass of théh Figure 2. Variation of Viellard-Baron rotational order parameter

for linear molecules during the microcanonical equilibration phase

atom, s is the linear momentum of thiéh atom, b, and vy . of amolecular dynamics simulation of the system of 256 butadiyne
are reference values for bond lengths and angles, respectivelymolecules at the system density @f= 0.7364 g/cr

k, andk, are corresponding force constangsdenotes the

charge on théth atom,r; is the distance between atoms jinear molecules, the equilibration was also monitored using
andj, ande; andoj are the corresponding constants of the the Vieillard-Baron rotational order parameter for linear

Lennard-Jones potential. molecule®® defined as
The kinetic energy and the harmonic part of the bond
stretching and angle bending potential energy of the system 100
in terms of the Cartesian displacement coordinates are o=_ZCO$/i (18)
included inHo, while H; is the remaining part of the potential. n=

Ho describes the vibrational motion of the system as well as

the translation and rotation of molecules. The motion wherey; is the angle between the current direction of the
governed byHy is resolved by diagonalizing the Hessian, molecular axis of théh molecule and the original direction
which is the root-mass-weighted second derivative matrix at the beginning of the 200 ps long microcanonical equilibra-
of the bond stretching and angle bending part of the potential tion, andn is the number of molecules in the system. Figure
function, to obtain the vibrational frequencies and normal 2 shows that the order parameter drops from the initial value
mode vectors oHo.'” The Hessian depends only on the of one to zero during the equilibration of a system of
constant parameters of the simulation. This allows the butadiyne molecules at the system dengity- 0.7364 g/cr
calculation of the vibrational frequencies and normal mode This indicates that the molecules are completely rotationally
vectors ofH, to be performed only once, at the beginning disordered and that the liquid state has been reached at
of the calculation. Our approach is different from other equilibrium. The initial conditions obtained in this way were
splitting methods, e.g., Verlet-1/r-RESPAS a multiple time used in all of our computations.

step numerical integration method, in that it analytically treats  Perjodic boundary conditions were imposed to overcome
high-frequency motions using normal modégherefore,  the problem of surface effects; the minimum image conven-

the SISM allows a significantly larger integration time step tion was used.The Coulomb interactions were truncated
to be used in comparison to standard MD integration methodsysing force-shifted potential with a cutoff distancergf =

of the same order and complexity. 8.5 A20 The Lennard-Jones interactions were shifted by
adding the ternCjr® + Dj to the potential, wher€; and
3. NUMERICAL RESULTS D; were chosen such that the potential and force are zero at
The SISM described here was evaluated on a model systeni = o>t Potential parameters were the same as those taken
of 256 linear butadiyne molecules of the form-C=C— in ref 11.

)>—H. All calculations were performed at three different ~ To demonstrate the effectiveness of the SISM, we com-
densities of the systemp, = 0.00001 g/crfy p, = 0.001 pared the computational performances for the same level of
g/cn®, and ps = 0.7364 g/crA The densitieso; and p; accuracy with the standard second-order LFV algorithm.
correspond to the gas phase, amgdcorresponds to the First, the CPU times for the two methods (the SISM and
experimental density of the liquid at 300'R.The corre- LFV) for 1000 MD steps measured on an AMD Athlon XP
sponding sizes of the simulation box were 1284 A, 277 A, 1600+ processd? for different system sizesf and equal
and 31 A, respectively. The initial positions and velocities time steps (1 fs) are given in Table 1. The results show that
of the system atoms were chosen at random. Then the systenthe computation cost per integration step is slightly larger
was equilibrated for 50 ps during which the velocities were for the SISM than for the LFV. For larger system sizes the
scaled, followed by an additional 200 ps of the micro- cost of computation per integration step becomes ap-
canonical equilibration run to ensure that the velocities at a proximately the same for both methods because the com-
temperature of 300 K assume a Maxwell distribution. putation of long-range forces, which is the same for both
To obtain physically and numerically relevant initial methods, prevails over the computation of extra transforma-
conditions to perform the MD simulation of a system of tions required by the SISM. Therefore the speed up of the
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Table 1: CPU Time [s] for SISM and LFV for 1000 MD Steps 1 hoT=0.00001d/oma
Measured on an AMD Athlon XP 1660 Processor for Different the2= 0.001g/cma "
System Sizesn) and Equal Integration Time Steps (1 fs) 0.1 I rho3=0.7g/cm3 - ;,’
n t(SISM)[s] t(LFV)[s] t(SISM)A(LFV) 0.01 |
>
64 28.06 24.31 1.15 S o.001
128 94.56 86.41 1.09 S
256 339.85 322.98 1.05 g 0000t |
T te0s ¥
| ' ' "SISM_0.1fs" —— | 8 1e06| - . . |
0.06 N - 5 '° < i
"SISM_10.0fs" - 1607 | & “SISM s
= 004 % Hll:w_o.1;s“ —_—— LRV That' e
) : 1.0t oo 1e-08 "LFV tho2" -
g 002F 16-09 . \ . \ LFV_rho3" -—o--
§ 0 05 1 15 2 25 3 385 4 45
I 0 step size [fs]
B 002 | Figure 4. Error in total energy of the system of 256 molecules of
g ' butadiyne for three different densities of the systesn:= 0.00001
8 glcm®, p, = 0.001 g/cm, andps = 0.7364 g/cra using SISM and
© 004 r LFV for M = 1000.
"0.06 1 . . . . 1 accuracy, the SISM allows the use of an up to an order of
1 2 3 4 5 6 magnitude larger integration time step than the LFV. The
atom number maximal integration time step allowed is only 0.5 fs for all
Figure 3. Displacements of atoms from equilibrium positions for Fhree densitieps, pz, andps in the case .Of the LFV, while
an isolated molecule of butadiyne after 1 ps of simulatiof at itis 4.5 fs forp, andp; and 3.0 fs forps in the case of the
300 K computed by SISM and LFV with different integration time ~ SISM. With the growing density of the system the maximal
step sizes (0.1 fs, 1.0 fs, and 10.0 fs). allowed integration time step by the SISM becomes shorter

due to the Lennard-Jones and electrostatic interactions which
SISM over the LFV is mainly due to the larger integration gare treated numerically, equally, in both methods. The
time step allowed by the SISM. Lennard-Jones and electrostatic interactions represent the

Second, the displacements of atoms from equilibrium external driving forces on the internal motion of the

positions were computed for an isolated butadiyne molecule mgjecules. The effect of the Lennard-Jones and electrostatic
in the z direction of the Cartesian coordinate system after a interactions is reflected in the forced oscillations and
1 ps long simulation. The atomic displacements were jncreased anharmonicity in the case of the denser system,
computed by the SISM and LFV with different sizes of the which leads to a shortening of the integration time step.
integration time Step (01 fS, 1.0 fS, and 10.0 fS) These atomic Fourth, to determine the dependence of the qua“ty of the
displacements are presented in Figure 3. The displacement$armonic approximation for the bond stretching and angle
computed by the SISM with a 0.1 fs integration time step pending potential on the system density, we introduced a

were used as the reference in the comparison with themeasure for the anharmonicity in the bonding potential
displacements computed with different methods and/or sizesgnergy, defined as

of the integration time step. Figure 3 shows that the

displacements computed using the SISM agree for all 1M
integration time step sizes. The displacements computed byA, = — Z X
the LFV method, on the contrary, differ from the reference i=
values even in the case of a 1.0 fs integration time step, ’ , 1 n 3N o 2
especially for hydrogen atoms. This means that the SISM, | z k(b — bg)” + ky (9 — 99)" — _21 Wy Qk] |
owing to the analytical treatment of high-frequency vibra- bonds angles Chls
tions, can correctly describe the atomic displacements using 1n N
a large integration time step, as opposed to the LFV method. _Z ZwKZQ 2
Third, the error in total energyAE/E, defined as 23 4E k’
(20)
AE 1 MIE,— E| _ _ _ _
—=—3)— (19) Here,M is the total number of integration stepsis the
E M& g number of molecules, and is the number of atoms in each

molecule. The numerator in (20) represents the difference
whereEy is the initial energyF; is the total energy of the  at the integration time stepbetween the whole bonding
system at the integration stépandM is the total number  potential energy and the pure harmonic potential energy as
of integration steps, was also monitored for both methods. expressed by the normal coordinates. The denominator in

Figure 4 shows the error in total energy of the model (20) is the pure harmonic potential energy.

system of butadiyne molecules for three different system The results presented in Figure 5 reveal that the anhar-
densities §; = 0.00001 g/cry p, = 0.001 g/cm, andps = monic part of the bonding potential energy depends only on
0.7364 g/cm) using the LFV and SISM algorithms fdv the density of the system and not on the size of the integration
= 1000. It can be observed that for the same level of time step. From the results in Figure 5 it can also be
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0.003 . : : , : , : However, as the density of the system increases, the
rho1=0.00001g/cm3 "An_rho1" —— ; i i
rho2= 0.001g/cm3 LN T L— magnitude of the anharmonic forces acting on the system
0.0025 [ Mo3=0.7g/cm3 "An_tho3" x| atoms also increases, and therefore the size of the integration
_ time step allowed by the SISM becomes smaller but remains
< 0.002 | g R significantly larger than possible by the LFV.
> T el M X
€ 0.0015 | ] 4. CONCLUSIONS
£
g In this paper the study of the system density dependence
S 0.001 | 1 - . . >
@ s R of the size of the maximal allowed integration time step by
the Split Integration Symplectic Method (SISM) for MD
00005 F ey . . .
integration was presented. The numerical results of a model
. . . . . . . ‘ system of 256 butadiyne molecules showed that as the
0 0 05 1 15 2 25 3 35 4 45 density of the system increases, the magnitude of anharmonic
step size[fs] intermolecular electrostatic and van der Waals forces acting

Figure 5. Amount of anharmonicity in the bonding potential energy on the. SyStem. atqms also '”Cr?as‘?s’.ar.‘d therefore the Sylze
(A,) for the system of 256 molecules of butadiyne for three different Of the integration time step, which is limited by the atoms
densities of the systemp; = 0.00001 g/cry, p, = 0.001 g/cr, motion generated by the intermolecular forces in the case
andpsz = 0.7364 g/cri computed by SISM foM = 1000. of the SISM, becomes smaller. The maximal integration time
Table 2: Average of Quotients of Magnitudes of Harmonic and step allowed by the standard leapfrog Verlet (LF.V) method, .
Anharmonic Forces Acting on Atoms of the System of 256 however, does not depend on the system density because it
Butadiyne Molecules for Three Different Densities of the System: IS limited by the high-frequency vibrations of the atoms

p1 = 0.00001 g/cr®y p, = 0.001 g/cm, andps = 0.7364 g/crh within every molecule of the system. Since the time scale

Computed by SISM foM = 1000 UsingAt = 0.5 fs andAt = 3.0 for intramolecular motion is considerably smaller than the

fs Integration Time Steps time scale corresponding to the motion generated by the

P Avg[At = 0.5fs] Avg[At=3.0fs] intermolecular forces regardless of the system density, the

p1 = 0.00001 g/cri 32.17 30.95 SISM allows an integration time step significantly larger than
p2=0.001 g/cm 30.72 30.31 can be used by the standard LFV method, while retaining
p3 = 0.7364 glerh 14.50 14.73 the same level of accuracy.
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