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This paper shows that the maximal size of the integration time step of the Split Integration Symplectic
Method (SISM) for molecular dynamics (MD) integration, a combination of the analytical solution of the
high-frequency harmonic part of the Hamiltonian and the numerical solution of the low-frequency remaining
part, depends on the system density. This approach was tested on a system of linear chain molecules. The
numerical results indicate that the integration time step used by the SISM is limited by atoms’ motion
generated by the electrostatic and Lennard-Jones interactions in the system. As the density of the system
increases, the size of the integration time step allowed by the SISM thus becomes smaller but remains
significantly larger than possible by standard methods of the same order and complexity.

1. INTRODUCTION

Molecular dynamics (MD) simulation is a widely used
computational method for simulating the physical properties
of complex molecular systems.1 For each atom of the system,
the Hamilton equations of motion are integrated to compute
the particles’ trajectories in phase space, which is composed
of the coordinates and momenta of all the particles. To
perform an MD simulation of a system with a finite number
of degrees of freedom, the Hamilton equations of motion

are solved, whereH is the Hamiltonian,qi and pi are the
coordinate and momentum, respectively, andd is the number
of degrees of freedom. The MD simulation thus provides an
insight into the microscopic behavior of complex molecular
systems. These systems, which are studied by MD simula-
tion, are in the class of classical many-body problems. The
analytical solution usually does not exist for these dynamical
systems, and a number of MD algorithms for finding the
numerical solution have been proposed.2-7 A major obstacle
in the development of efficient algorithms to propagate
numerical trajectories of complex molecular systems is that
these Hamiltonian systems consist of both fast and slow
degrees of freedom. Because the fastest degrees of freedom
in the system limit the size of the allowed integration time
step in standard methods, studying processes that are several
orders of magnitude longer than the fastest motion in the
system is difficult despite growing CPU power. Therefore,
MD simulation algorithms that allow the use of larger
integration time steps are required. Due to their property of
conserving a system’s energy, the symmetric and symplectic
integrators, which are also time reversible, are a suitable
choice in achieving this goal.8

A new efficient symplectic integration algorithm for MD
simulations of isolated linear molecules using the splitting

of the total Hamiltonian into the high-frequency harmonic
and low-frequency remaining part was first introduced in
ref 9. It was assumed there that bond stretching satisfactorily
describes all vibrational motions of a molecule. The vibra-
tional motion, which was described by the high-frequency
harmonic part of the Hamiltonian, was solved analytically
with the aid of the normal coordinates. In ref 10 the method
devised in ref 9 was extended to also treat systems of linear
molecules. The generalization of this symplectic method was
first introduced in ref 11. The crucial difference from the
approach described in refs 9 and 10 was that normal modes
with frequency zero were used for describing the rotational
and translational motion of molecules. This approach was
also extended to a system of linear molecules for which it
can be assumed that both bond stretching and angle bending
satisfactorily describe all vibrational motion of molecules.
The performance and the properties of the method, such as
the maximal allowed integration time step, have not yet been
fully explored.

In this article, which builds upon ref 11, a study of
integration time step dependence on the system density for
SISM11,12for MD integration, which combines the analytical
solution of the high-frequency harmonic part of the Hamil-
tonian and the numerical solution of the remaining part, is
presented. Because the high-frequency degrees of freedom
are treated analytically, i.e., independently of the size of the
integration time step, the SISM can employ a significantly
larger integration time step size than can be used by the
standard leapfrog Verlet (LFV) method.13

2. METHODOLOGY

The SISM, which is schematically presented in Figure 1,
is derived in terms of the Lie algebraic language. The
Hamilton equations 1 can be written in the form

whereL̂H is the Poisson bracket operator andx ) (q,p) is a* Corresponding author e-mail: dusa@cmm.ki.si.
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vector of the coordinates and momenta of all the particles.
The formula

is the formal solution of the Hamiltonian system (2) in terms
of Lie operators and represents the exact time evolution of
a trajectory in phase space fromt to t+∆t, where∆t is the
integration time step.14 Symplectic integration replaces exp-
(∆tL̂H) by a product of symplectic maps that approximate
exp(∆tL̂H) to a given order.8

We split the HamiltonianH into two parts9

whereH0 is the pure harmonic part andHr is the remaining
part of the total Hamiltonian.

Then the following second-order approximation, known
as the generalized leapfrog scheme,15 can be used in (3)

This describes how to propagate from one point in phase
space to another. First, the system is propagated for a half
integration time step byH0, then for a whole step byHr,
and finally for another half step byH0. The whole integration
time step thus combines the analytical evolution ofH0 with
a correction arising from theHr performed by numerical
integration. This integration scheme was used as the basis
for the development of the SISM which reads for each
molecule in the system as follows:

• Preparatory step: at the outset of calculation, vibra-
tional frequencies and normal modes ofH0, represented by
the normal coordinatesPi, Qi (i ) 1,..., 3N), are determined.
The initial normal coordinates are obtained from the initial
atoms’ velocities and the initial displacements of the atoms
from their equilibrium positions by means of the transfor-
mational matrixA. The columns ofA are the eigenvectors
of the Hessian, the root-mass-weighted second derivative

matrix of the bond stretching and angle bending part of the
potential function.16 N is the number of atoms in each
molecule.

• Analytical solution [propagation by exp(∆t/2L̂H0)]: the
normal coordinates at the beginning of the integration step,
Pi

0, Qi
0, are rotated in phase space by the corresponding

vibrational frequencyωi for ∆t/2:

where ωi * 0 defines the vibrations of atoms in each
molecule andωi ) 0 defines translations and rotations of
molecules. The normal coordinates of the normal modes with
frequency zero (limxf0sin x/x ) 1 for ωi ) 0) evolve as

Coordinate transformation: the normal coordinatesP′k,
Q′k are transformed to the Cartesian displacement coordi-
nates∆p′i, ∆q′i (mi are the atoms' masses):

• Numerical solution [evolution by exp(∆tL̂Hr)]: momenta
in the Cartesian coordinates are numerically integrated

Only one force calculation per integration step must be
performed. SinceHr ) Hr(q) and (∂Hr/∂p) ) 0, only
momenta change in this part.

Back-transformation: the Cartesian displacement coordi-
nates∆p′′k, ∆q′′k are back-transformed to the normal coordi-
natesP′′i, Q′′i

• Analytical solution [propagation by exp(∆t/2L̂H0)]: the
normal coordinates are again rotated in phase space for∆t/
2:

Figure 1. Solution scheme for SISM.
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This concludes one full SISM integration step, which is
repeated until the desired number of integration steps is
reached.

In this study we used a model MD Hamiltonian8

where i and j run over all atoms,mi is the mass of theith
atom,pi is the linear momentum of theith atom,b0 andϑ0

are reference values for bond lengths and angles, respectively,
kb andkϑ are corresponding force constants,ei denotes the
charge on theith atom,rij is the distance between atomsi
and j, andεij andσij are the corresponding constants of the
Lennard-Jones potential.

The kinetic energy and the harmonic part of the bond
stretching and angle bending potential energy of the system
in terms of the Cartesian displacement coordinates are
included inH0, while Hr is the remaining part of the potential.
H0 describes the vibrational motion of the system as well as
the translation and rotation of molecules. The motion
governed byH0 is resolved by diagonalizing the Hessian,
which is the root-mass-weighted second derivative matrix
of the bond stretching and angle bending part of the potential
function, to obtain the vibrational frequencies and normal
mode vectors ofH0.17 The Hessian depends only on the
constant parameters of the simulation. This allows the
calculation of the vibrational frequencies and normal mode
vectors ofH0 to be performed only once, at the beginning
of the calculation. Our approach is different from other
splitting methods, e.g., Verlet-I/r-RESPA,7,15a multiple time
step numerical integration method, in that it analytically treats
high-frequency motions using normal modes.17 Therefore,
the SISM allows a significantly larger integration time step
to be used in comparison to standard MD integration methods
of the same order and complexity.

3. NUMERICAL RESULTS

The SISM described here was evaluated on a model system
of 256 linear butadiyne molecules of the form H-(-C≡C-
)2-H. All calculations were performed at three different
densities of the system:F1 ) 0.00001 g/cm3, F2 ) 0.001
g/cm3, and F3 ) 0.7364 g/cm3. The densitiesF1 and F2

correspond to the gas phase, andF3 corresponds to the
experimental density of the liquid at 300 K.18 The corre-
sponding sizes of the simulation box were 1284 Å, 277 Å,
and 31 Å, respectively. The initial positions and velocities
of the system atoms were chosen at random. Then the system
was equilibrated for 50 ps during which the velocities were
scaled, followed by an additional 200 ps of the micro-
canonical equilibration run to ensure that the velocities at a
temperature of 300 K assume a Maxwell distribution.

To obtain physically and numerically relevant initial
conditions to perform the MD simulation of a system of

linear molecules, the equilibration was also monitored using
the Vieillard-Baron rotational order parameter for linear
molecules19 defined as

whereγi is the angle between the current direction of the
molecular axis of theith molecule and the original direction
at the beginning of the 200 ps long microcanonical equilibra-
tion, andn is the number of molecules in the system. Figure
2 shows that the order parameter drops from the initial value
of one to zero during the equilibration of a system of
butadiyne molecules at the system densityF3 ) 0.7364 g/cm3.
This indicates that the molecules are completely rotationally
disordered and that the liquid state has been reached at
equilibrium. The initial conditions obtained in this way were
used in all of our computations.

Periodic boundary conditions were imposed to overcome
the problem of surface effects; the minimum image conven-
tion was used.1 The Coulomb interactions were truncated
using force-shifted potential with a cutoff distance ofroff )
8.5 Å.20 The Lennard-Jones interactions were shifted by
adding the termCijrij

6 + Dij to the potential, whereCij and
Dij were chosen such that the potential and force are zero at
rij ) roff.21 Potential parameters were the same as those taken
in ref 11.

To demonstrate the effectiveness of the SISM, we com-
pared the computational performances for the same level of
accuracy with the standard second-order LFV algorithm.13

First, the CPU times for the two methods (the SISM and
LFV) for 1000 MD steps measured on an AMD Athlon XP
1600+ processor22 for different system sizes (n) and equal
time steps (1 fs) are given in Table 1. The results show that
the computation cost per integration step is slightly larger
for the SISM than for the LFV. For larger system sizes the
cost of computation per integration step becomes ap-
proximately the same for both methods because the com-
putation of long-range forces, which is the same for both
methods, prevails over the computation of extra transforma-
tions required by the SISM. Therefore the speed up of the
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Figure 2. Variation of Viellard-Baron rotational order parameter
for linear molecules during the microcanonical equilibration phase
of a molecular dynamics simulation of the system of 256 butadiyne
molecules at the system density ofF3 ) 0.7364 g/cm3.
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SISM over the LFV is mainly due to the larger integration
time step allowed by the SISM.

Second, the displacements of atoms from equilibrium
positions were computed for an isolated butadiyne molecule
in thez direction of the Cartesian coordinate system after a
1 ps long simulation. The atomic displacements were
computed by the SISM and LFV with different sizes of the
integration time step (0.1 fs, 1.0 fs, and 10.0 fs). These atomic
displacements are presented in Figure 3. The displacements
computed by the SISM with a 0.1 fs integration time step
were used as the reference in the comparison with the
displacements computed with different methods and/or sizes
of the integration time step. Figure 3 shows that the
displacements computed using the SISM agree for all
integration time step sizes. The displacements computed by
the LFV method, on the contrary, differ from the reference
values even in the case of a 1.0 fs integration time step,
especially for hydrogen atoms. This means that the SISM,
owing to the analytical treatment of high-frequency vibra-
tions, can correctly describe the atomic displacements using
a large integration time step, as opposed to the LFV method.

Third, the error in total energy,∆E/E, defined as

whereE0 is the initial energy,Ei is the total energy of the
system at the integration stepi, andM is the total number
of integration steps, was also monitored for both methods.

Figure 4 shows the error in total energy of the model
system of butadiyne molecules for three different system
densities (F1 ) 0.00001 g/cm3, F2 ) 0.001 g/cm3, andF3 )
0.7364 g/cm3) using the LFV and SISM algorithms forM
) 1000. It can be observed that for the same level of

accuracy, the SISM allows the use of an up to an order of
magnitude larger integration time step than the LFV. The
maximal integration time step allowed is only 0.5 fs for all
three densitiesF1, F2, andF3 in the case of the LFV, while
it is 4.5 fs forF1 andF2 and 3.0 fs forF3 in the case of the
SISM. With the growing density of the system the maximal
allowed integration time step by the SISM becomes shorter
due to the Lennard-Jones and electrostatic interactions which
are treated numerically, equally, in both methods. The
Lennard-Jones and electrostatic interactions represent the
external driving forces on the internal motion of the
molecules. The effect of the Lennard-Jones and electrostatic
interactions is reflected in the forced oscillations and
increased anharmonicity in the case of the denser system,
which leads to a shortening of the integration time step.

Fourth, to determine the dependence of the quality of the
harmonic approximation for the bond stretching and angle
bending potential on the system density, we introduced a
measure for the anharmonicity in the bonding potential
energy, defined as

Here,M is the total number of integration steps,n is the
number of molecules, andN is the number of atoms in each
molecule. The numerator in (20) represents the difference
at the integration time stepi between the whole bonding
potential energy and the pure harmonic potential energy as
expressed by the normal coordinates. The denominator in
(20) is the pure harmonic potential energy.

The results presented in Figure 5 reveal that the anhar-
monic part of the bonding potential energy depends only on
the density of the system and not on the size of the integration
time step. From the results in Figure 5 it can also be

Table 1: CPU Time [s] for SISM and LFV for 1000 MD Steps
Measured on an AMD Athlon XP 1600+ Processor for Different
System Sizes (n) and Equal Integration Time Steps (1 fs)

n t(SISM)[s] t(LFV)[s] t(SISM)/t(LFV)

64 28.06 24.31 1.15
128 94.56 86.41 1.09
256 339.85 322.98 1.05

Figure 3. Displacements of atoms from equilibrium positions for
an isolated molecule of butadiyne after 1 ps of simulation atT )
300 K computed by SISM and LFV with different integration time
step sizes (0.1 fs, 1.0 fs, and 10.0 fs).

∆E

E
)

1

M
∑
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M |E0 - Ei|
E0

(19)

Figure 4. Error in total energy of the system of 256 molecules of
butadiyne for three different densities of the system:F1 ) 0.00001
g/cm3, F2 ) 0.001 g/cm3, andF3 ) 0.7364 g/cm3 using SISM and
LFV for M ) 1000.
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concluded that as the density of the system increases the
quality of the harmonic approximation for the bond stretching
and angle bending potential in terms of the Cartesian
displacement coordinates deteriorates.

Fifth, to study the influence of the system density on the
size of the integration time step allowed by the SISM, we
computed the average of the quotients (AVg) of the magnitude
of the harmonic and the anharmonic forces acting on an atom
of the system. This quotient, which is averaged over all the
atoms of the system and the total number of integration steps,
is defined as

where M is the total number of integration steps and〈.〉
represents the averaging over all the atoms of the system.
The numerator in (21) represents the magnitude of the
harmonic force acting on an atom of the system at the
integration stepi. The harmonic force is derived from the
harmonic part of the bond stretching and angle bending
potential energy in terms of the Cartesian displacement
coordinates. The denominator in (21) is the harmonic force
subtracted from the total force acting on an atom of the
system due to the Lennard-Jones, electrostatic, bond stretch-
ing, and angle bending potentials, respectively. This differ-
ence represents the total anharmonic force computed in the
numerical part of the SISM, which generates atoms’ motion
that limits the size of the integration time step. The results
given in Table 2 reveal that the bonded harmonic forces
within molecules are an order of magnitude greater than the
anharmonic forces in the system at all system densities.

However, as the density of the system increases, the
magnitude of the anharmonic forces acting on the system
atoms also increases, and therefore the size of the integration
time step allowed by the SISM becomes smaller but remains
significantly larger than possible by the LFV.

4. CONCLUSIONS

In this paper the study of the system density dependence
of the size of the maximal allowed integration time step by
the Split Integration Symplectic Method (SISM) for MD
integration was presented. The numerical results of a model
system of 256 butadiyne molecules showed that as the
density of the system increases, the magnitude of anharmonic
intermolecular electrostatic and van der Waals forces acting
on the system atoms also increases, and therefore the size
of the integration time step, which is limited by the atoms’
motion generated by the intermolecular forces in the case
of the SISM, becomes smaller. The maximal integration time
step allowed by the standard leapfrog Verlet (LFV) method,
however, does not depend on the system density because it
is limited by the high-frequency vibrations of the atoms
within every molecule of the system. Since the time scale
for intramolecular motion is considerably smaller than the
time scale corresponding to the motion generated by the
intermolecular forces regardless of the system density, the
SISM allows an integration time step significantly larger than
can be used by the standard LFV method, while retaining
the same level of accuracy.
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