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ABSTRACT: The message-passing interface (MPI)-based object-oriented
particle–particle interactions (PPI) library is implemented and evaluated. The library can
be used in the n-particle simulation algorithm designed for a ring of p interconnected
processors. The parallel simulation is scalable with the number of processors, and has the
time requirement proportional to n2/p if n/p is large enough, which guarantees optimal
speedup. In a certain range of problem sizes, the speedup becomes superlinear because
enough cache memory is available in the system. The library is used in a simple way by
any potential user, even with no deep programming knowledge. Different simulations
using particles can be implemented on a wide spectrum of different computer platforms.
The main purpose of this article is to test the PPI library on well-known methods, e.g., the
parallel molecular dynamics (MD) simulation of the monoatomic system by the
second-order leapfrog Verlet algorithm. The performances of the parallel simulation
program implemented with the proposed library are competitive with a custom-designed
simulation code. Also, the implementation of the split integration symplectic method,
based on the analytical calculation of the harmonic part of the particle interactions, is
shown, and its expected performances are predicted. c© 2001 John Wiley & Sons, Inc. Int
J Quantum Chem 84: 23–31, 2001
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Introduction

M any different natural phenomena or artifi-
cially defined systems can be simulated us-

ing particle interactions, for example, the movement
of planets in a solar system where particles interact
by gravitation. What a particle represents and which
attributes describe its behavior depend on the ap-
plication. Table I shows some applications [1]. The
particle can be a physical body (molecule), a natural
group of bodies (galaxy), or an artificially declared
group (group of electrons).

The simulation based on particles usually con-
sists of the calculation of interactions between the
particles and their application for the determination
of new particle data. The calculation of interactions
is the most time-consuming part, with complexity of
O(n2) for an n-particle system [2]. However, parallel
implementations exist, with a linear speedup, that
reduce the complexity to O(n2/p) on a p-processor
system [3].

There are different applications as well as many
different programs for essentially the same tasks.
The same program should be run with different nu-
merical methods and/or different particle data. The
sequential code of each new, but slightly different,
program is usually adopted from an older version.
The development of a parallel version is a more de-
manding task, and requires some deeper computer
knowledge. If a parallel computer algorithm for the
calculation of particle interactions is proved to be
optimal, then the principle of parallelization is the
same for all applications. All of the programming
necessary for the parallel implementation can be
encompassed by a multipurpose message-passing
interface (MPI)-based [4] program library for parti-
cle interactions. Two of the general principles from
the object-oriented programming [5], classes and
templates, can be used in such an implementation.

The structure of this article is as follows. In the
following section, the parallel algorithm for particle
interactions is described. Some basic concepts of the
proposed programming library for particle–particle
interactions (PPI) are presented in the third section.
Finally, parallel test programs for molecular dynam-
ics (MD), implemented with the PPI library, are
described and evaluated on a cluster with different
numbers of computing nodes. The work concludes
with some comments on results and directions for
future work.

Parallel Algorithm for
Particle Interactions

In most applications, the interaction between two
particles is symmetrical, and no particle can interact
with itself. The sequential algorithm for n particles
for each time step is thus

for (i = 0; i < n; i++)
for (j = i+1; j < n; j++)

calculateInteraction(i, j);

There are n(n − 1)/2 calculations of particle inter-
actions.

Other possibilities exist for system simulation,
such as calculating the field of interactions from
all particles (e.g., the gravity field in the case of a
solar system simulation) and applying it to all par-
ticles [1].

We have implemented the approach known as
“particle–particle” simulation. On a parallel sys-
tem with p processors numbered as 0, 1, . . . , p − 1
and connected in a ring, the particles are divided
uniformly among processors [3]. All local particles
on a processor are called self-particles. The copies
of self-particle attributes, being transmitted to the
neighboring ring processors, are called guest par-
ticles. Several variations of parallel algorithms for

TABLE I
Some applications of particle interactions.

Application Gas Semiconductor Solar system Galaxy clusters

Particle molecule 104 electrons planet galaxy
or holes

Attributes molecule position, relative charge, position mass, position, mass, position,
positions of atoms, velocity velocity velocity, radius

No. of particles 103–105 105–109 10–1000 104–105

Simulated time [s] 10−12 10−9 106 − 1010 1017
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FIGURE 1. Parallel algorithm for particle interactions on four processors. For each calculation pass, the states of all
processors are shown. Upper boxes show selfparticles (bold), lower boxes show guest particles; calculated pass
interactions are shown as pairs particle1–particle2.

particle interactions were tested. We describe here
the fastest variation only.

Each processor performs, within a particular time
step, p/2 calculation passes following these rules.

1. In pass 0, calculate the interactions between
self-particles.

2. Send copies of self-particle attributes to the
right neighbor, and receive guest-particle
(copies of self-particle) attributes from the left
neighbor. The interpretation of left and right
direction is arbitrary.

3. In the next pass, calculate the interactions
between all pairs: self-particle–guest particle,
and accumulate the calculated interactions
with the self-particle and guest-particle at-
tributes.

4. Send guest particles to the right neighbor, and
receive new guest particles from the left.

5. Repeat steps 3 and 4 until the particles have
come halfway around the ring.

6. If the number of processors is even, the same
pairs of particles are now on processors i and
i+p/2. Each processor therefore calculates half
of the interactions in the last pass.

7. After all of the interactions are calculated, but
not yet added to all particles, it is necessary
to return guest particles halfway around the
ring to their original processors which add all
of the remaining interactions.

The algorithm is graphically explained in
Figure 1. The example shows 12 particles on 4
processors. In pass 0, the local (n/p)(n/p − 1)/2 = 3
interactions are calculated as in a sequential
algorithm. In pass 1, all (n/p)2 = 9 interactions
are calculated on each processor, and added to
self- and guest-particle attributes. For example,
processor 1 calculates the interaction 4–1, and adds
it to self-particle 4 and to guest particle 1. In pass 2,
the interaction 6–1, for example, is calculated on
processor 2 only, and not on processor 0. Finally,
the guest particles are rotated for two more steps in
order to reach the initial positions. The interaction
of guest particle 1, already calculated in pass 2 on
processor 2, is now added to self-particle 1.

This algorithm is optimal because the number of
calculated interactions remains n(n − 1)/2, the min-
imum possible, and the calculation load is evenly
distributed among the processors.

PPI Library

In the design phase, we have followed the idea of
making a simple and unified tool for parallel pro-
gramming in the area of particle simulation. The
basic assumption was that a potential user has no
deep knowledge of parallel computing. All support-
ing tasks, known in advance, should be ready to use.
Our goal was to reach the execution speed of the
custom-designed MD programs.
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FIGURE 2. Structure of a parallel simulation program using the PPI library.

We have designed an object-based programming
library. Previous requirements suggested the use
of an object-oriented programming language. The
need for fast implementation precludes the use of
class inheritance and virtual functions, so that in
line functions have to be used instead. The template
mechanism from the programming language C++
[5] seems to be the optimal choice.

The program library for particle–particle interac-
tions provides a standard interface to the simulation
system that implements all necessary tasks for sys-
tem initialization, parallel execution, and output of
results. The user has to provide declarations of par-
ticles and their attributes with an algorithm for the
calculation of interactions.

Different elements of a parallel simulation pro-
gram written within the PPI library are shown
in Figure 2. The main part of the library is the
PPIWorld class template. There are also some aux-
iliary classes, used optionally, for easier and safer
programming. The particle class and the main pro-
gram have to be provided by user. The particle
class is used in the template PPIWorld that acts
as a simulator system for particles represented by
the particle class, and controlled by the main pro-
gram.

CLASS PPIWorld

A simple simulation program would use
PPIWorld as follows.

1. Create a variable of the type PPIWorld, e.g.,
PPIWorld<myParticleClass> world;

2. Set initial particle data; either read
from file with world.readParticles();
or set to random values with
world.setRandomParticles();

3. Call world.mainLoop(); with suitable
parameters—number of iterations, version of
the basic algorithm, etc.

4. When necessary, calculate the total system
energy with world.getTotal Energy();
or write particle data to a file with
world.writeParticles(); etc.

PPIWorld includes, for example, the following
methods, where methods represent procedures de-
clared in an object-oriented class.

readParticles(); —deletes old particle
data, reads new particle data, and distributes
them among the processors.
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gatherParticles(); —gathers particle
data on processor 0, allocates memory space,
and returns pointer to processor 0, returns
NULL to all other processors.
distributeParticles(); —distributes
particles from processor 0 among all of the
processors.
mainLoop(); —runs the simulation for a de-
sired number of time steps.
getTotalEnergy(); —accumulates energy
for all particles.

PARTICLE CLASS

The use of class PPIWorld requires us to provide
a particle class, which includes some methods that
are called from PPIWorld.

interact(); —calculates the interaction be-
tween two particles, and writes the result into
both particles’ attributes.
calcNewSpeed(); —calculates the change of
particle velocity due to the interaction, and
adds it to the velocity attribute.
postStep(); —is either left empty or used
for a specific calculation that should be per-
formed on all particles at the end of a time
step.
createMPIType(); —creates a description
of an MPI type that is used in communi-
cation. The user would have to study the
MPI documents [4] at this step only. This
method is necessary provided that a paral-
lel system composed of different computers
is used. However, on homogeneous computer
clusters, leaving out this method will only
result in minimal degradation of the commu-
nication performance.

PARALLELISM IN PPI LIBRARY

The most important feature of the class PPI-
World is the parallel implementation of the main
loop. In the current version of the PPI library, the
algorithm “particle–particle,” described in the sec-
ond section, was implemented. The PPI library was
designed in such a way that more complex systems,
such as molecules, could be simulated. The class
PPIWorld takes care of distributing and gathering
the particles. Should the user need to run a certain
calculation that has no support in the class and does
not need to be parallelized, the PPIWorld can be

used for gathering particle data. After this calcula-
tion is completed, the parallel simulation proceeds
in a standard way.

Test Examples

To test the PPI library, we applied it to the
standard method for the MD simulation of a
monoatomic system. Also, the theoretical estima-
tion of the calculation complexity of a system of
butadiyne molecules is performed.

LEAPFROG VERLET SIMULATION

To present some basic principles of MD simula-
tion, a simple monoatomic system of argon particles
is described, based on the leapfrog Verlet algorithm
(LFV) given in [6].

The evaluation model of n argon particles in a
cube of size L was chosen to give realistic mer-
its of the parallel method efficiency. The periodic
boundary conditions were imposed to conserve the
number of particles. The nonbonded interactions
were calculated applying the minimum image conven-
tion [7].

Argon atoms represent particles with these at-
tributes: position r, velocity v, and force F, while
mass is the same for all particles, and thus is used
as a constant in the force calculations. The force on
particle i by particle j is calculated as

Fij = (ri − rj)
(
r−14

ij − 1
2 r−8

ij

)
. (1)

For each time step, new positions are calculated as

r(t + �t) = r(t) + �tv(t) + �2t
2

F(t). (2)

There is a similar equation for the calculation of new
velocities. Appropriate units are chosen in order to
eliminate multiplication by constants.

The left part of Figure 3 shows some of the
main methods from the PPI library that are used
in the particle class Argon. Forces, new positions,
and new velocities are calculated in calcPartial
Force(), calcNewSpeed(), and calcNewPos()
according to the given equations. To achieve a real-
istic system state, it is necessary to scale velocities
after a certain number of steps by a factor s =√

Ek/E′
k, where Ek is the initial kinetic energy and E′

k
is the new kinetic energy. After several applications
of the scaling procedure, a stable system is acquired
that preserves a constant energy. The scaling is im-
plemented in the postIteration() method.
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FIGURE 3. Pseudocodes of particle classes Argon and Butadiyne, and programs main for LFV (left) and SISM
(right). Differences are shown in italic.

The particle class is used in the template PPI-
World that is controlled by the program main given
after the class.

SPLIT INTEGRATION SYMPLECTIC METHOD

The new split integration symplectic method
(SISM) [8] was derived in terms of the Lie algebraic
language. The formula

x|t0+�t = exp(�tL̂H)x|t0 , (3)

where L̂H is the Poisson bracket operator and x =
(q, p) is a vector in phase space composed of the
coordinates and momenta of all particles, provides
a way for integrating the Hamiltonian system in
terms of Lie operators [9].

A typical model MD Hamiltonian [7] is

H =
∑

i

p2
i

2mi
+

∑
bonds

kb(b − b0)2 +
∑

angles

kφ(φ − φ0)2

+
∑

dihed

kϑ

(
1 + cos(nϑ − δ)

) +
∑
i>j

eiej

rij

+
∑
i>j

4εij

[(
σij

rij

)12

−
(

σij

rij

)6]
(4)

where i and j run over all atoms, mi is the mass of the
ith atom, b0, φ0, and δ are reference values for bond
lengths, angles, and dihedral angles, respectively, kb,
kφ , and kϑ are corresponding force constants, ei de-
notes the charge on the ith atom, rij is the distance
between atoms i and j, and εij and σij are the corre-
sponding constants of the Lennard-Jones potential.
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The construction of an efficient algorithm rests
with the ability to separate the Hamiltonian into
parts which are themselves integrable, and also ef-
ficiently computable. Suppose that the Hamiltonian
H is split into two parts:

H = H0 + Hr (5)

where

H0 = Hharm(mi, b0, φ0, δ, kb, kφ , kϑ ) (6)

and Hharm denotes the harmonic approximation.
Then the following approximation for x|t0+�t can

be used:

x|t0+�t ≈ exp
(

�t
2

L̂H0

)
exp(�tL̂Hr) exp

(
�t
2

L̂H0

)
x|t0
(7)

which prescribes how to propagate from one point
in phase space to another. First, the system is prop-
agated a half-step evolution with H0, then a whole
step with Hr, and finally another half step with H0.
This integration scheme was used as the basis for
the development of SISM, a second-order symplec-
tic integration algorithm for MD integration. The
Hamiltonian H0 represents the dynamically lead-
ing contribution, and depends only on the constant
parameters of the simulation, and is resolved an-
alytically. Hr represents the remaining part, and is
resolved numerically. This separation of the poten-
tial function allows the analytical treatment of high-
frequency terms in the Hamiltonian, which permits
the SISM to employ up to an order-of-magnitude
larger integration step size than can be used by
other methods of the same order and complexity. To
evaluate the parallel efficiency of SISM, the system
of butadiyne molecules was used as a validation
suite [10].

The pseudocode of the particle class Butadiyne
used in the SISM simulation with the accompany-
ing program main are given on the right side of
Figure 3. Italic program code has to be rewritten if
the parallel SISM program (right column in Fig. 3) is
devised from the existing LFV simulation program
(left column in Fig. 3).

RESULTS

The parallel program for argon simulation, de-
signed with the program library PPI, was devised
from existing sequential Fortran codes for argon
simulators. A sequential version based on PPI was
compared with Fortran counterparts with differ-
ent simulation parameters, e.g., number of par-
ticles [11], in order to prove that the simulation

FIGURE 4. Speedup of parallel PPI-based MD
integrations for various problem sizes.

results are the same, and that the execution time
is also similar. The parallel PPI program was eval-
uated on a cluster of 32 AMD Athlon 750 [12]
computing nodes, connected into a hypercube us-
ing Fast-Ethernet network cards and running Linux.
The required ring topology was embedded into the
hypercube. The speedup of the parallel PPI-based
MD is given in Figure 4 for different numbers of par-
ticles as a function of the number of computers.

For 512 particles, the ratio between the calcula-
tion time and communication time is small; thus,
the speedup is less than linear, particularly for a
greater number of computers. The speedup remains
approximately the same from 14 to 32 computers.
Its maximum value 4.9 is reached with 22 comput-
ers.

For 4096 particles, we noticed superlinear
speedup up to 24 computers because of the cache
memory. The speedup on 32 computers is no more
superlinear. Extrapolating the results, the number of
computers that would finish the job in the shortest
possible time would be about 160, with a speedup
of about 50.

For 32,768 particles, the speedup is superlinear
up to 32 computers, and also in this case, the cache
memory is not large enough for all particles. The
maximum superlinearity would be achieved with
about 40 computers.

The results show that, at the same ratio of com-
puting to communication speed as used in the test
cluster, employing more than 128 particles per com-
puter will give an approximately linear speedup.
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More than 800 particles per computer will result
in superlinear speedup. The shortest computation
time for a given problem size will be achieved with
about 26 particles per computer, but such a system
is usually not cost effective. Parallel PPI-based MD
simulation performances in all tests were almost
identical to the custom-designed parallel simulation
code.

EVALUATION OF RESULTS

The superlinearity can be explained by analyz-
ing the effects of communication complexity and the
use of cache memory for different numbers of parti-
cles n and computers p. In each simulation step, the
total number of particles which pass through each
computer is n, and does not depend on p. Further-
more, if the number of particles per computer n/p
is small (because of large p), more short messages
increase the communication time.

The program efficiency also depends on memory
bandwidth. For large n/p, the computers must ac-
cess the main memory more frequently because the
cache memory is not large enough for all local and
guest particles. As p increases, the amount of avail-
able cache memory increases as well, improving the
cache hit rate, and consequently resulting in super-
linear speedup. After the whole simulated system
is stored in the cache memory, the speedup gradu-
ally falls to linear, which is seen in Figure 4 for the
example of 4096 particles. However, for the 32,768
particles example, the superlinearity is significantly
greater.

From our experiments follows that the speedup
was sublinear for n/p < 128, superlinear for 200 <

n/p < 15,000, and linear elsewhere. These bound-
aries are approximate, and depend on the network
hardware and cache memory architecture.

The parallel simulation results for SISM are not
reported here. In accordance with theoretical com-
parisons of complexities [11], similar performances
for LFV and SISM were expected. Even if the com-
plexity of the SISM seems to be high compared to
the LVF algorithm, it is not so since the most de-
manding part of the SISM, i.e., the calculation of
nonbonding forces and energy, is almost the same as
for the LVF. All of the extra work (coordinate trans-
formations) is in the range of O(n), and thus pre-
vailed by nonbonding force and energy calculation.
Cartesian as well as normal coordinates have to be
held in memory, modestly increasing the memory
requirements. One SISM step thus requires slightly
greater calculation and communication time, partic-

ularly for systems smaller than 500 particles. For
large systems of more than 200,000 particles, the
time-step complexity is almost the same for both
methods since the calculation of interactions pre-
vails.

In comparison with the LFV, the range of super-
linearity for SISM moves toward a smaller number
of particles because of increased memory require-
ments. The range of sublinear speedups for SISM
moves toward a larger number of particles because
of the increased communication time.

Conclusion

In this work, a parallel library PPI for particle in-
teractions on a ring network is described. It is shown
that the proposed approach can be used on differ-
ent areas of applications with particle interactions.
The program code is transparent and robust. With
adequate changes in the program code, an entirely
different simulation experiment can be performed.
Testing implementations of argon and butadiyne
simulations are given, and the speedup for vari-
ous problem sizes for LFV is analyzed. A greater
speedup can be achieved if the number of parti-
cles per processor is sufficiently large to preserve a
high ratio of calculation time/communication time,
and to utilize the cache memory. The PPI-based al-
gorithm performances are optimal with respect to
calculation complexity.

Further work lies primarily in the development
of the parallel library PPI for more complex and re-
alistic systems of particles and methods (e.g., SISM)
in order to give to a potential user a wider range of
possible applications.
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