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ABSTRACT: Proteins are natural polymers that play an essential
role in both living organisms and biotechnological applications.
During certain bioprocessing steps, they can be exposed to
significant mechanical stress induced by, for example, shear flow
or sonication, resulting in reduced therapeutic efficacy, aggregation,
or even a loss of activity. For this reason, there is a need to
understand and determine the susceptibility of the protein activity to
the experienced mechanical stress. To acquire this knowledge, it is
necessary to study the rotational dynamics of the protein.
Commonly, the rotational dynamics of soft molecules is interpreted
based on a theoretical analysis performed in an inertial laboratory
frame. However, the obtained angular velocity mixes pure rotations
and vibrations with angular momentum, consequently lacking a clear
dynamical interpretation. On the other hand, the use of the noninertial internal Eckart frame allows the determination of pure
angular velocity as it minimizes the coupling between the rotational and vibrational degrees of freedom. In the present work, by
conducting open-boundary molecular dynamics simulations and exploiting the Eckart frame formalism, we study the rotational
dynamics of a small protein under the shear flow of various strengths. Our results show that the angular velocity increases nonlinearly
with increasing shear rate. Furthermore, the protein gains vibrational angular momentum at higher shear rates, which is reflected in
the higher angular velocity computed by employing the Eckart frame formalism and confirmed by analysis of the contributions to the
total kinetic energy of the biomolecule.

1. INTRODUCTION
Proteins are biopolymers consisting of chains of amino acids.
The amino acid sequence defines the unique 3D structure of the
protein and is related to its function. Proteins in their native
(folded) state are an indispensable part of biological processes in
living organisms. For instance, these macromolecules are
structural components of cells and tissues; they act as chemical
messengers and catalysts for biochemical reactions, support
regulation and expression of DNA and RNA and immune
function,1 and transport cargo around the body as biological
machines that convert chemical energy into mechanical work.2

In addition, these biopolymers are pivotal not only in biological
processes but also in biotechnological applications.1,3 Changes
in their native structure can result in the loss of biological
function or catalytic activity, reduced therapeutic efficacy, and
formation of insoluble aggregates (commonly associated with
often fatal human diseases, which include Parkinson’s and
Alzheimer’s diseases).1,4

Several factors affecting protein stability and causing
conformational changes have been extensively studied and are
now well understood. These factors include temperature,
pressure, pH, ion concentration, or the presence of molecular
agents,5 to name just a few. However, less focus was on protein

conformational changes caused by mechanical stress, such as
hydrodynamic shear. Understanding the influence of shear on
the stability (and consequently activity) of proteins is of great
importance in bioprocessing as during specific steps, such as
centrifugation, fractionation, pumping, and ultrafiltration,
solutions of these biomolecules are subjected to shear stresses
that can cause loss of function and aggregation.1,3 Intriguingly,
dissimilar results are reported in the literature, considering the
effect of shear on protein stability and function. For example,
Charm and Wong6 reported that catalase and carboxypeptidase
lose their activity when pumped through a narrow cylindrical
viscometer due to the shear-induced breakage of the tertiary
structure. Additionally, Charm and Wong6 proposed an
equation to compute the expected shear inactivation of the
protein solution flowing through a capillary tube. On the
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contrary, Thomas and Dunnill7 did not find significant losses in
catalase activity in the presence of urea and also in capillary
rheometers at shear rates up to 106 s−1. Jaspe and Hagen8

showed that there is no proof that even shear rates up to ∼2 ×
105 s−1 destabilize cytochrome c. Based on the developed
elementary model, Jaspe and Hagen8 estimated that the shear
rate in water must be extraordinarily high (∼107 s−1) to observe
the denaturation of small globular proteins (about 100 amino
acids). Similarly, Duerkop et al.9 hypothesized that shear rates of
up to 108 s−1 should not be considered harmful to an average-
sized protein involved in bioprocesses. Nevertheless, in an in situ
study of the shear effect on aqueous insulin, Bekard and
Dunstan10 showed that the deformation of insulin is shear-
dependent. Furthermore, by performing in situ measurements,
Ashton et al.11 identified reversible, shear-induced conforma-
tional changes of lysozyme in water and glycerol solutions.
Many studies performed to evaluate the effects of shearing on

protein structure and activity8,11−15 show that proteins do not
exhibit universal behavior in shear flow. Nevertheless, they still
lack a clear dynamic interpretation concerning the energy
dissipation into the internal degrees of freedom that affect the
conformational changes of the protein. To address this question
from a dynamical perspective, it would be beneficial to
thoroughly study the rotational and vibrational behaviors of
the biomolecule when subjected to shear flow. However, as
reported by Sablic ́ et al.,16 the rotational dynamics of soft
molecules obtained by the standard analysis performed in the
inertial laboratory frame is misinterpreted. Apart from the
rotational contribution, the obtained angular velocity also
includes the vibrational one, leading to an unclear dynamical
explanation. Separating the system’s rotations from its vibrations
can be achieved by employing Eckart frame formalism. This
formalism is commonly applied to describe the infrared and
Raman spectra of small molecules,17,18 and recently, Sablic ́ et
al.,16 Jaramillo-Cano et al.,19 and Toneian et al.20 showed that
the Eckart corotating frame is robust enough to allow
investigation of the complex dynamics of the macromolecules
under shear flow.
Following up on the work conducted by Sablic ́ et al.16 on

generic star polymers, the first aim of this study is to apply the
Eckart frame formalism to investigate the dynamics of the
biologically relevant molecule in water under shear flow. As the
benchmark protein, we choose ubiquitin and perform the open-
boundarymolecular dynamics (OBMD) simulations and use the
coarse-grained (CG) Martini 3 model21 combined with an
elastic network (EN). Using the OBMD simulation approach
allows us to impose the external boundary condition (i.e., shear
flow) without changing Newton’s equations of motion, and the
CGmodel is sufficient to address the generic physical properties

of the protein. In addition, the OBMD is also more flexible in
defining external boundary conditions compared to the
nonequilibrium molecular dynamics simulations.22 Using the
laboratory and Eckart frames, we compute and compare the
angular velocity of the protein subjected to a shear flow of
various strengths. Employing the Eckart frame formalism, we
correctly determine the contributions of different types of
motion (i.e., translational, rotational, and vibrational, with and
without angular momentum) to the total kinetic energy of the
biomolecule. As noted by Sablic ́ et al.,16 this analysis can be
complementary to the normal-mode analysis of the vibrations
within the framework of the theory of molecular vibrations.23

For this reason, based on the unveiled rotational and vibrational
motions, the Eckart frame formalism could also pave the way for
use in protein activity interference.
A two-dimensional flow may be defined as a linear

superposition of varying amounts of rotational and elongational
flows. Generally, the amount of polymer deformation strongly
depends on its nature.24−31 However, in a purely rotational flow,
only rotation (without induced deformation) is expected,
whereas in a purely elongational flow, large deformations are
expected.25,32−36 On the other hand, in the simple shear flow,
the magnitudes of the rotational and elongational components
are equal.25 As argued by de Gennes,25 in the simple shear flow,
the polymers do not attain a stable, strongly stretched state but
rather undergo a tumblingmotion with large fluctuations in their
extension.33,37,38 Similarly, Alexander-Katz et al.39 observed the
unfolding/refolding cycles of the polymeric globule. Therefore,
the second aim of this paper is to observe the characteristic
dynamics of exchanging stretched and coiled states. To achieve
this, we compute the time evolution of the radius of gyration40

during the production run of the simulation and visualize
configurations that best represent the conformational dynamics
of the biomolecule. Finally, we also calculate angular velocity
using the laboratory frame (ω3), the Eckart frame formalism
(Ω3), and contributions to the total kinetic energy and compare
them with those determined when the EN is unaltered.

2. THEORETICAL BACKGROUND AND
METHODOLOGY

Using molecular dynamics simulations, we study the effect of
shear on the rotational and conformational dynamics of
ubiquitin. The protein (modeled as the Martini 3 model21) is
placed at the center of the simulation box, surrounded by CG
water molecules and subjected to the shear flow of various
strengths. A schematic representation of the simulated system is
depicted in Figure 1. For better visibility, the protein is
represented by CG backbone particles and colored gray, while

Figure 1. Schematic representation of the simulated system showing the protein ubiquitin immersed in water under shear flow.
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the surroundingmedium is colored blue. The coordinate vectors
x1, x2, and x3 in Figure 1 denote the flow, gradient, and vorticity
directions, respectively.
To inspect the rotational and conformational dynamics of the

protein immersed in water under shear flow, theOBMDmethod
is used, which imposes external boundary conditions of a
constant normal load and shear flow onto the system without
altering Newton’s equations of motion. As an illustration, in
Figure 1, the imposition of the first boundary condition is
represented by black arrows on the sides of the simulation box,
while the imposition of the second boundary condition is
depicted by the large red arrow in the side (buffer) regions of the
simulation domain. The Martini protein model and the OBMD
method used are discussed in the following subsections.

2.1. CG Model of Ubiquitin. To obtain the CG Martini 3
model of ubiquitin, the initial atomistic structure (PDB entry
1UBQ41) of the protein is converted to the CGMartini 3 model
using Martinize2 available at https://github.com/marrink-lab/
vermouth-martinize. The initial atomistic structure and its CG
representation are shown in Figure 2. Tomaintain the secondary

and tertiary structures, an EN of additional harmonic bonds is
typically applied to the CG backbone particles of the protein
with an elastic bond constant of 550 kJ mol−1 nm−2, where the
lower and upper elastic bond cutoffs are set to 0.5 and 0.9 nm,
respectively.
As large-scale structural changes (such as unfolding) are

disfavored, when the standard ENmodel is used, we improve the
method of constraining by defining the thresholds for the
distances between the CG bead pairs that form EN and are
connected by harmonic bonds. When the predefined threshold
values are exceeded, the harmonic bonds of EN irreversibly
break, and the CG bead pairs are added to the Verlet list
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where k and r0 are the force constant and equilibrium distance,
respectively, defined in the Martini v3.0.0 force field, while Rc
stands for a predefined cutoff value. The latter is determined
based on the monitoring of the protein structure compactness
(i.e., the radius of gyration40) during the equilibrium simulation
(i.e., zero shear condition) of length 50 ns, where the same
adjustment of EN is implemented. Therefore, based on the
observation of protein structure conservation in equilibrium
(i.e., zero shear), the Rc is set to 1.35 times the distance between
the CG backbone particles of EN defined in the Martini v3.0.0

force field. In addition, to prevent the protein from diffusing
through the open ends of the simulation box or over the edges,
where the periodic boundary conditions are implemented, an
additional spring is added to hold the protein center of mass
close to the center of the simulation box.

2.2. Open-Boundary Molecular Dynamics. The shear
flow of various strengths is imposed by using OBMD. OBMD is
a simulation technique that opens the boundaries of the
simulated system and allows the exchange of momentum,
energy, and mass between the system and its surroundings.22,42−
44 Accordingly, the simulation box is opened in one direction,
while the periodic boundary conditions are imposed on the
remaining ones. The simulation box is divided into three
regions, with the central region [i.e., the region of interest
(ROI)] enclosed by two buffer regions. Buffers serve as particle
reservoirs, from which particles are deleted and inserted into the
system. The number of particles in the buffers is controlled by
the feedback algorithm given by ΔNB = (δt/τB) (⟨NB⟩ − NB).
Here, τB represents the characteristic relaxation time of the
buffers [usually of the order τB ∼ O(100δt)], δt stands for the
time step, while ⟨NB⟩ and NB denote the desired number of
particles inside the buffer and the current number of particles
inside the buffer, respectively. When ΔNB < 0, the particles need
to be deleted from the system. To do this, the particles are first
left to diffuse over the outer boundary of the buffer and then
erased. On the contrary, when ΔNB > 0, new particles need to be
inserted into the buffer region. The insertion of new particles is
carried out by the iterative algorithm called USHER.45,46

Additionally, another important feature of buffers is the
imposition of the external boundary conditions onto the ROI.
To this end, the OBMD uses an additional external force Fext in
the buffer domains. In pursuance of expressing this force, we
must first define the linear momentum conservation law: ∂(ρv)/
δt = −∇·JP and express the linear momentum flux tensor

J v vP = + (2)

Above, ρ and v represent the density and velocity, respectively.
In eq 2, Π is the mean contribution to the pressure tensor. The
pressure tensor is commonly defined asΠ = (p + π)I +ΠS, where
p stands for the pressure of the system, I is the identity matrix, π
represents the isotropic stress (π = −ζ∇·v), and ΠS is the
traceless symmetric tensor, expressed as Παβ

S = −η(∂αvβ + ∂βvα
− 2∂γvγδαβ/D). ζ and η are bulk and dynamic viscosity,
respectively, while D denotes the spatial dimension.47,48

Afterward, Fext is computed from the momentum balance for
the surface A, i.e., for the area of the interface buffer-ROI

A t t mJ n F v( )P

i
i i

ext· = +
(3)

In eq 3, Fext = ∑i∈Bfiext, where i runs over all the particles that are
within buffer regions, while i′ runs over all particles that have
been inserted or deleted from the system in the last time step δt.
Thus, the momentum change is expressed as Δ(mi′vi′) = ±mi′vi′
if particle i′ is inserted (+) or deleted (−). The unit vector
normal to the interface buffer-ROI (pointing toward the center
of the ROI) is denoted by n, while JP stands for the already
defined momentum flux tensor (eq 2). If one aims to simulate a
system under a constant normal load, then the momentum flux
tensor given by eq 2 simplifies to JijP = pδij. However, in this
work, not only the constant normal load but also the shear flow is
imposed on the open system (see Figure 1). Therefore, the
components of the corresponding momentum flux tensor are J11P
= ργ̇2x22 + p, J12P = J21P = −ηγ̇, J22P = J33P = p, and J13P = J31P = J23P =

Figure 2. CG Martini model of ubiquitin. The figure on the left is a
cartoon representation of the protein’s atomistic structure, while the
right figure depicts the backbone beads of the constructed CG protein
model, describing the underlying atomistic structure.
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J32P = 0, where γ̇ represents the shear rate of the flow and x2
denotes the coordinate in the open direction of the system (i.e.,
gradient direction). Accordingly, the momentum flux part of the
external force is expressed as JP·n = J22P·n + J12P·t, where the unit
vector t points in the direction of the shear flow (i.e., in the x1-
direction), and it is perpendicular to the already introduced unit
vector n. In our simulations, where shear flow and constant
normal load are imposed, the external force can be decomposed
into normal and tangential contributions and expressed as Fext =
F∥

extn + F⊥
extt. Hence, the force on the particle within the buffer

is

g x

g x
F

g x

g x
Ff n t

( )

( )

( )

( )i

i

i
i

i

i
i

ext 2

B 2

ext 2

B 2

ext= +
(4)

In eq 4, g∥ and g⊥ are weighting functions that distribute the
contributions to the external force in normal (i.e., n) and
tangential (i.e., t) directions, respectively.44

As OBMD involves the transfer of momentum, the
indispensable part is also the linear momentum conserving
thermostat.

2.3. Dissipative Particle Dynamics Thermostat. This
requirement is met by the dissipative particle dynamics (DPD)
thermostat because its equations conserve linear momentum
and correctly reproduce the hydrodynamic behavior.49−51 In
this work, the conservative force Fi acting on the ith particle of
the simulated system is obtained as the negative gradient of the
potential energy defined by the applied force field. Additionally,
the chosen r-dependent weight functions ωD(r) and ωR(r) that
satisfy the fluctuation−dissipation theorem are defined as

l
moo
noo

r r
r r

r r
( ) ( )

1 when

0 when
D R c

c
= =

<

(5)

where rc and r stand for the cutoff radius and interparticle
distance, respectively.ωD(r) andωR(r) are part of the dissipative
and random forces, respectively, which together form the DPD
thermostat.
Due to the expected heating of the system during its exposure

to high shear rates, we modify the standard DPD thermostat by
controlling its random contribution to the force as suggested by
Sablic ́ et al.44
Conducting the OBMD simulations and employing the

adaptive DPD thermostat permit us to investigate the dynamics
and eventual structural evolution of a biomolecule subjected to
shear flow.

2.4. Inertial Laboratory Frame. We start our analysis of
rotational dynamics by decomposing the total kinetic energy
into translational, rotational, and vibrational. According to the
standard approach, which is based on the inertial frame, the
(apparent) angular velocity is computed as

J L1= · (6)

where J and L represent the moment of inertia tensor and the
angular momentum of the rotating molecule, respectively. The
former is given by

J m r r r r I

r r r r

( ) ( )

( ) ( )

N

1
cm cm

cm cm

= {[ · ]

}
=

(7)

and the latter is expressed as

mL r r v v( ) ( )
N

1
cm cm= ×

= (8)

where rα and vα are the position and velocity, respectively, of an
α particle with mass mα that builds up the protein molecule,
while rcm and vcm are the position and velocity of biomolecule’s
center of mass, respectively. In eq 7, I stands for the 3 × 3
identity matrix. However, eq 6 is only valid for the rigid-body
rotation, while in this study, we are dealing with the nonrigid
molecules. Therefore, the time evolution of the position of the
protein’s α particle involving rigid translation, rotation, and
vibrational type of motion is given by

v r r r r v( )cm cm= = + × + (9)

Above, ṽα denotes the vibrational motion that is angular
momentum free.
The kinetic energy of the rotating and vibrating molecule is

correspondingly

T m

m m

m m

m

m

v

r r r r

r r v r v

r r r r

v

1
2

1
2

( )

( )

1
2

( ) ( )

1
2

N

N N

N N

N

N

2

cm
1

cm
1

cm

1
cm cm

1

1
cm cm

1

2

=

= + ·[ × ]

+ [ × ]· + ·

+ [ × ]·[ × ]

+

= =

= =

=

= (10)

From

m r r( ) 0
N

1
cm =

= (11)

and

m r r( ) 0
N

1
cm =

= (12)

where (rα̇ − rċm) is expressed from eq 9, it follows

m m

m m

m m

m

r r r r v

r r v

r r v

v

( ) ( )

( )

( )

0

N N

N N

N N

N

1
cm

1
cm

1
cm

1

1
cm

1

1

= [ × + ]

= [ × ]+

= × +

=

=

= =

= =

= =

=

(13)

By inspecting terms on the rhs of eq 10 and using eqs 11 and 13,
it is clear that the second and fourth terms are zero, and the third
term

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c02324
J. Phys. Chem. B 2023, 127, 7231−7243

7234

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c02324?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


m mr r v r r v( ) ( )
N N

1
cm

1
cm[ × ]· = · [ × ]

= =
(14)

represents the Coriolis coupling. Since all the rotational
contribution is already collected in the apparent angular velocity
ω, the Coriolis coupling term is zero, which is consistent with
the fact that in the laboratory frame, no noninertial forces are
present. Hence, the Coriolis coupling term is zero in the
laboratory frame. The total kinetic energy is finally expressed as

T m

m

m

r

r r r r

v

1
2

1
2

( ) ( )

1
2

N

N

N

cm
1

1
cm cm

1

2

=

+ [ × ]·[ × ]

+

=

=

=
(15)

where terms on the rhs of the eq 15 are decomposed into
translational (Ttrans), rotational (Trot

lab), and vibrational (Tvib
lab),

respectively.
Following the above analysis in the inertial laboratory frame, it

is not possible to distinguish between pure rotations and
vibrations with angular momentum since they are hidden
together in the apparent angular velocity ω. Contrary to the case
of the inertial laboratory frame, the Coriolis coupling is nonzero
in a noninertial coordinate system, defining a noninertial force.
Exploiting the noninertial internal Eckart frame allows this
coupling to be minimized.52 Any other noninertial coordinate
system will give a larger Coriolis coupling.

2.5. Noninertial Internal Eckart Frame. The Eckart frame
is a noninertial frame that corotates with the molecule.17,52 It
permits the unveiling of vibrations with and without angular
momentum, thus allowing the determination of pure angular
velocity Ω.
In the noninertial Eckart frame, the total kinetic energy of the

biomolecule is expressed as16,53−56

T m

m

m m

m

r

r r r r

v u

v

1
2

1
2

( ) ( )

1
2

1
2

( )

N

N

N N

N
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2

1

1
cm cm

1

2

1

2

1

=

+ [ × ]·[ × ]

+ +

+ · ×

=

=

= =

= (16)

where the Eckart angular velocity Ω is defined as

mJ c r r( )
N

1

1
cm= · ×

= (17)

and J′ is given by

mJ r r c I r r c( ) ( )
N

1
cm cm= {[ · ] }

= (18)

In the above equations, cα stands for the equilibrium positions
of the beads in the instantaneous noninertial Eckrat frame, ρα
denotes the displacement vector describing instantaneous
positions of particle α relative to the reference position, while
the sum of vα̃ and uα, standing for the angular motion free part
(the same as in eq 9) and angular motion part of the vibrational
contribution, respectively, defines Δvα. Therefore, terms on the
rhs of eq 16 correspond to the translational (Ttrans) and
rotational (Trot

Eck) contributions to the total kinetic energy,
followed by two vibrational contributions. The first one arises
from the angular free part of vibrational motion (Tvib‑non‑ang

Eck ),
while the second describes the angular part of vibrations
(Tvib‑ang

Eck ). The last term on the rhs of eq 16 is the Coriolis
coupling (TCori

Eck ).
Finally, a comparison of the kinetic energy expressions

obtained in the laboratory and Eckart frames yields the following
relations

T Tvib
lab

vib non ang
Eck= (19)

and

T T T Trot
lab

rot
Eck

vib ang
Eck

Cori
Eck= + + (20)

where the translational contribution to the total kinetic energy is
the same in both frames.16,18

3. COMPUTATIONAL DETAILS
In order to properly address the rotational dynamics of the
protein under shear flow, we chose a relatively small protein
ubiquitin, modeled as described in Section 2.1, and performed
the OBMD simulation in water using the Eckart frame
formalism.
In accordance with the OBMD, the simulation box is divided

into three regions, i.e., two buffer regions surrounding the ROI.
At the center of the simulation box (or at the center of the ROI)
is the protein molecule immersed in water (Figure 1).
Information on the secondary structure classification of the
protein backbone from the structure is provided from the DSSP
database available at https://github.com/cmbi/dssp/releases/
tag/2.3.0. The geometry of the protein molecule is constrained
using RATTLE.57 Equations of motion are integrated using the
velocity Verlet algorithm58 with an integration time step δt =
0.02 ps at a temperature of 300 K. All simulations are performed
using the Martini v3.0.0 force field and the ESPResSo++
simulation package.59 To describe the nonbonded interactions,
the Lennard-Jones 12-6 potential energy function with a cutoff
value of 1.1 nm is used. Apart from the Lennard-Jones
interactions, long-range interactions of charged groups are
treated with the Coulombic energy function with a relative
permeability of εr = 15 and a cutoff distance of 1.1 nm. In the
pursuit of the first objective of this study (i.e., to inspect the
effect of the shear flow on the rotational dynamics of the
biomolecule), the Martini protein combined with the EN is
immersed in the rectangular box of Martini water. The
dimensions of the box are set to 12.6 × 6.2 × 6.2 nm3, and
several simulations of 20 ns length are performed, of which the
last 19 ns is used for the production run. In order to observe the
dynamics of the exchanging stretched and coiled states, some
simulations are prolonged, and the dimension of the simulation
box coinciding with the direction of the imposed shear flow is
increased as large fluctuations in the extension of the protein are
expected in this direction. Therefore, simulations of 100 ns
length are performed, where the last 75 ns is used for the
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production run, and the dimensions of the simulation box are set
to 10 × 15 × 10 nm3.

4. RESULTS AND DISCUSSION
The rotation of a sphere immersed in a shear flow field was
studied by Einstein.60 As he established, the angular velocity of a
spherical particle is constant and given by ω = γ̇/2, where γ̇
stands for the shear rate, assuming the no-slip boundary
condition, absence of fluid and particle inertia, and gravity and
Brownian motion. This implies that the angular velocity of the
sphere is independent of its size and the viscosity of a fluid in
which it is immersed.60,61 On the other hand, axisymmetric
ellipsoids and spheroids in shear flow exhibit a more complex
nature. The rotation of an axisymmetric inertia-free spheroidal
particle in the simple shear flowwas described by Jeffery.61 It was
shown that, in addition to rotation with the local angular velocity
of the flow, the particle also has a rotational component that
depends on its aspect ratio and orientation as the particle
unequally experiences the surrounding velocity field.61,62

Furthermore, as shown by Hinch and Leal,63 aberrations from
the axisymmetric geometry lead to large changes in particle
rotation.
Going beyond the ideal 3D geometric shapes mentioned

above, in this work, we tackle a biopolymer which is expected to
exhibit even more complex behavior (e.g., due to the presence of
inertial forces, Brownian motion, and hydrodynamic inter-
actions). To illustrate, in the study of star polymers in solution
subjected to shear flow, Ripoll et al.64 showed that at very low
shear rates, reduced rotational velocity approaches the value of
1/2, while it starts to decrease at higher shear rates. By variation
of the number of arms constituting the star, it was observed that
the angular velocity becomes (almost) independent of the
applied shear rate. On the contrary, Xu and Chen65 showed that
the latter finding does not hold for the melt of star polymers.
Differences in observations of Ripoll et al. and Xu and Chen
should be considered through the presence of hydrodynamic
and intermolecular interactions. While the former governs the
dynamics of dilute solutions (Zimm regime66), the latter is more
pronounced in polymer melts (Rouse regime67), where
hydrodynamic interactions are screened.65

Therefore, to shed light on the rotational dynamics of the
biopolymer, we conduct out-of-equilibrium simulations of
ubiquitin using the OBMD method. First, we inspect the effect
of the shear flow of various strengths on the apparent angular

velocity of the protein. As already pointed out, the apparent
angular velocity is not the real one because it includes vibrations
with angular momentum. In order to disentangle rotations and
vibrations, we employ the Eckart frame formalism. The
reference positions of the particles from their center of mass
are in the Eckart frame determined from the minimized protein
structure. In addition, we also checked whether the angular
velocity of the protein combined with EN is altered if the
reference configuration is chosen to be an energy-minimized
structure or if it is changed after a predefined number of sampled
configurations. However, we did not observe significant
differences. Furthermore, by altering EN to allow the irreversible
breaking of bonds responsible formaintaining the secondary and
tertiary structures, we also explore the rotational velocity of the
protein that is able to change its conformation from coiled to
stretched and vice versa.
As the protein rotates in the flow−gradient plane,

consequently, the only nonzero component of angular velocity
(i.e., apparent angular velocity, ω, if calculated in the laboratory
frame, or Ω, if computed using the Eckart frame formalism) is in
the vorticity direction (i.e., the x3-direction). For this reason,
Figure 3 shows only the nonzero component of the calculated
apparent (i.e., ω3) and Eckart (i.e., Ω3) angular velocities for the
protein with unbreakable (see Figure 3a) and breakable ENs
(see Figure 3b). We find that both angular velocities, i.e., ω3 and
Ω3, nonlinearly increase with increasing shear rate. Furthermore,
at higher shear rates for the protein with an altered EN, the
difference between the angular velocity computed in the
laboratory frame and that by employing the Eckart frame
formalism is indicated (see the inset plot of Figure 3b). A smaller
difference (within the error bar) is observed for the protein
combined with EN (see the inset plot of Figure 3a). The
observed difference may be understood by the following
cogitation. As already emphasized, in the presence of the
vibrational angular momentum, the angular velocity determined
in the laboratory frame does not properly describe the
molecule’s rotational dynamics.16,18 For molecules that are
more “flexible” or extensible, the vibrational angular momentum
contribution is larger.16 Therefore, when the protein structure is
maintained by the unbreakable EN, it consequently cannot
(strongly) deform (or stretch) in the presence of shear flow.
Conversely, when breakable EN is used, the protein can now
change its conformation with large fluctuations in its extension.
The extent to which the protein stretches (in general) depends

Figure 3. Protein rotation. Orange symbols indicate the results calculated using the standard approach (performed in the laboratory frame), while blue
symbols denote the results obtained by employing the Eckart frame formalism. The standard error is less than 3%.
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on the strength of the shear flow. From monitoring the radius of
gyration during the production run, it appears that the protein
unfolds more frequently and to a greater extent when exposed to
higher shear rates (see Figure 6 and red crosses in Figure 7).

Accordingly, the contribution of the vibrational angular
momentum increases (Figure 11d), and the difference between
the apparent and Eckart angular velocities appears (Figure 3b).
Due to inquisitiveness about the extent to which the shear

flow affects the angular velocity of the protein with unbreakable
and breakable ENs, we plot the dependence of the angular
velocity on the shear rate for both the cases in Figure 4. As
depicted, a higher angular velocity is observed for the protein
with a breakable EN, which can be understood by the following
consideration of the hydrodynamic drag force. By virtue of the
higher velocity gradient at higher shear rates, the extent to which
the molecule stretches increases with increasing shear rate, and
the net hydrodynamic drag forces acting over the molecule also
increase.12,33,68,69 The protein with the unbreakable EN is more
compact, and its structure is less extended even at higher shear
rates. The more extended protein structure is observed for the
protein with the breakable EN. Therefore, the parts inside the
more compact protein are shielded from the flow, and only a
small portion of them experience the full drag force, whereas the
protruding parts of the protein with the breakable EN are
exposed to larger hydrodynamic drag forces. The latter also leads
to the observation of a higher angular velocity for the protein
with a breakable EN.

Figure 4. Comparison of the angular velocity computed with Eckart
frame. Green and red symbols indicate the results calculated for the
protein with unbreakable and breakable ENs, respectively.

Figure 5.Radius of gyration over time at different shear rates computed for the protein, where its secondary and tertiary structures are preserved by the
unbreakable EN. Additionally, representative snapshots are depicted. To better visualize the rotation, only the backbone structure of the protein is
shown, with the first particle that makes up the protein colored in blue, the last particle in red, and the rest of the backbone in gray. From the left to right,
the first snapshot corresponds to the conformation when the equilibration part of the simulation continues into the production run, i.e., when the
velocity profile of the applied shear is expected to be fully developed. In the middle, the protein configuration halfway through the production run is
shown, followed by the final configuration at the end of the production run.
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To show vivid conformational dynamics of the protein and
confirm our claims, we plot the time evolution of the computed
radius of gyration and show some representative simulation
snapshots of the protein with unaltered and altered ENs in
Figures 5 and 6, respectively. In addition, the average radius of
gyration calculated from the selected time evolutions shown in
Figures 5 and 6 is depicted in Figure 7.
Our expectation that the protein with an unaltered EN would

not unfold is confirmed by the time evolution of the radius of

gyration depicted in Figure 5 and by the computed average
radius of gyration shown in Figure 7 (see green crosses). It is also
substantiated by the computed time evolution of the root-mean-
square displacement (RMSD) and root-mean-square fluctuation
(RMSF), as shown in Figures 8a and 9a, respectively. As
depicted in Figure 5, the radius of gyration only fluctuates
around the equilibrium value (of approximately 1.14 nm),
regardless of the strength of the applied shear flow (see also
green crosses in Figure 7 corresponding to the average radius of
gyration). A similar finding applies to the RMSD (Figure 8a),
where an increase in RMSD, indicating the unfolded state, is not
observed. In addition, no discrepancies in RMSF are observed
when the strength of the shear flow is increased (Figure 9a).
Therefore, these results imply that the protein remains folded
throughout the production run, as expected, since its secondary
and tertiary structures are well preserved due to the EN. In
contrast, a higher value of the average radius of gyration and
many sudden increases in the time evolution of radius of
gyration and in RMSD are observed when the protein with the
altered EN is subjected to higher shear rates (see Figures 7 (red
crosses), 6, and 8b), corresponding to the changes in its
conformational state from folded to unfolded (and vice versa).
Besides, as depicted in Figure 9b, as the shear rate increases, the
groups of beads at the beginning and at the end of the
biopolymer (the latter are also further away from the protein’s
COM) fluctuate more.
It is well-known that polymers subjected to shear flow are

stretched along the flow direction and compressed along the

Figure 6. Radius of gyration over time at different shear rates calculated for the protein with the breakable EN. Some selected snapshots, which are
considered to best represent the conformational dynamics of the protein, are shown and connected by the black line to the corresponding time of the
production run. The coloring of the protein is the same as that in Figure 5.

Figure 7. Average radius of gyration at different shear rates calculated
for the protein with unbreakable (green symbols) and breakable (red
symbols) ENs. Error bars are less than 5%. For the protein with an
altered EN, the error bars increase with increasing shear rate.
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gradient direction.70 Besides, the overall conformation of the
biopolymer in the flow, gradient, and vorticity direction can be
inferred based on the (diagonal) gyration tensor components.
Therefore, intrigued by the question of whether a similar
behavior can be observed in the case of the protein with EN also,
we calculate the gyration tensor using the following equation

N
r r r rG

1
( )( ), cm, , cm,=

(21)

where μ, ν ∈ (1, 2, 3) stands for the μν component of the
gyration tensor. However, in Figure 10a, we show only the
diagonal components of the averaged gyration tensor

Figure 8. RMSD values of all beads.

Figure 9. RMSF was computed for each bead.

Figure 10. Diagonal components of the averaged gyration tensor (Gii) for the protein with unbreakable and breakable ENs subjected to shear flow of
various strengths, normalized by the diagonal components of the averaged gyration tensor for the protein under the zero shear condition (Gii(γ̇ = 0)).
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normalized by the diagonal components of the averaged
gyration tensor for the protein under zero shear. In general,
we can assume that the protein is stretched in the flow direction
and shrunk in the gradient direction as the flow-direction
component (i.e., 11) on average rises above 1 and the gradient-
direction component (i.e., 22) on average decreases below 1. In
addition, a minor deformation in the vorticity direction is
indicated by the rise of the 33-component of the gyration tensor.
However, due to the presence of the unbreakable EN, which
“constraints” the protein, these features are not very
pronounced. Different conformational dynamics is observed
when the protein with the breakable EN is exposed to the shear
flow of various strengths. Its conformation is still maintained at
the lower shear rate, as depicted in Figures 6a and 8b, but this is
not the case when it is exposed to higher shear rates, as shown in
Figures 6b−d and 8b. At a low shear rate, the radius of gyration
fluctuates around the equilibrium value (as in the case of the
protein combined with an unaltered EN), while frequent
fluctuations are observed as the shear rate increases. Since a
larger radius of gyration is associated with more stretched
conformation, we see that the applied shear rate must be high
enough to induce the protein to stretch. Based on the diagonal

components of the averaged gyration tensor shown in Figure
10b, we assume that the shear rate (for our model) must exceed
40 ns−1. The premise that the unfolding takes place at very high
shear rates is also in accordance with experimental findings for
small globular proteins.8 Again, compression and minor
deformation of the protein in the gradient and vorticity
directions are indicated by the 22- and 33-components of the
averaged gyration tensor, respectively. Despite the observations
that the exchange of stretched and coiled states occurs more
frequently at higher shear rates, where the extent to which the
protein unfolds also increases (compare Figure 6a with Figure
6d), we do not observe fully stretched proteins in our
simulations (even when applying the highest shear rate, see
Figure 6d).
We also calculate the contributions to the total kinetic energy

of the rotating molecule when a different approach is employed
to compute the angular velocity. Using the laboratory frame, the
total kinetic energy is divided into three contributions, i.e.,
translational, rotational, and vibrational (eq 15). However, it is
not possible to differ between pure rotations and vibrations of
the molecule because the apparent angular velocity also includes
vibrations with angular momentum. For this reason, we aim to

Figure 11. Comparison of the relative contributions to the total kinetic energy of the protein with unbreakable and breakable ENs when a different
approach is used to compute the angular velocity.
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use the Eckart frame formalism, which minimizes the coupling
between vibrational angular momentum and pure rotation and
therefore allows us to discern between vibrations with and
without angular momentum (see eq 16). The comparison of the
computed contributions (for the protein with unaltered and
altered ENs) is shown in Figure 11. Employing the laboratory
frame analysis in the angular velocity calculation, we observe that
the contribution of the vibrational energy is comparable for both
cases when the EN of the protein remains unaltered or it is
altered (see green and red dots in Figure 11a). On the contrary, a
smaller difference in the rotational energy contribution is
observed for higher shear rates (see green and red crosses in
Figure 11a).
As previously discussed, when the protein with the breakable

EN is subjected to stronger shear flow, its conformation changes
with large fluctuations in its extension. This results in an increase
in the vibrational contribution with angular momentum, which
is part of the rotational energy (see eq 20), and is therefore
reflected in the observation of a slightly higher rotational energy
contribution when the protein with altered EN is subjected to
the stronger shear rate. An increase in the vibrational angular
momentum of the protein with an altered EN can be seen in
Figure 11d. Furthermore, using the Eckart frame in the angular
velocity calculation, a larger rotational contribution is observed
compared to that determined from the apparent angular velocity
computation (Figure 11b). As shown in Figure 3b, the Eckart
angular velocity is also larger compared to the apparent angular
velocity, which is manifested in the larger rotational energy (see
the second term on the rhs of eq 16). As evident from Figure
11c,d, the vibrations without angular momentum have the
largest contribution to the total kinetic energy of the rotating
protein molecule with unbreakable and breakable ENs. An
increase in the vibrational velocity contribution of constituting
particles, i.e., uα, that is part of the contribution with angular
momentum, also gives rise to the Coriolis contribution.
Moreover, when the difference between the Eckart and the
apparent angular velocity increases, the Coriolis contribution
also becomes more negative (see Figure 11d, where the absolute
value of the Coriolis term is depicted).
The implementation of an additional spring is essential in

keeping the protein close to the center of the simulation box and
preventing it from diffusing through the open edges of the
simulation box, thus preserving its geometry and preventing it
from being erased (if it crosses the open ends of the simulation
domain). Additionally, this also results in a restriction of the
translational movement of the protein. We assume that without
this constraint, the trajectory of the protein would deviate in one
of the two directions due to the flow-induced hydrodynamic lift
force (acting on the particle in the direction that is perpendicular
to the flow). We expect this to eventually push the protein into
higher velocity streams, i.e., in the proximity of the buffer region.
This effect is compensated for in OBMD simulations with the
implemented spring. The effect of the spring on the motion of
the biomolecule could be estimated from the force obtained
from the known (applied) spring constant and from monitoring
the magnitude of the displacement of the protein’s COM from
the center of the simulation box. Furthermore, as the Martini 3
protein model combined with EN does not permit the
investigation of unfolding and refolding events, we modify EN
by specifying the cutoff values for the distances at which the
bonds betweenCGbead pairs of EN are irreversibly broken. The
cutoff value used in this study is the one at which the protein’s
structure is maintained during the equilibrium simulation

(based on monitoring of the radius of gyration). Larger cutoff
values would imply the breaking of EN bonds at higher shear
rates, while lower values would not maintain a stable
conformation.

5. CONCLUSIONS
The main goal of this study was to inspect and understand the
effect of inducedmechanical stress introduced through the shear
flow on the rotational and conformational dynamics of proteins.
To this end, the protein ubiquitin (described by the CGMartini
3 model with unbreakable and breakable ENs) was subjected to
the shear flow of various strengths. Its rotational dynamics was
explored using the standard laboratory frame description and
Eckart frame formalism. The angular velocity extracted in the
laboratory frame mixes pure rotation and vibration with angular
momentum and thus has no clear dynamic interpretation. To
correctly describe the rotational and vibrational motions of the
biomolecule, we employed the Eckart frame formalism, in which
the coupling between pure rotation and vibrational angular
momentum was minimized. As shown, at higher shear rates, the
contribution of vibrations with angular momentum is greater,
which is also reflected in the observed difference between the
apparent and Eckart angular velocities. Besides, in the protein
with a breakable EN (that is also more “flexible”), the protruding
parts experience larger hydrodynamic drag forces, whereas in a
more compact protein with the unbreakable EN, this applies to
only a small portion of the segments.
We focused on the conformational dynamics of the protein

with a breakable EN when exposed to shear flow of greater
strengths. In general, we observed that the protein is stretched in
the flow direction and compressed in the gradient one. Minor
deformation was also observed in the vorticity direction.
Additionally, in this work, we did not observe a fully stretched
protein (regardless of the strength of the induced shear).
Due to the essential role of proteins both in biological

processes and in bioprocessing, it is necessary to properly
perform an inspection of their behavior in rotational and
conformational space. During certain steps in the production of
therapeutic proteins, they are subjected to shear stress, which
can lead to undesirable consequences, such as reduced
therapeutic efficacy, activity, and aggregation. However, many
contrasting results concerning the effects of shear are found in
the literature. As it appears, addressing this question is not
unequivocal and is still imperative. In the present study, by
determining the pure angular velocity of the protein, we
provided another perspective to understand the susceptibility of
the protein to the induced shear stress, leading to a better
interpretation of the dynamics of the rotating and vibrating
biologically relevant molecule. Future work would benefit from
the use of the all-atom molecular models to give even better
insight into the conformational and rotational dynamics
addressed in this work and from the search for new approaches
to circumvent the limitations (regarding the translational
freedom of the biomolecule) presented in this study.

■ AUTHOR INFORMATION
Corresponding Author

Matej Praprotnik − Theory Department, National Institute of
Chemistry, SI-1001 Ljubljana, Slovenia; Department of
Physics, Faculty of Mathematics and Physics, University of
Ljubljana, SI-1000 Ljubljana, Slovenia; orcid.org/0000-
0003-0825-1659; Email: praprot@cmm.ki.si

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c02324
J. Phys. Chem. B 2023, 127, 7231−7243

7241

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matej+Praprotnik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0825-1659
https://orcid.org/0000-0003-0825-1659
mailto:praprot@cmm.ki.si
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c02324?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Authors
Petra Papez ̌ − Theory Department, National Institute of

Chemistry, SI-1001 Ljubljana, Slovenia; Department of
Physics, Faculty of Mathematics and Physics, University of
Ljubljana, SI-1000 Ljubljana, Slovenia

Franci Merzel − Theory Department, National Institute of
Chemistry, SI-1001 Ljubljana, Slovenia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.3c02324

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Jurij Sablic ́ for fruitful discussions. The financial
support through grants P1-0002 and J1-3027 from the Slovenian
Research and Innovation Agency is gratefully acknowledged.

■ REFERENCES
(1) Bekard, I. B.; Asimakis, P.; Bertolini, J.; Dunstan, D. E. The effects
of shear flow on protein structure and function. Biopolymers 2011, 95,
733−745.
(2) Schliwa, M.; Woehlke, G. Molecular Motors. Nature 2003, 422,
759−765.
(3) Thomas, C. R.; Geer, D. Effects of Shear on Proteins in Solution.

Biotechnol. Lett. 2011, 33, 443−456.
(4) Voet, D.; Voet, J. G. Biochemistry, 4th ed.; J. Wieley & Sons,
Hoboken, 2011; pp 278−322.
(5) Wang, W. Instability, Stabilization, and Formulation of Liquid
Protein Pharmaceuticals. Int. J. Pharm. 1999, 185, 129−188.
(6) Charm, S. E.; Wong, B. L. Enzyme Inactivation with Shearing.

Biotechnol. Bioeng. 1970, 12, 1103−1109.
(7) Thomas, C. R.; Dunnill, P. Action of Shear on Enzymes: Studies
with Catalase and Urease. Biotechnol. Bioeng. 1979, 21, 2279−2302.
(8) Jaspe, J.; Hagen, S. J. Do Protein Molecules Unfold in a Simple
Shear Flow? Biophys. J. 2006, 91, 3415−3424.
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