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1 Prior model

The parameters of the 12-6 Lennard-Jones (LJ) potential are reported in Table S1. The

atomic partial charges for the electrostatic interaction are +1 and -1 for the Na+ and Cl−

ions, respectively. For the coarse-grained representation of the DNA, the atomic partial

charges are defined in Ref.1

2 Allegro potential

The atomistic structures are represented by collections of nodes and edges. In the graph

representation, the nodes correspond to atoms and edges connect the atom to each other
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Table S1: 12-6 Lennard-Jones parameters for the prior model.

Atom i Atom j ϵ (kcal mol L−1) σ (Å)

Na Na 0.08744 3.20000
Cl 0.05578 3.45847
C 0.08672 3.10000
N 0.1200 3.80000
O 0.08718 2.45000
P 0.13221 3.09050

Cl Cl 0.03559 4.48000
C 0.0553 3.9000
N 0.07778 3.9000
O 0.05562 4.0000
P 0.08434 4.4000

within a cutoff-distance sphere. Allegro’s potential is a strictly local equivariant deep neural

network interatomic potential architecture with a graph representation.2 In Allegro, the total

predicted energy Esystem of the system is decomposed into atomic energies Ei

Esystem =
N∑
i

σZi
Ei + µZi

(S1)

where σZi
and µZi

are respectively a per-species scale and a shift parameter. The atomic

energy Ei is also decomposed into a sum of pairwise energy Eij

Ei =
∑

j∈N (i)

Eij (S2)

where N (i) is the local environment of atom i. By definition, Eij is different from Eji .

The predicted force applied on atom i is then the negative gradient of the total energy with

respect to the position of atom i:

F⃗i = −∇Esystem (S3)
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The Atomic Cluster Expansion (ACE) is used to describe the local atomic environment in a

body-ordered expansion. It firstly project the local atomic density onto a set of radial bessel

and spherical harmonic angular basis functions.

The Allegro’s equivariant features Vi,j,L
n,l,p are indexed by an ordered pair of neighboring atoms

(i, j) at each layer L. The features can be expressed as a direct sum of irreducible represen-

tations (”irreps”) of the O(3) rotation and mirror symmetry group, which are characterized

by a rotation order l ranging from 0 and upward and parity p equal to ±1. These features

consist of scalars (l = 0), vectors (l = 1), and higher-order geometric tensors (l ≥ 2). The

index n corresponds to an additional feature channel. Allegro’s potential defines the updated

equivariant features on the pair ij as a weighted sum of the tensor products of the current

features with the geometry of the other neighbor pairs ik in the local environment of i:

Vij,L
n,(ℓ1,p1,ℓ2,p2)→(ℓout ,pout ) = Vij,L−1

n,ℓ1,p1
⊗

 ∑
k∈N (i)

wik,L
n,ℓ2,p2

Y⃗ ik
ℓ2,p2

 (S4)

3 Hyperparameters for MLP

Aqueous NaCl salt solutions trained at a specific concentration

We first investigated the cutoff distance hyperparameter and tested values from 8 to 12 Å.

If the cutoff distance was set too small, we observed unphysical trajectories, e.g., phase

separation of ions. The reason is that small cutoffs lead to a low number of neighbors seen

by the ML potential, which makes the learning process harder for small cutoffs. Thus, the

cutoff was set to 12 Å. We set the trainable Bessel functions to 12 with a cutoff polynomial

envelope function using p = 24 after testing values between 8 and 12. The number of Bessel

functions does not impact the results significantly. We found one layer with 8 features with

an even parity to be sufficient. The parameter lmax is 2, increasing the value did not improve

the fit. A 2-body latent multi-layer perceptron consists of 2 hidden layers of dimensions [16,
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32] with a SILU non-linearity that is used for all the concentrations. The final edge energy

multi-layer perceptron has one hidden layer of 16. The same Allegro architecture can be used

for all concentrations, simplifying the hyperparameter studies. In general, the variations in

Allegro-related hyperparameters led to small differences in the RDF peak heights but did

not drastically change the structural properties. We also observed similar validation loss for

these variations. For all the concentrations, the learning rate is set to 0.002 and reduced

using an on-plateau scheduler based on the validation loss with a patience of 20 and a decay

factor of 0.5. The batch size values, from 0.15 to 2.0 mol L−1, are 16, 10, 10, and 5.

Aqueous NaCl salt solutions trained with all the concentrations

The hyperparameters that were used to train the model at a specific concentration did

not give successful results when training on all salt concentration configurations. Thus, we

increased the complexity of the Allegro network. We tried using a 2-body latent multi-layer

perceptron consisting of 2 hidden layers of dimensions [32, 64], two layers with 8 features

with an even parity, and one layer with 16 features with an even parity. We also tested the

batch sizes of 32, 64, and 128. We obtained the best results with a batch size of 64. For

all the training, the learning rate is set to 0.002 and reduced using an on-plateau scheduler

based on the validation loss with a patience of 20 and a decay factor of 0.5.

Aqueous NaCl salt solutions in the presence of a DNA molecule

An increased complexity of the Allegro network compared to pure salt solution models was

necessary. We set the number of trainable Bessel functions to 16 with a cutoff polynomial

envelope function using p = 24. We use one layer with 16 features with an even parity.

A 2-body latent multi-layer perceptron consists of 2 hidden layers of dimensions [32, 64]

with a SILU non-linearity. The hidden layer dimension of the latent multi-layer perceptron

is tripled. The final edge energy multi-layer perceptron has one hidden layer of 32. The
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batch size is 16. For both trainings, the learning rate is set to 0.001 and reduced using an

on-plateau scheduler based on the validation loss with a patience of 50 and a decay factor of

0.5.
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4 Additional Results

4.1 Pure aqueous NaCl salt solutions
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Figure S1: Coordination Number (CN) calculated from the radial distribution functions for
the Na+–Na+, Na+–Cl− and Cl−–Cl− pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1.
The all-atom, prior, and DIS models are shown in black, blue, and red, respectively.
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Figure S2: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1. The deep potential has been trained
at 0.15 mol L−1. The all-atom, prior, and DIS models are shown in black, blue, and red,
respectively.
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Figure S3: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1. The deep potential has been trained
at 0.5 mol L−1. The all-atom, prior, and DIS models are shown in black, blue, and red,
respectively.

Figure S4: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1. The deep potential has been trained
at 1.0 mol L−1. The all-atom, prior, and DIS models are shown in black, blue, and red,
respectively.
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Figure S5: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1. The deep potential has been trained
at 2.0 mol L−1. The all-atom, prior, and DIS models are shown in black, blue, and red,
respectively.

Figure S6: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs and concentrations 0.15, 0.5, 1.0 and 2.0 mol L−1. The deep potential has been trained
with all the concentration configurations. The all-atom, prior, and DIS models are shown in
black, blue, and red, respectively.
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4.2 DNA molecule in an aqueous NaCl salt solutions of 0.5 mol L−1
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Figure S7: Cylindrical Normalized Density Profiles (NDP) for Na+ (a) and Cl− (b) from the
center-of-mass of the DNA molecule. The results are shown for the all-atom (black), prior
(blue), and DIS (red) simulations at 0.5 mol L−1. The colored areas represent the standard
deviation with block averaging of 1 ns. The training (solid) and validation (dashed) loss
function as a function of the epochs (c).

Figure S8: 3D distribution of Na+ cation around the DNA pitch in a NaCl aqueous solution
at 0.5 mol L−1 for the all-atom (a), DIS (b), and the difference between both simulations
(c). The distribution is normalized over the trajectory and the total number of cations. For
clarity, only the positions with a sufficient probability are represented. The black beads
represent the coarse-grained resolution of the DNA molecule.
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Figure S9: Average occupancy (a) and residence times (b) of Na+ ions in the first hydration
shell of the atoms of DNA at 0.5 mol L−1. The error bars denote the standard deviation.
The fast fluctuations (< 1 ps) are omitted in the residence time calculation.
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4.3 Aqueous NaCl salt solutions at 5 mol kg−1

To emphasize the need for an accurate description of the n-body term of the potential of mean

force, we performed a comparison between our DIS model and two other implicit models.

The first one is a transferable effective potential calculated at infinite dilution and using

correction terms.3 The second potential is calculated by a direct IBI potential calculated

from RDFs obtained at 5.0 mol L−1 by using the STOCK software.4

4.3.1 all-atom molecular dynamics with an explicit water model

The simulations have been carried out using LAMMPS.5 Newton’s equations of motion

are integrated using the Velocity Verlet integrator6,7 with a 1 fs timestep. Simulations are

performed at a temperature of 298 K. For all-atom simulations, we employ Nosé-Hoover

thermostat8 with a coupling constant of 0.1 ps. In the case of the NPT simulations main-

tained at 1.0 bars, we additionally use the Nosé-Hoover barostat with coupling constant

1.0 ps. The non-bonded interactions are calculated within cutoff distances of 0.9 and 1.2 nm

respectively for the LJ and the electrostatic potential. The electrostatic interactions beyond

the cutoff are corrected with the PPPM solver .9 The force field and the box composition

followed the details of the paper.3 The water molecules are described by the SPC/E water

model10 and NaCl ions are described by the parameter of.11 An equilibration in NPT of 5

ns was performed followed by a run in NV T of 12 ns. The forces on ions and the position

were saved every 0.2 ps.

4.3.2 Direct Iterative Boltzmann Inversion potential

The effective potential between ions was calculated from the all-atom MD with an explicit

water model. we use the Software STOCK4 in order to perform the iterative Boltzmann

inversion method12 and obtain the effective potential U :

Ui+1 = Ui + kBT

[
ρi(r)

ρtarget(r)

]
(S5)
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tool provides a simple and straightforward way to calculate effective potentials for coarse-

grained simulations using the iterative Boltzmann inversion method. For the simulation,

we use the Langevin thermostat with a coupling constant 0.1 ps.13 The simulations are

performed under periodic boundary conditions. The cubic box edge is 5.7 nm. To analyze

the properties of the trained DIS model, we perform 5 ns NVT simulations after a 1 ns

equilibration.

4.3.3 Transferable effective pairwise potential

The effective ion-ion potentials3 were calculated at infinite dilution using the method defined

by Hess et al.14 The effective potentials are computed by constraining the distance between

the two ions thanks to the linear constraint solver (LINCS) algorithm.15 The free energy

difference is then obtained by integrating the average constraint force fc

U (r2)− U (r1) =

∫ r2

r1

⟨fc⟩r dr (S6)

At long-range, the effective potential is close to a Coulomb interaction, typically between 10

and Å. The total effective potential Up can be express as

Up(r) =


∫ r

rm

[
⟨fc⟩s +

2kBT
s

]
ds+ q1q2

4πε0εrrm
r < rm

q1q2
4πε0εrr

r ≥ rm

(S7)

where T is the temperature, kB the Boltzmann constant, 2kBT
s

is the entropic correction, ε0

and εr are the dielectric permittivity of the vacuum and of the SPC/E water model16 and

rm is a cutoff-distance equal to 12 Å. The RDFs were extracted from the implicit simulation

using a so-called ”RDF-refined” correction (Figure 93). By definition, this potential is strictly

pairwise.
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4.3.4 DIS potential

Hyperparameters for MLP 60K structures have been randomly split into training (80%)

and validation (20%) datasets. The cutoff distance was set to 9.0 Å. We set the trainable

Bessel functions to 8 with a cutoff polynomial envelope function using p = 12. One layer

with 8 features with an even parity to be sufficient. The parameter lmax is 2, increasing the

value did not improve the fit. A 2-body latent multi-layer perceptron consists of 2 hidden

layers of dimensions [32,64] with a SILU non-linearity that is used for all the concentrations.

The hidden layer dimension of the latent multi-layer perceptron is tripled. The final edge

energy multi-layer perceptron has one hidden layer of 32. The same Allegro architecture can

be used for all concentrations, simplifying the hyperparameter studies. The learning rate is

set to 0.002 and reduced using an on-plateau scheduler based on the validation loss with a

patience of 20 and a decay factor of 0.75. The batch size is 10.

Computational details For simulations employing the DIS model, we use the Langevin

thermostat with a coupling constant 0.1 ps.13 The Lennard-Jones parameters are reported

in table S1. The dielectric value is 73 corresponding to the calculated value of SPC/E

water model.16 Due to the very high concentration, the electrostatic interactions beyond the

cutoff are corrected with the PPPM solver .9 The simulations are performed under periodic

boundary conditions. The cubic box edge is 5.7 nm. To analyze the properties of the trained

DIS model, we perform 10 ns NVT simulations after a 1 ns equilibration.

4.3.5 Structural properties results

The structural properties, i.e. the RDFs, are calculated from the explicit and implicit solvent

simulations and plotted in Figure S10 For the transferable potential (green), the Na+–Cl− is

well reproduced. For Na+–Na+, the peak at 4.38 Å is not reproduced, however, the intensity

of the RDF is close to the all-atom result. For Cl−–Cl− interactions, peak at 4.40 Å is not

reproduced and the intensity of the peak at 5.2 Å is a little bit higher. The RDFs show

14



0 2 4 6 8 10 12
Distance  /  Å

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

Na + - Na +

0 2 4 6 8 10 12
Distance  /  Å

0

2

4

6

8

10
Na + - Cl

all-atom
effective pairwise
IBI
DIS

0 2 4 6 8 10 12
Distance  /  Å

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Cl - Cl

Figure S10: Radial Distribution Functions (RDFs) for the Na+–Na+, Na+–Cl− and Cl−–Cl−

pairs at 5.0 mol kg−1. The results are shown for the all-atom (black), the effective pairwise
(green), IBI (blue), and DIS (red) models. The effective pairwise results have been taken
from the publication3 (Figure 9)

that some configurations for both ions are not well described. For the IBI potential, the

structural properties are reproduced with good accuracy for Na+–Cl− and Cl−–Cl− but it

appears for Na+–Na+ that some configurations are well described as they could be. Also,

the electrostatic interaction is not explicitly calculated which could explain the difference in

intensity at long distances for Na+–Na+ and Cl−–Cl−. For the DIS model, Na+–Cl− and

Cl−–Cl− are in very good agreement with the all-atom results. For Na+–Na+ interaction,

despite a lower intensity for the peaks at 3.66 and 4.38 Å, which are also not correctly fit by

the other models, the structural properties are in good agreement.
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(12) Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from

atomistic simulations. J. Comput. Chem. 2003, 24, 1624–1636.

16



(13) Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-

component model for distortive phase transitions. Phys. Rev. B 1978, 17, 1302 – 1322.

(14) Hess, B.; Holm, C.; van der Vegt, N. Osmotic coefficients of atomistic NaCl (aq) force

fields. J. Chem. Phys. 2006, 124, 164509.

(15) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A linear con-

straint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472.

(16) Kadaoluwa Pathirannahalage, S. P.; Meftahi, N.; Elbourne, A.; Weiss, A. C. G.; Mc-

Conville, C. F.; Padua, A.; Winkler, D. A.; Costa Gomes, M.; Greaves, T. L.; Le, T. C.;

Besford, Q. A.; Christofferson, A. J. Systematic Comparison of the Structural and Dy-

namic Properties of Commonly Used Water Models for Molecular Dynamics Simula-

tions. J. Chem. Inf. Model. 2021, 61, 4521–4536.

17


