
Chapter 10

Parallel Approaches in Molecular
Dynamics Simulations

Dušanka Janežič, Urban Borštnik and Matej Praprotnik

Abstract

In this contribution we will present the survey of our past and current endeavor
on parallel approaches in molecular modeling algorithm development, for example,
molecular dynamics (MD) simulation. In particular, we will describe the new split
integration symplectic method for the numerical solution of molecular dynamics
equations and methods for the determination of vibrational frequencies and normal
modes of large systems, and the distributed diagonal force decomposition method,
a parallel method for MD simulation.

Parallel computer programs are used to speed up the calculation of computation-
ally demanding scientific problems such as MD simulations. Parallel MD methods
distribute calculations to the processors of a parallel computer but the efficiency of
parallel computation decreases due to inter processor communication. Calculating
the interactions among all atoms of the simulated system is the most computation-
ally demanding part of an MD simulation. Parallel methods differ in their distribu-
tion of these calculations among the processors, while the distribution dictates the
method’s communication requirements.

We have developed a computer program for molecular dynamics simulation that
implements the split integration symplectic method and is designed to run on spe-
cialized parallel computers. The molecular dynamics integration is performed by the
new integration method, which analytically treats high-frequency vibrational motion
and thus enables the use of longer simulation time steps. The low-frequency motion

Dušanka Janežič
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: dusa@cmm.ki.si

Urban Borštnik
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: urban@cmm.ki.si

Matej Praprotnik
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: praprot@cmm.ki.si

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_10, 281
c© Springer-Verlag London Limited 2009

282 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

is treated numerically on specially designed parallel computers, which decreases
the computational time of each simulation time step. We study the computational
performance of simulation on specialized computers and provide a comparison to
standard personal computers. The combination of the new integration method with
two specialized parallel computers is an effective way to significantly increase the
speed of molecular dynamics simulations.

We have also developed a parallel method for MD simulation, the distributed-
diagonal force decomposition method. Compared to other methods its communica-
tion requirements are lower and it features dynamic load balancing, which increase
the parallel efficiency. We have designed a cluster of personal computers featuring
a topology based on the new method. Its lower communication time in comparison
to standard topologies enables an even greater parallel efficiency.

10.1 Split Integration Symplectic Method

The standard integrators for solving the classical equations of motion are the second-
order symplectic leap-frog Verlet (LFV) algorithm [1] and its variants. Their power
lies in their simplicity since the only required information about the studied physical
system are its interacting potential and the timescale of the fastest motion in the sys-
tem, which determines the integration time step size. Therefore they are employed
for solving dynamics problems in a variety of scientific fields, for example, molec-
ular dynamics (MD) simulation [2, 3], celestial mechanics [4–6], and accelerator
physics [7]. However, in the case of MD integration, the integration time step size
is severely limited due to the numerical treatment of the high-frequency molecular
vibrations, which represent the fastest motion in the system [8]. Therefore, a huge
number of integration steps is usually required to accurately sample the phase space
composed of all the coordinates and momenta of all the particles. This is a time-
consuming task and is often too demanding for the capabilities of contemporary
computers.

One way of overcoming the limitation of the standard methods’ integration time
step size is to analytically treat high-frequency molecular vibrations. This requires
the standard theory of molecular vibrations [9] to be built into the integration
method. In this way the fast degrees of freedom are rigorously treated and not
removed, as in case of rigid-body dynamics [10–12], where small molecules are
treated as rigid bodies. Such semi-analytical second-order symplectic integrators
were developed by combining MD integration and the standard theory of molecular
vibrations [13–16]. The unique feature of these MD integrators is that the standard
theory of molecular vibrations, which is a very efficient tool to analyze the dynam-
ics of the studied system from computed trajectories [17–23], is used not to analyze,
but to compute trajectories of molecular systems. Information about the energy dis-
tribution of normal modes and the energy transfer between them is obtained without

10 Parallel Approaches in Molecular Dynamics Simulations 283

additional calculations. The analytical description of coupled molecular vibrations
can be employed only when using the normal coordinates [9, 13–15] and a translat-
ing and rotating internal coordinate system of each molecule [24,25]. The dynamics
of an Eckart frame has to be adopted to be used within the second-order generalized
leap-frog scheme [26, 27] for MD integration. This assures the time reversibility of
the methods [13,16]. In the following we shortly summarize technical details of the
method.

In MD simulations for each atom of the system the Hamilton equations are solved

dη

dt
= {η ,H} = L̂Hη (10.1)

where L̂H is the Lie operator, {,} is the Poisson bracket [28], and η = (q,p) is a
vector of the coordinates of all the particles and their conjugate momenta.

The formal solution of the Hamiltonian system (10.1) can be written in terms of
Lie operators as

η |tk+∆ t = exp(∆ tL̂H)η |tk (10.2)

and represents the exact time evolution of a trajectory in phase space composed of
coordinates and momenta of all the particles from tk to tk + ∆ t, where ∆ t is the
integration time step [28].

The first step in the development of a new symplectic integration method is to
split the Hamiltonian H of a system into two parts [29, 30]

H = H0 +Hr, (10.3)

where H0 is the part of the Hamiltonian that can be solved analytically and Hr is the
remaining part.

Next, a second-order approximation for (10.2), known as the generalized leap-
frog scheme [26, 27], is used

η |tk+1 = exp

(
∆ t

2
L̂H0

)
exp(∆ tL̂Hr)exp

(
∆ t

2
L̂H0

)
η |tk +O(∆ t3), (10.4)

which defines the split integration symplectic method (SISM). The whole integra-
tion time step combines the analytical evolution of H0 with a correction from the Hr

resolved by numerical integration. The Eq. (10.4) on the operators level describes
how to propagate from one point in phase space to another. First, the system is prop-
agated for a half integration time step by H0, then for a whole step by Hr, and finally
for another half step by H0. The whole integration time step thus combines the ana-
lytical evolution of H0 with a correction arising from the Hr performed by numerical
integration. This integration scheme was used as the basis for the development of
the SISM.

The model Hamiltonian has the following form

284 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

H = ∑
i

p2
i

2mi

+
1
2 ∑

bonds

kb(b−b0)
2 +

1
2 ∑

angles

kθ (θ −θ0)
2 +

1
2 ∑

torsions

V0(cosφ − cosφ0)
2

+ ∑
i> j

eie j

4πε0ri j

+ ∑
i> j

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

, (10.5)

where i and j run over all atoms, mi is the mass of the i-th atom, pi is the linear
momentum of the i-th atom, b0 and θ0 are reference values for bond lengths and
angles, respectively, kb and kθ are corresponding force constants, φ0 are the refer-
ence values for the torsion angles, and V0 are the corresponding barrier heights; ei

denotes the charge on the i-th atom, ε0 is the dielectric constant in vacuum, ri j is
the distance between the i-th and j-th atoms, and εi j and σi j are the corresponding
constants of the Lennard–Jones potential.

The Hamiltonian (10.5) is a typical MD Hamiltonian that describes a system of
molecules with only one equilibrium configuration and no internal rotation. We as-
sume that the height of the barrier of the torsional potential is large enough that
the motion of atoms in the vicinity of the minimum of the torsional potential can
be treated as a harmonic vibration around the equilibrium configuration. The vibra-
tional potential energy is therefore the sum of vibrational potential energies of all
the molecules in the system

Vvib =
m

∑
j′=1

Vvib j′ =

1
2 ∑

bonds

kb(b−b0)
2 +

1
2 ∑

angles

kθ (θ −θ0)
2 +

1
2 ∑

torsions

V0(cosφ − cosφ0)
2, (10.6)

where Vvib j′ is the vibrational potential energy of the j′-th molecule.
The pure harmonic Hamiltonian H0 in the splitting (10.3) is defined as the sum

of vibrational energies of all the molecules in the system

H0 = T +Vharm =
m

∑
j′=1

(Tj′ +Vharm j′), (10.7)

where T = ∑i p2
i /2mi is the kinetic energy of all the atoms in the systems, Tj′ is

the kinetic energy of the j′-th molecule, Vharm is the harmonic vibrational potential
energy, which is for an individual molecule defined by Eq. (10.11), Vharm j′ is the

corresponding harmonic vibrational potential energy of the j′-th molecule, and m is
the number of all the molecules in the system.

The remaining part of the Hamiltonian

Hr = H −H0 = Vnb +Vah (10.8)

10 Parallel Approaches in Molecular Dynamics Simulations 285

is then equal to the sum of the nonbonded potential energy

Vnb = ∑
i> j

eie j

4πε0ri j

+ ∑
i> j

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(10.9)

and the anharmonic vibrational potential energy of higher terms (cubic, quartic, etc.)
in terms of displacements of atoms from their equilibrium positions

Vah = Vvib −Vharm. (10.10)

The underlying principle to enable the SISM to permit longer integration time
steps lies in the analytical treatment of high-frequency vibrations described by H0.
The propagation scheme (10.4) enables to treat the time evolution of the vibrational,
rotational, and translational degrees of freedom of each molecule (described by
exp

(
(∆ t/2)L̂H0

)
) independently of all other molecules in the system because the

total intermolecular interactions are described by a separate term exp
(
∆ tL̂Hr

)
. Each

molecule is treated as an isolated molecule when propagating by exp
(
(∆ t/2)L̂H0

)
.

Propagation by exp
(
(∆ t/2)L̂H0

)
can therefore be solved analytically using normal-

mode analysis. In the latter, only quadratic terms are kept in the expansion of the
vibrational potential energy Vvib and all higher terms are neglected [9]

Vvib ≈Vharm =
1
2

3N

∑
i, j=1

(
∂ 2Vvib

∂∆qi∂∆q j

)

0

∆qi∆q j =

1
2

3N

∑
i, j=1

(
∂ 2Vharm

∂∆qi∂∆q j

)

0

∆qi∆q j

=
1
2

3N

∑
i, j=1

Hi j∆qi∆q j =
1
2

∆q ·H ·∆q. (10.11)

Here ∆q = (∆x1,∆y1,∆z1, . . . ,∆xN ,∆yN ,∆zN) is a vector of the relative Cartesian
displacement coordinates and their corresponding momenta are ∆p = (m1∆v1x ,
m1∆v1y ,m1∆v1z , . . . ,mN∆vNx ,mN∆vNy ,mN∆vNz), where subscripts x, y, x denote
x, y, z components of the internal coordinate system, respectively (see Fig. 10.1).

The Hessian H ∈ R
3N×3N is a symmetric matrix of the second derivatives of the

vibrational potential energy with the elements

Hi j = H ji =

(
∂ 2Vvib

∂∆qi∂∆q j

)

0

=

(
∂ 2Vharm

∂∆qi∂∆q j

)

0

. (10.12)

To determine the vibrational motions of the system, the eigenvalues and eigen-
vectors of the mass-weighted Hessian M−1/2 ·H ·M−1/2 have to be calculated [9,
20–22]. This leads to solving a secular equation

det(M−1/2 ·H ·M−1/2 −λ I) = 0, (10.13)

286 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

x

z
r

Tj

q∆
2j

3j
q∆

4j
q∆

5j
q∆

6j
q∆

2

3

4

5

6

1j
q∆

1

y

e

e2j

e3j
1j

2j
q

Fig. 10.1 Atom displacement in the Cartesian and the internal coordinate system.

where M ∈R
3N×3N is a diagonal mass matrix. The diagonal elements are M11 = m1,

M22 = m1, M33 = m1,. . . ,M3N−2,3N−2 = mN , M3N−1,3N−1 = mN and M3N,3N = mN .
For a nonlinear molecule composed of N atoms, Eq. (10.13) has 3N − 6 nonzero
eigenvalues ωi =

√
λi describing molecular vibrations. The corresponding dynamics

is described in the standard theory of molecular vibration by normal coordinates Qi,
i = 1,2, . . . ,3N−6 [28]. Six of 3N roots in Eq. (10.13) are zero. They correspond to
three translations and three rotations of a molecule as a whole while their dynamics
is not described in terms of the normal coordinates [9, 13].

An alternative approach to standard theory’s description of molecules’ rotation
and translation [9] is to describe rotation and translation of a molecule in terms of
the normal coordinates. To do so the whole atom velocity needs to be expressed
in terms of the relative Cartesian displacement coordinates. It has been shown in
full detail that the dynamics of the internal coordinate system in this case differs
from the dynamics of the Eckart frame, which is employed in the standard theory of
molecular vibrations [13].

The equations of motion for the normal coordinates take the Hamiltonian form
as [13]

d

dt
Pi = −ω2

i Qi;
d

dt
Qi = Pi, i = 1,2, . . . ,3N (10.14)

where Pi is the conjugate momentum to the normal coordinate Qi [28].
The particular solution of the system (10.14) can be written as [13]

10 Parallel Approaches in Molecular Dynamics Simulations 287

[
Pi(

∆ t
2)

Qi(
∆ t
2)

]
=

[
cos(ωi

∆ t
2) −ωi sin(ωi

∆ t
2)

1
ωi

sin(ωi
∆ t
2) cos(ωi

∆ t
2)

][
Pi(0)
Qi(0)

]
. (10.15)

Equation (10.15) describes vibrational motion corresponding to the normal mode i

with ωi > 0.
The equations of motion for the translation and rotation of a molecule in terms of

the normal coordinates, obtained from Eq. (10.15) for the normal coordinates with
ωi = 0 and using limx→0

sinx
x

= 1, are [13]

Pi

(
∆ t

2

)
= Pi(0), (10.16)

Qi

(
∆ t

2

)
= Pi(0)

∆ t

2
+Qi(0). (10.17)

The expressions for the transformations between Cartesian, relative Cartesian
displacement, and normal coordinates are obtained in a straightforward way [13].

The SISM then explicitly reads as follows:

• Preparatory step: at the outset of calculation, vibrational frequencies and nor-
mal modes of H0, represented by the normal coordinates P, Q, are determined.
The initial normal coordinates P0

i , Q0
i , i = 1, ...,3N, are obtained from the ini-

tial atoms’ velocities and the initial displacements of the atoms from their equi-
librium positions by means of the transformational matrix A. The columns
of A are the eigenvectors of the root-mass-weighted second-derivative ma-
trix M−1/2 ·H ·M−1/2 and N is the number of atoms in each molecule.

• Analytical solution exp
(

∆ t
2 L̂H0

)
: the normal coordinates, P0

i , Q0
i , are rotated in

phase space by the corresponding vibrational frequency ωi for ∆ t
2 :

[
P′

i

Q′
i

]
= R

[
P0

i

Q0
i

]
(10.18)

R =

[
cos(ωi

∆ t
2) −ωi sin(ωi

∆ t
2)

(1/ωi)sin(ωi
∆ t
2) cos(ωi

∆ t
2)

]
(10.19)

ωi 6= 0 defines the vibrations of atoms in each molecule
ωi = 0 defines translations and rotations of molecules
The normal coordinates of the normal modes with frequency zero
(limx→0

sinx
x

= 1 for ωi = 0) evolve as

P
′
i = P0

i (10.20)

Q
′
i = P0

i

∆ t

2
+Q0

i (10.21)

Coordinate transformation: the normal coordinates P′
k, Q′

k are transformed to
the Cartesian displacement coordinates ∆ p′i, ∆q′i (m1 = m2 = m3,...,m3N−2 =
m3N−1 = m3N , where mi, i = 1, ...,3N are the atoms’ masses):

288 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

∆ p
′
i =

√
mi ∑

k

AikP
′
k (10.22)

∆q
′
i =

1√
mi

∑
k

AikQ
′
k (10.23)

• Numerical solution, exp(∆ tL̂Hr): momenta in the Cartesian coordinates are nu-
merically integrated:

p′′i = p′i −∆ t

(
∂Hr

∂q

)
(10.24)

q′′i = q′i +∆ t

(
∂Hr

∂ p

)
= q′i (10.25)

Only one force calculation per integration step must be performed. Since Hr =

Hr(q) and
(

∂Hr

∂ p

)
= 0, only momenta change at this step.

Back-transformation: the Cartesian displacement coordinates ∆ p′′k , ∆q′′k are back-
transformed to the normal coordinates P′′

i , Q′′
i :

P
′′
i = ∑

k

1√
mk

AT
ik∆ p

′′
k (10.26)

Q
′′
i = ∑

k

√
mkAT

ik∆q
′′
k (10.27)

• Analytical solution, exp
(

∆ t
2 L̂H0

)
: the normal coordinates are again rotated in

phase space for ∆ t
2 : [

Pi

Qi

]
= R

[
P′′

i

Q′′
i

]
(10.28)

This concludes one full SISM integration step, which is repeated until the desired
number of integration steps is reached.

One time step of SISM is schematically presented in Fig. 10.2.

10.1.1 Calculation of Infrared Spectra

The vibrational and rotational motions of molecules are those which involve ener-
gies that produce the spectra in the infrared region. Therefore, the SISM is partic-
ularly suitable for computing the IR spectra because rotational, translational, and
vibrational motions are resolved analytically, independently of the MD integration
time step.

Figure 10.3(a) demonstrates that the IR spectra of bulk water at ambient condi-
tions calculated by SISM and LFV using a 0.5 fs integration time step are in good
agreement. These IR spectra were taken as a reference for comparison with calcu-
lated IR spectra using longer integration time steps. When using a 1.0 fs integration

10 Parallel Approaches in Molecular Dynamics Simulations 289

Analytical solution

Numerical solution

Preparatory step

Analytical solution
 (First half)

(Second half)

Transformation

t∆

∆

∆t/2

t/2

Back−transformation

Normal Modes

Evolve with H0
Vibration, Rotation, Translation

Evolve with Hr = Hr (q)
Force calculation

Evolve with H0
Vibration, Rotation, Translation

Physical Properties

Fig. 10.2 Solution scheme for SISM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM_MTS

(a) ∆ t = 0.5 fs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(b) ∆ t = 1.0 fs

Fig. 10.3 Calculated (LFV, SISM) IR spectrum of bulk water for ∆ t = 0.5 fs and ∆ t = 1.0 fs.

time step, the high-frequency double peak at 3300 cm−1 in the IR spectrum calcu-
lated by the LFV already shifts to the higher frequencies as shown in Fig. 10.3(b).
The observed blue shift suggests that when using a 1.0 fs integration time step, the
LFV can no longer accurately describe the high-frequency vibrational motions of
atoms in a water molecule. This phenomenon is even more evident in Fig. 10.4 for
the cases of 1.5 fs and 2.0 fs integration time steps, where the peak at 1775 cm−1

also starts shifting toward higher frequencies. Peaks in corresponding IR spectra,

290 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(a) ∆ t = 1.5 fs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(b) ∆ t = 2.0 fs

Fig. 10.4 Calculated (LFV, SISM) IR spectrum of bulk water for ∆ t = 1.5 fs and ∆ t = 2.0 fs.

which are calculated by the SISM, however remain at the same positions as cor-
responding peaks in the reference IR spectra calculated using the integration time
step of 0.5 fs. This proves that owing to the analytical description of high-frequency
molecular vibrations, the latter are accurately described by the SISM also using a
2.0 fs integration time step [15].

10.1.2 Enlarging the Integrational Time Step

The actual speedup of an integrational method is determined by measuring the re-
quired CPU time per integration step. Our results show that the computational cost
per integration step is slightly larger for the SISM than the LFV for systems smaller
than 1000 atoms. However, for larger systems consisting of more than 1000 atoms
the computational cost per integration step becomes approximately the same for
all of the methods due to the time-consuming O(N2) numerical calculation of non-
bonded forces, which is performed by all three methods in the same way and prevails
over the additional calculations in the iterative SISM, which scale linearly with N.
Therefore, the speedup of the SISM over the LFV is determined mainly by the sig-
nificant difference in the integration time step size owing to the analytical treatment
of high-frequency motions by SISM [16, 31].

10.2 Parallel Computers

Computers are an essential tool used to solve computational problems in science
today. The speed of computer processors is continually increasing, enabling its use
to approach ever more complex computational problems [32, 33]. However, many
existing problems would be well served by an increase in computational capacity

10 Parallel Approaches in Molecular Dynamics Simulations 291

today. For these problems, parallel computers provide a solution [34]. Many scientific
problems can be effectively parallelized to run on a parallel computer.

10.2.1 Parallel Computing

In parallel computing, a problem is split into several subproblems that are solved
concurrently on parallel processors in a shorter time. A parallel program is written to
be executed on many processors at once and they must correctly share and exchange
data to solve the problem. Generally, the processors must communicate throughout
the computation since the results from one processor are needed by others. The
manner in which the initial problem is divided among the processors – the data
distribution and the distribution of computation – greatly affects how the parallel
program is written and the time that is spent for communication. Generally, time that
is spent for communication cannot be used for communication, since the processor
is waiting for input for its next calculation.

10.2.1.1 Parallel Efficiency

Since it is the goal of parallel computing to reduce the total time required to solve
a problem, the time spent for communication must be minimized. If it takes time T

to solve the problem, an ideal parallel computation on P processors would take only
T/p; however, due to the time lost to communication and other factors, the time Tp

required by any processor is usually greater: Tp > T/p. We can now define the
speedup

S =
T

Tp

(10.29)

as the factor specifying how much faster the parallel computation is compared to
a single processor computation. Ideally, the speedup S would equal the number of
processors P, S = P, which is true if Tp = T/P. In several rare cases such a linear

speedup is possible or even exceeded due to hardware effects [35]. We can define
the parallel efficiency

E =
S

P
=

T

PTp

(10.30)

to measure the performance of the parallel computation relative to the ideal time. In
optimizing a parallel program, we strive to obtain the highest parallel efficiency
since it directly translates to increasing the speedup offered by the program. A
higher parallel efficiency is obtained by bounding the communication time and
by ensuring that all of the processors have an equal computational load. If proces-
sors have unequal computational loads, then whenever the processors communicate
globally, the ones with the lowest load must wait for the most loaded processor to
finish its computation and begin communication. Load balancing the computation

292 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

attempts to keep an equal computional load among all processors, which minimizes
waiting time and achieves a higher parallel efficiency.

10.2.2 Parallel Computer Types

Parallel computers may be divided into two broad categories depending on the way
processors access memory. The type of memory access greatly influences the way
in which a parallel program must be written.

Shared Memory

In shared memory computers, all processors may access all memory directly (i.e., a
processor may read from or write to any memory location, as if the memory were
local). The two common types of shared memory computers are symmetric multi-
processing (SMP) computers, in which all memory is local to all of the processors.
In effect, all memory accesses require the same access time. In nonuniform mem-
ory access computers (NUMA), processors have local memory, which provides the
fastest access times; however, they can still directly access remote memory (i.e.,
another processor’s local memory), albeit with a higher access time.

Distributed Memory

In distributed memory computers, processors can access only their local memory,
but they cannot directly access remote memory. All data exchange between the pro-
cessors must occur by explicit message passing that involves both processors ex-
changing messages over a processor interconnect, which provides the connection
among the processors. Current interconnect technologies range from standard Eth-
ernet to higher-performance Myrinet [36], Infiniband [37], and others.

Libraries, such as the Parallel Virtual Machine [38] (PVM) or the Message Pass-
ing Interface [39,40] (MPI) are used to abstract the implementation details of a given
computer’s message-passing hardware, providing a standard interface to the pro-
grammer. Since distributed memory computers are more specific than shared mem-
ory computers, parallel programs targeted for distributed memory computers can
run on shared memory ones as well. Specific implementations of message-passing
libraries on shared memory computers are often optimized to take advantage of the
shared memory.

Modern parallel computers, such as clusters of personal computers, are
increasingly hybrids of both shared memory and distributed memory computers:
the parallel computer is composed of a number of shared-memory nodes (such as
multiprocessor, multi-core personal computers), which are in turn connected by the
interconnect. While the processors in one node share memory, the overall parallel

10 Parallel Approaches in Molecular Dynamics Simulations 293

computer is still characterized by its distributed memory. The programmer must still
use a message-passing library as the overall data exchange mechanism.

10.2.2.1 Topologies of Clusters

Clusters are traditionally built using switching technologies. Indeed, the first clus-
ters used the fastest Ethernet switches then available [41, 42]. However, switches
often have limited number of connections, limiting the cluster size, and often have
a limited amount of bandwidth that must be shared among all nodes connected to it,
which is especially true if multiple levels of switches are used [43].

Many parallel computers have therefore been designed around point-to-point
connections between individual processors. A point-to-point processor interconnect
can be described by a mathematical graph. The vertices of a graph correspond to the
processors while the edges correspond to the interconnect’s connections between the
processors. The topology of the interconnect is then described by the graph’s topol-
ogy. While it is virtually impossible to provide full direct connectivity among any
processor pair for larger numbers of processors, the topology can be chosen to have
desirable attributes from both a performance standpoint as well as from an ease of
programming perspective. Generally, successful topologies used for MD simulation
have been rings, meshes [44], and hypercubes [45].

10.2.3 Reducing Computational Complexity in Molecular

Dynamics Simulations

The number of nonbonding interactions in a molecular system greatly outnumbers
the number of bonding interactions. A system of N atoms has O(N2) nonbonding
interactions arising from the N2/2 atomic pairs. Since any atom can have at most
a few bonds, the number of bonding interactions is O(N). The calculation of the
nonbonding interactions is the principal limiting factor in computer simulations,
limiting not only the attainable simulation lengths but also the system sizes that can
be feasibly simulated.

Several approaches are used to reduce the computational complexity of nonbond-
ing interactions below O(N2). Among these are employing an interaction cutoff dis-
tance, the Barnes–Hut tree method [46], and the fast multipole methods [47, 48].

Cutoff Distance

Employing a cutoff distance is among the principal means of reducing the com-
putational complexity of computing nonbonding interactions [49]. A characteristic
of nonbonding interactions is their decreasing magnitude with increasing distance.
Both commonly-employed potentials in classical MD simulations behave this way.

294 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

The Lennard–Jones potential used to describe van der Waals interactions between
atomic pairs, decays as r−6 with increasing distance r and the Coulomb potential,
which describes the electrostatic interaction between atomic pairs, decays as r−1

with increasing distance r. The limit at infinite distance for these interactions is 0.
The potential can be changed or redefined to be 0 beyond a certain cutoff distance.
Various methods are used to achieve this while retaining an accurate simulation de-
spite the changed functional form [50, 51].

The gain is that only interactions with the cutoff distance need to be calculated.
Since interactions among atoms farther apart than the cutoff distance is defined to be
zero, their calculation can be ignored. Instead of calculating O(N) interactions for
each of the N atoms (yielding O(N2) interaction calculations), only a finite subset
of interactions for each of the N atoms must be calculated. The size of the subset
depends on the system density and the cutoff radius, but is independent of the system
size. The computational complexity is therefore reduced to O(N).

Tree and Fast Multipole Methods

Tree-based methods and fast multipole-based methods provide a means to account
for all the pairwise interactions in a molecular system with a computational com-
plexity less than O(N2). Both involve clustering spatially close atoms into clus-
ters and using representative values of these clusters instead of individual atoms to
calculate distant interactions. In the Barnes and Hut tree method, interactions are
calculated individually for each atom. For close by atoms, the interaction is calcu-
lated directly. Beyond a certain distance, the interactions are calculated between the
atom and the cluster. The computational complexity of the tree-based methods is
O(N logN). In the fast multipole methods, several orders of multipoles are calcu-
lated for each atomic cluster. Atomic interactions are derived from the interactions
of their representative multipoles. For most distant clusters, individual atoms are not
even considered.

As seen later in Sect. 10.3.1, the tree- and multipole-based methods are espe-
cially well suited to parallelization techniques in which the presence of atoms on
individual processors is limited.

10.3 Parallel Molecular Dynamics Computer Simulations

In parallel calculations of molecular dynamics simulations, processors are used in
parallel to calculate the two parts of every MD integration step: the force calculation
and the coordinate update [52]. MD simulation time steps are inherently sequential:
the newest coordinates are needed to correctly calculate the forces and coordinates
can be updated only when the latest forces have been calculated. While the force
calculation and the coordinate update are calculated in parallel, the processors must
exchange force and atomic coordinates between these two calculations in a global

10 Parallel Approaches in Molecular Dynamics Simulations 295

Fig. 10.5 The parallel main
loop in molecular dynamics.
It consists of two computation
phases indicated in white
boxes (the force calculation
and coordinate updates) and
two communication phases
indicated in grayed boxes
(the force summation and
coordinate broadcast). The
global operations performed
in the communication phases
are detailed in Sect. 10.3.3.

Initial coordinates

Force calculation

Force summation

Coordinate updates

Coordinate broadcast

operation step. The parallel MD loop is shown in Fig. 10.5 and the global operations
are detailed in Sect. 10.3.3.

10.3.1 Methods for Parallel Molecular Dynamics Simulations

Three main classes of parallel methods have been developed for MD simula-
tions: replicated data [53, 54], spatial decomposition [55], and force decomposi-
tion [54, 56, 57]. Several advanced methods combine both the spatial and force
decomposition approaches [58–61]. The methods differ in how interaction calcu-
lations are distributed among the processors. Since a processor needs coordinate
data to calculate interactions, the distribution of interaction calculation determines
the data distribution among the processors. The data distribution in turn governs the
data that must be transferred among processors in each global operation. In addition,
the atomic distribution maps atoms to processors for coordinate updates and other
calculations that do not depend on interactions with other atoms.

Replicated Data

The replicated data method [53, 54] is the most straightforward parallelization
method yet with the highest communication cost. As its name implies, all atomic
data are replicated among all processors. As such, each global operation step en-
tails the transfer of all N atomic data among all P processors, which has a higher
communication cost than other methods. The global communication can easily be
performed using a single collective operation routine. Any processor can calculate
any interaction and perform any of the force updates, which simplifies load balanc-
ing. The atomic distribution is therefore very fluid.

296 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

Spatial Decomposition

In the spatial decomposition method, the space of the molecular system is divided
into separate regions, nominally one per processor. The processors are then respon-
sible for calculating the interactions among atoms in their region of space; for this,
they need to communicate with at least their 27 neighboring processors resulting
in a data transfer volume of (N/P)2/3. The spatial decomposition method is well
suited to simulations with a short cutoff distance. Since the transferred data vol-
ume is limited and the communication due to the global operations is also limited
to nearby processors, it is straightforward to map processors onto common inter-
connect topologies such as a mesh. If no cutoff would be used, the communication
would degenerate to data replication. If the molecular system does not have uniform
density, the load balancing is nontrivial. The atomic distribution generally mirrors
the spatial decomposition, that is, a processor updates coordinates of the atoms in
its assigned spatial region.

Force Decomposition

The force decomposition [54,56,57] method divides the N2 force matrix (represent-
ing the N2 interactions among N atomic pairs) into P disjoint sets called blocks,
where P is related to the number of processors employed for the calculation. Such a
division of the force matrix implies that the set of N atoms is divided into N/

√
P sub-

sets. Each processor calculates the interactions in its region, that is, among the atoms
in two blocks. Only O(N/

√
P) data is exchanged and a processor communicates

only with
√

P other processors that are in the same processor row or column. The
atomic distribution is a refinement of the distribution of atoms into blocks. Atoms
in a block are assigned to one of the

√
P processors associated with the block for

coordinate updates since its data are already present on the processor.

10.3.2 Specialized Processors

Specialized processors are processors that are designed for only a certain type of
calculation. While they are much faster than general-purpose processors, they are
more difficult to use. They are usually coprocessors, located in the host computer,
and software must be specially written to effectively use them. A common exam-
ple are the graphics processing units (GPU) found in modern personal computers.
These processors optimized for calculating the linear algebra operations that are
commonly used for computer graphics but are not as suited for other general pur-
pose calculations as general-purpose processors [62, 63].

10 Parallel Approaches in Molecular Dynamics Simulations 297

CPU

MDG2MDG2

CPU

RAM RAM

PCI Bus

System Bus

GigEGigE
PCI Bus

System Bus

PCPC

Gigabit Ethernet

Fig. 10.6 The use of parallel MDGRAPE-II processors. Shown are two personal computers (PCs),
each with one MDGRAPE-II processor (labeled MDG2). The PCs are directly connected with a
gigabit Ethernet point-to-point connection.

q

q

MDGRAPE−II Forces on atoms

Atomic coordinates

Atomic coordinates
f

Fig. 10.7 The calculation of forces by the MDGRAPE-II. The atomic position vectors q are input,
and the MDGRAPE-II returns a vector of forces f exerted on the atoms.

MDGRAPE

The MDGRAPE (MD Gravity Pipeline) processor is a specialized processor for
calculating MD simulations [64–67]. Specifically, it is used for the fast evalua-
tion of pairwise interactions, which is precisely the most demanding part of MD
simulations. Due to its specialization, it can be effectively used to calculate only
the nonbonding interactions. Other calculations, including bonding interactions, are
calculated on the general-purpose processor of the host computer. An example of
two MDGRAPE-II processors placed in two PCs is shown in Fig. 10.6. Using the
MDGRAPE-II processor achieves an eightfold speedup in the evaluation of pairwise
interactions compared to standard contemporary processors [68].

In MD applications on specialized processors, the input data are the atomic co-
ordinates and atomic types, while the output data are the interactions, for example
the forces acting on the atoms or the energies of individual atoms. As an example
for the MDGRAPE-II processor, the interaction to be calculated (i.e., the Coulomb
and the Lennard–Jones potential) is defined as a function and uploaded to the pro-
cessor. Coordinates are then sent to the processor in a vector, and the return value
is the vector containing forces or the atomic energies. The process of calculating
interactions is depicted in Fig. 10.7. The calculation on other specialized processors
proceeds in a similar manner.

298 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

10.3.3 Global Communication in Parallel Molecular

Dynamics Simulations

Global operations entail a communication operation in which all processors par-
ticipate. A simple example is the broadcast of data by one processor to all others.
The collective operations that are present in many message-passing libraries often
include basic collective operations such as a broadcast-to-all and all-to-all data ex-
changes; however, more complex global operations must still be programmed by
hand to be efficient [45, 69]. The two main operations found in parallel MD are the
global sum and global broadcast [45, 69]. The role of these two global operations is
illustrated in Fig. 10.5.

Global Sum

The global sum operation in MD is used after the calculation of interactions, for
example, forces acting on atoms. After the calculation, many processors may have
a partial force acting upon an atom, their sum being the total force, which is the
same as if it were calculated by a single processor. The global sum operation there-
fore sums all of the partial forces to obtain the total forces. In addition, the force is
needed only by the processor that updates coordinates. Therefore, an efficient imple-
mentation of the global sum operation leaves the total forces only on the processors
performing the coordinate updates of the respective atoms. The global operation
can be implemented using the MPI_reduce_scatter MPI routine in a paral-
lel MD program using the replicated data parallelization method [69] in which any
processor may have a force acting on any atom.

Global Broadcast

The global broadcast is used in MD simulations to broadcast updated coordinates
to processors. After processors perform force updates for their respective atoms,
other processors must receive the updated coordinates to correctly calculate the next
interactions. The global broadcast operation performs this broadcast. In a replicated
data parallel MD program, the MPI_allgatherv MPI routine may be used since
every processor may need coordinates of any atom.

The global sum and broadcast operations for parallel MD not using the replicated
data parallelization method tend to be more complex. In spatial decomposition, the
global sum needs to sum interactions from neighboring processors only (assuming
the cutoff distance is small enough) and the broadcast has a similarly small locality.
In the force decomposition method, the communication in the global sum and global
broadcast operations is limited to blocks. Only the processors that share a block
communicate. Since data within a block is replicated, the processors within a block

10 Parallel Approaches in Molecular Dynamics Simulations 299

Fig. 10.8 The decomposition
of the force matrix used
for our parallel SISM MD
program. An example for
20 atoms and 16 processors
is shown. The atoms are
divided into 4 blocks and
one processor is assigned
to calculate the interactions
among each of the 4×4 = 16
block pairs. Blocks

B
lo

c
k
s

1 2 3 4

4

3

2

1

perform a “block-limited” version of the global operation used in replicated data
parallel MD.

10.4 Parallelization of SISM

Because the SISM method focuses on speeding up the calculation of bonding inter-
actions and parallelization focuses on speeding up the calculation of non-bonding
interactions, it is natural to complement the two approaches.

To showcase the complementarity of the SISM method, parallelization, and
the use of specialized processors, we have developed a parallel program for MD
simulation implementing the SISM method [68]. It supports the use of multiple
MDGRAPE-II processors in many host computers. We opted to use the force de-
composition approach to parallelization and do not rely on any special interconnect
topology. The method is available for distributed memory parallel computers

The decomposition of the force matrix that we used in our program is depicted
in Fig. 10.8. Molecules are never split into different blocks. The molecules in every
block are also assigned to individual processors, forming an atomic distribution. A
processor applies the SISM to the molecules assigned to it, including coordinate
updates of its constituent atoms. The processor is also responsible for calculating
interactions among the atoms in two of its associated blocks. If the MDGRAPE-II
board is present, the calculations are performed on the board as shown in Fig. 10.9,
otherwise the host processor calculates the interactions.

10.4.1 The Distributed Diagonal Force Decomposition Method

To enable calculations of the SISM method on larger, general parallel computers that
do not rely on specialized processors, we have implemented the distributed diagonal
force decomposition (DDFD) method [70,71]. The DDFD method is an extension of
the general force decomposition method. It uses a minimal number of processors for

300 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

MDGRAPE−II

Blocks

B
lo

c
k
s

Forces of block 2 atoms

on block 3 atoms

Block 3 coordinates

Block 2 coordinates
1 2 3 4

4

3

2

1

Fig. 10.9 Force calculation on the MDGRAPE-II processor using force decomposition. Shown
is the force calculation of the interactions among the atoms in blocks 2 and 3, specifically the
forces exerted by block 2 atoms on block 3 atoms. The blocks are highlighted with a light gray
background; the dark gray square represents the interactions among the atoms of these two blocks.
A separate calculation is used to calculate the equal but opposite forces of block 3 atoms on block 2
atoms.

the number of blocks used to decompose the force matrix. Since a larger number of
blocks are smaller, the communication requirements are lower, resulting in a higher
parallel efficiency.

In the DDFD method, the diagonal of the force matrix is distributed. As seen in
Fig. 10.10(a), there are three types of interactions among the atomic blocks: a block
product (interactions among two atomic blocks) lies either above, on, or below the
diagonal. The interactions in the block products above the diagonal are opposite but
equal to the interactions in the block products below the diagonal, so they do not
have to be explicitly calculated. The interactions in block products on the diagonal
are only among atoms in the same block. Any processor that has atomic data for
these atoms can calculate any of the intra-block interactions for this block. As seen
in Fig. 10.10(b), these interactions are distributed for calculation to processors below
the diagonal; Fig. 10.10(c) shows the final state. The number of processors needed
is equal to only the number of block products below the diagonal.

A side effect of the diagonal distribution process in the DDFD method is the
straightforward implementation of load balancing. The distribution of interactions
from a diagonal block product to processors holding the block data can easily be
altered, assigning specific processors more or less interaction calculations. By alter-
ing the diagonal distribution in this way, the computational load of the processors
is changed [70, 71]. Load balancing is especially crucial when using an interaction
cutoff distance, since the computational load inherently varies among processors. In
addition, due to atomic motion during the MD simulation, the atoms included with
one atom’s cutoff range varies throughout a simulation. Since the load balancing in
the DDFD method is dynamic, the load balancing is dynamically tuned during the
entire MD simulation, resulting in a higher parallel efficiency.

10 Parallel Approaches in Molecular Dynamics Simulations 301

4 5 6
32

1
1

2

3

4

1

2

3

4

1 2 3 4

1 2 3 4

B
lo

ck
s

.

Blocks
(a)

4 5 6
32

1
1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

B
lo

ck
s

.

Blocks
(b)

4 5 6
32

1
1

2

3

4

1

2

3

4

1 2 3 4

1 2 3 4

B
lo

ck
s

.

Blocks
(c)

Fig. 10.10 The distributed diagonal force decomposition (DDFD) method. In (a) the interactions
between the atoms are shown. The self-interactions (diagonal interactions) are 0 and not consid-
ered. The grayed interactions above the diagonal are equal but opposite to the ones below the
diagonal and are therefore obtained from those. One processor is assigned to every block product
of two different blocks. For example, processor 1 is assigned to the product of blocks 1 and 2, while
no processor is assigned to the product of block 1 with itself; as shown in (b), these interactions
are rather assigned to processors calculating other interactions with block 1 (i.e., processors 1, 2,
and 4). The final state when this diagonal distribution is performed for all 4 blocks is shown in (c).

10.5 Conclusions

We have presented our research on parallel approaches to MD simulation. We have
shown the complement between algorithmic approaches and parallelization in the
quest to speed up the calculation of simulations.

The SISM, based on the standard theory of molecular vibrations, enables the use
of much larger integration time steps than are possible with standard MD methods.
Since the computational cost of an MD time step remains virtually constant, the
computational time of an MD simulation is drastically reduced.

302 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

While the SISM allows larger integration time steps to be used, other methods
must be used to reduce the computational time of the time steps themselves. Calcu-
lating nonbonding interactions dominates an MD time step, so focusing on reducing
the time of calculating nonbonding forces is crucial. Specialized hardware can be
effectively used to reduce the computational time of nonbonding interactions. We
have shown the use of multiple MDGRAPE-II processors to speed up the calculation
of nonbonding interactions.

As the algorithmic approaches and specialized hardware reduce the computa-
tional cost of individual MD time steps, efficient parallelization becomes even more
important to achieving faster MD simulations, since the communication time in-
creases relative to the computational time. The SISM is readily parallelized, includ-
ing its implementation with multiple specialized processors. Used in combination
with the force decomposition method, the communication between the distributed
memory computers is guaranteed to be limited even for systems where no distance
cutoff is employed. The DDFD method further reduces communication require-
ments among processors and enables a greater number of processors to be used.
In addition, it intrinsically supports dynamic load balancing, which allows effective
load balancing, which leads to higher parallel efficiencies and greater speedups of
MD simulations.

Acknowledgments The authors would like to acknowledge the financial support of the Slovenian
Research Agency under grant No. P1-0002.

References

1. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules, Phys. Rev. 159 (1967) 98–103.

2. J. M. Sanz-Serna, M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London
(1994).

3. B. J. Leimkuhler, S. Reich, R. D. Skeel, Integration methods for molecular dynamics, IMA
(1994) 1–26.

4. J. Wisdom, M. Holman, Symplectic maps for the N-body problem, Astron. J. 102 (1991)
1528–1538.

5. J. Wisdom, M. Holman, J. Touma, Symplectic correctors, Field Inst. Commun. 10 (1996)
217–244.

6. J. Laskar, P. Robutel, High order symplectic integrators for perturbed Hamiltonian systems,
Celestial Mech. 80 (2001) 39–62.

7. L. Nadolski, J. Laskar, Application of a new class of symplectic integrators to accelator track-
ing, Proceedings of EPAC 2002 (2002) 1276–1278.

8. T. Schlick, E. Barth, M. Mandziuk, Biomolecular dynamics at long timesteps: Bridging the
timescale gap between simulation and experimentation, Annu. Rev. Biophys. Biomol. Struct.
26 (1997) 181–222.

9. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations, McGraw-Hill Book Company,
Inc., New York (1955).

10. N. Matubayasi, M. Nakahara, Reversible molecular dynamics for rigid bodies and hybrid
Monte Carlo, J. Chem. Phys. 110 (1999) 3291–3301.

10 Parallel Approaches in Molecular Dynamics Simulations 303

11. T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, G. J. Martyna, Symplectic
quaternion scheme for biophysical molecular dynamics, J. Chem. Phys. 116 (2002) 8649–
8659.

12. M. Ikegutchi, Partial rigid-body dynamics in NPT, NPAT and NPγT ensembles for proteins
and membranes, J. Comput. Chem. 25 (2004) 529–541.

13. D. Janežič, M. Praprotnik, F. Merzel, Molecular dynamics integration and molecular vibra-
tional theory: I. New symplectic integrators, J. Chem. Phys. 122 (2005) 174101.

14. M. Praprotnik, D. Janežič, Molecular dynamics integration and molecular vibrational theory:
II. Simulation of non-linear molecules, J. Chem. Phys. 122 (2005) 174102.

15. M. Praprotnik, D. Janežič, Molecular dynamics integration and molecular vibrational theory:
III. The infrared spectrum of water, J. Chem. Phys. 122 (2005) 174103.

16. M. Praprotnik, D. Janežič, Molecular dynamics integration meets standard theory of molecular
vibrations, J. Chem. Inf. Model 45 (2005) 1571–1579.

17. R. Rey, Vibrational energy of HOD in liquid D2O, J. Chem. Phys. 104 (1996) 2356–2368.
18. R. Rey, Transformation from internal coordinates to Cartesian displacements in the Eckart

frame for a triatomic molecule, Chem. Phys. 229 (1998) 217–222.
19. R. Rey, Vibrational phase and energy relaxation of CN−1 in water, J. Chem. Phys. 108 (1998)

142–153.
20. B. R. Brooks, D. Janežič, M. Karplus, Harmonic analysis of large systems: I. Methodology, J.

Comput. Chem. 16 (12) (1995) 1522–1542.
21. D. Janežič, B. R. Brooks, Harmonic analysis of large systems: II. Comparison of different

protein models, J. Comput. Chem. 16 (12) (1995) 1543–1553.
22. D. Janežič, R. M. Venable, B. R. Brooks, Harmonic analysis of large systems: III. Comparison

with molecular dynamics, J. Comput. Chem. 16 (12) (1995) 1554–1566.
23. M. Praprotnik, D. Janežič, J. Mavri, Temperature dependence of water vibrational spectrum:

a molecular dynamics simulation study, J. Phys. Chem. A 108 (2004) 11056–11062.
24. C. Eckart, Some studies concerning rotating axes and polyatomic molecules, Phys. Rev. 47

(1935) 552–558.
25. J. D. Louck, H. W. Galbraith, Eckart vectors, Eckart frames, and polyatomic molecules, Rev.

Mod. Phys. 48 (1) (1976) 69–106.
26. H. F. Trotter, On the product of semi-groups of operators„ Proc. Am. Math. Soc. 10 (1959)

545–551.
27. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.

5 (1968) 506–517.
28. H. Goldstein, Classical Mechanics, 2nd Edition, Addison-Wesley Publishing Company

(1980).
29. D. Janežič, F. Merzel, An efficient symplectic integration algorithm for molecular dynamics

simulations, J. Chem. Inf. Comput. Sci. 35 (1995) 321–326.
30. D. Janežič, F. Merzel, Split integration symplectic method for molecular dynamics integration,

J. Chem. Inf. Comput. Sci. 37 (1997) 1048–1054.
31. D. Janežič, M. Praprotnik, Molecular dynamics integration time step dependence of the split

integration symplectic method on system density, J. Chem. Inf. Comput. Sci. 43 (6) (2003)
1922–1927.

32. U. Borštnik, M. Hodošček, D. Janežič, Fast parallel molecular simulations, Croat. Chem. Acta
78 (2) (2005) 211–216.

33. W. F. van Gunsteren, H. J. C. Berendsen, Computer simulation of molecular dynamics:
Methodology, applications, and perspectives in chemistry, Angew. Chem. Int. Ed 29 (9) (1990)
992–1023.

34. D. W. Heermann, A. N. Burkitt, Parallel Algorithms in Computational Science, Springer-
Verlag, Berlin (1991).

35. R. Trobec, M. Šterk, M. Praprotnik, D. Janežič, Implementation and evaluation of MPI-based
parallel MD program, Int. J. Quant. Chem. 84 (1) (2001) 23–31.

36. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, W.-K. Su,
Myrinet: A gigabit-per-second local area network, IEEE Micro 15 (1) (1995) 29–36.

304 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

37. J. Liu, J. Wu, D. K. Panda, High performance RDMA-based MPI implementation over Infini-
Band, Int. J. Parallel Programm. 32 (3) (2004) 167–198.

38. V. S. Sunderam, PVM: A framework for parallel distributed computing, Concurr. Pract. Exper.
2 (4) (1990) 315–339.

39. G. Burns, R. Daoud, J. Vaigl, LAM: An open cluster environment for MPI, in: Proceedings of
Supercomputing Symposium, Vol. 94 (1994) pp. 379–386.
URL http://www.lam-mpi.org/download/files/lam-papers.tar.gz

40. W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of
the MPI message passing interface standard, Parallel Comput. 22 (6) (1996) 789–828.

41. T. Sterling, D. J. Becker, D. Savarese, Beowulf: A parallel workstation for scientific computa-
tion, in: Proceedings, 24th International Conference on Parallel Processing, Vol. 1 (1995) pp.
11–14.

42. D. H. M. Spector, Building Linux Clusters: Scaling Linux for Scientific and Enterprise Appli-
cations, O’Reilly & Associates, Sebastopol, CA (2000).

43. H. G. Dietz, T.I.Mattox, KLAT2’s flat neighborhood network, in: Extreme Linux track of the
4th Annual Linux Showcase (2000).

44. R. Trobec, Two-dimensional regular d-meshes, Parallel Comput. 26 (13) (2000) 1945–1953.
45. U. Borštnik, M. Hodošček, D. Janežič, Improving the performance of molecular dynamics

simulations on parallel clusters, J. Chem. Inf. Comput. Sci. 44 (2) (2004) 359–364.
46. J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (4) (1986)

446–449.
47. J. A. Board, Jr., C. W. Humphres, C. G. Lambert, W. T. Rankin, A. Y. Toukmaji, Ewald and

multipole methods for periodic N-body problems, in: P. Deuflhard, et al. (Eds.), Lecture Notes
in Computational Science and Engineering, Springer-Verlag (1998).

48. J. Board, L. Schulten, The fast multipole algorithm, Comput. Sci. Eng. 2 (1) (2000) 76–79.
49. A. R. Leach, Molecular Modeling: Principles and Applications, Addison Wesley Longman

Limited, Essex (1996).
50. R. Loncharich, B. Brooks, The effects of truncating long-range forces on protein dynamics,

Proteins: Struct. Funct. Genet 6 (1989) 32–45.
51. S. Feller, R. Pastor, A. Rojnuckarin, S. Bogusz, B. Brooks, Effect of electrostatic force trunca-

tion on interfacial and transport properties of water, J. Phys. Chem. 100 (1996) 17011–17020.
52. R. Trobec, I. Jerebic, D. Janežič, Parallel algorithm for molecular dynamics integration, Par-

allel Comput. 19 (9) (1993) 1029–1039.
53. B. R. Brooks, M. Hodošček, Parallelization of CHARMm for MIMD machines, Chemical

Design Auto. News 7 (1992) 16–22.
54. S. Plimpton, B. Hendrickson, Parallel molecular dynamics algorithms for simulation of molec-

ular systems, in: T. G. Mattson (Ed.), Parallel Computing in Computational Chemistry, Amer-
ican Chemical Society (1995) pp. 114–132.

55. T. G. Mattson (Ed.), Parallel Computing in Computational Chemistry, American Chemical
Society (1995).

56. S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Chem. Phys.
117 (1) (1995) 1–19.

57. S. J. Plimpton, B. A. Hendrickson, A new parallel method for molecular-dynamics simulation
of macromolecular systems, J. Comp. Chem. 17 (1996) 326–337.

58. M. Snir, A note on N-body computation with cutoffs, Tech. rep., IBM T. J. Watson Research
Center (2001).

59. M. Snir, A note on n-body computations with cutoffs, Theory Comput. Systems 37 (2004)
295–318.

60. K. Bowers, R. Dror, D. Shaw, The midpoint method for parallelization of particle simulations,
J. Chem. Phys. 124 (18) (2006) 184109–184109.

61. K. Bowers, R. Dror, D. Shaw, Overview of neutral territory methods for the parallel evaluation
of pairwise particle interactions, J. Phys. Conf. Ser. 16 (2005) 300–304.

62. K. Moreland, E. Angel, The FFT on a GPU, in: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware, ACM (2003).

10 Parallel Approaches in Molecular Dynamics Simulations 305

63. J. Krueger, R. Westermann, Linear algebra operators for GPU implementation of numerical
algorithms, ACM Trans. Graphics 22 (3) (2003) 908–916.

64. T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, B. Elmegreen, Molecular dynamics ma-
chine: Special-purpose computer for molecular dynamics simulations, Mol. Sim. 21 (1999)
401–415.

65. T. Narumi, Special-purpose computer for molecular dynamics simulations, Doctor’s thesis,
University of Tokyo (1998).

66. T. Narumi, A. Kawai, T. Koishi, An 8.61 Tflop/s molecular dynamics simulation for NaCl with
a special-purpose computer: MDM, in: Proceedings of SuperComputing 2001, ACM, Denver
(2001).

67. M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, A. Konagaya, Protein
explorer: A Petaflops special-purpose computer system for molecular dynamics simulations,
in: Proceedings of SuperComputing 2003, ACM, Phoenix (2003).

68. U. Borštnik, D. Janežič, Symplectic molecular dynamics simulations on specially designed
parallel computers, J. Chem. Inf. Model. 45 (6) (2005) 1600–1604.

69. K. Kutnar, U. Borštnik, D. Marušič, D. Janežič, Interconnection networks for parallel molec-
ular dynamics simulation based on hamiltonian cubic symmetric topology, J. Math. Chem.
45(2) (2009) 372–385.

70. U. Borštnik, Parallel computer simulations on clusters of personal computers, Ph.D. thesis,
University of Ljubljana (2007).

71. U. Borštnik, B. R. Brooks, D. Janežič, The distributed diagonal force decomposition method.
I. Description of the method, submitted for publication (2008).

