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ABSTRACT: The split integration symplectic method (SISM) for molecular dynamics
(MD) integration using normal mode analysis based on a factorization of the Liouville
propagator is presented. This approach is quite distinct from others that use fractional-step
methods, owing to the analytical treatment of high-frequency motions. The method
involves splitting the total Hamiltonian of the system into a harmonic part and the
remaining part. Then the Hamilton equations are solved using a second-order generalized
leapfrog integration scheme in which the purely harmonic Hamiltonian (which represents
the main contribution of the chemical bonds and angles) is treated analytically,
i.e., independent of the step size of integration, by a normal mode analysis that is carried
out only once, at the beginning of calculation. The whole integration step combines
analytical evolution of the harmonic part of the Hamiltonian with a correction arising from
the remaining part. The proposed algorithm requires only one force evaluation per
integration step. The algorithm was tested on a simple system of linear chain molecules.
Results demonstrate the method makes possible the integration of the MD equations over
larger time steps without loss of stability while being economical in computer time.
c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 2–12, 2001
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Introduction

C omputer simulation methods, based on quan-
tum and statistical mechanics theories [1],

have already made significant contributions to the
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understanding of structure and dynamics of bio-
logical macromolecules, particularly proteins and
nucleic acids, and thus to the connection with
their functional properties. Many more fundamen-
tal problems of structure and dynamics are yet
unsolved or, at least, are not sufficiently elaborated.
The progress in this direction is slowed down by
both the conceptual problems in the currently used
methods and by the need for excessive amounts of
computer time.

Molecular dynamics (MD) simulations have been
applied to a wide variety of biological macromole-
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cules [2, 3]. The major obstacle that reduces the
efficiency of MD simulation methods lays in the in-
ability to sample sufficient portions of phase space.
This is connected with the vast disparity in time
scales between the fast vibrations of the individ-
ual atoms and the slow conformational changes [4].
A number of MD algorithms for solving Hamil-
tonian systems have been proposed [5]. Most of
the methods presently used exhibit instability un-
less the time step is small enough [6]. The simplest
and most commonly used algorithm is leapfrog-
Verlet [7]. Its application to MD problems leads to
severe restrictions on the step size. But, for studies
of dynamics of large molecular systems, larger time
steps in the MD integration procedure are needed.
The problem of how to increase the time step in
the MD integration can be overcome by the use of
symplectic methods for the numerical solution of
Hamilton equations. Hamiltonian systems possess
an important property, in that the flow in the phase
space is symplectic; hence the numerical methods
for solving these systems are expected to reproduce
this property [8].

There are several equivalent ways of endowing a
phase space with a symplectic structure. A mapping
is said to be symplectic or canonical if it preserves
the differential form dp ∧ dq, which defines the
symplectic structure in the phase space. Differential
forms provide a geometric interpretation of sym-
plecticness in terms of conservation of areas, which
follows from Liouville’s theorem. In one-degree-of-
freedom example symplecticness is the preservation
of oriented area. An example is the harmonic os-
cillator where the t-flow is just a rigid rotation and
the area is preserved. The area-preserving character
of the solution operator holds only for Hamiltonian
systems. In more then one-degree-of-freedom ex-
amples the preservation of area is symplecticness
rather than preservation of volume [8].

Symplectic integration methods replace the
t-flow in the phase space by the symplectic trans-
formation, which inherits the symplectic character
of the Hamiltonian flow.

To perform MD simulation of a system with a
finite number of degrees of freedom the Hamilton
equations of motion

dpi

dt
= −∂H

∂qi
,

dqi

dt
= ∂H

∂pi
, i = 1, . . . , d, (1)

where H is the Hamiltonian, qi and pi are the co-
ordinate and momentum, respectively, and d is the
number of degrees of freedom are to be solved.

Normal mode analysis is an alternative approach
to MD. The basic assumption is that the potential
energy function can be approximated by a sum of
quadratic terms in displacements. To determine the
vibrational motions of the system, the eigenvalues
and eigenvectors of a mass-weighted matrix of the
second derivatives of potential function has to be
calculated. For a nonlinear molecule composed of
N atoms, 3N − 6 eigenvalues provide the normal
or fundamental vibrational frequencies of the vibra-
tion and the associated eigenvectors, called normal
modes, give the directions and relative amplitudes
of the atomic displacements in each mode. Linear
molecules are exceptional in that they have only
3N − 5 normal modes of vibration.

Harmonic analysis (normal modes) at given tem-
perature and curvature gives complete time behav-
ior of the system in the harmonic limit [9 – 11].
Although the harmonic model may be incomplete
because of the contribution of anharmonic terms
to the potential energy, it is nevertheless of con-
siderable importance because it serves as a first
approximation for which the theory is highly devel-
oped. This model is also useful in the split integra-
tion symplectic method (SISM), which uses normal
mode analysis [12 – 14].

In this article, we describe the further develop-
ment of SISM for MD integration. The difference
from our previous work is that we have extended
the method to more general MD potential function.
In the following section, the details of the method
are given. Then, the leapfrog-Verlet algorithm is pre-
sented, and finally the numerical experiments are
presented and discussed.

Split Integration Symplectic Method
for MD Integration

The explicit symplectic integrator can be derived
in terms of free Lie algebra in which Hamilton equa-
tions (1) are written in the form [8]

dx
dt

= {x, H} = L̂Hx, (2)

where {x, H} denotes the Poisson bracket [15], L̂H is
the Poisson bracket operator, and x = (q, p) is a vec-
tor in the phase space composed of the coordinates
and momenta of all particles. The formula

x|t0+�t = exp
(
�tL̂H

)
x|t0 (3)

provides a way for integrating the Hamiltonian
system in terms of Lie operators. It is the formal
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solution of Hamilton equations or the exact time
evolution of trajectories in phase space from t0 to
t0 + �t, and �t is a time step. The trouble with it
lays in the impossibility of evaluating exp(�tL̂H).
The Lie formalism used is the key in the develop-
ment of symplectic integration. Symplectic integra-
tion consists in replacing exp(�tL̂H) by a product of
symplectic maps, which approximate exp(�tL̂H) to
a given order [16].

The construction of an efficient algorithm rests
on the ability to separate the Hamiltonian into
parts that are themselves integrable and also ef-
ficiently computable [17]. Suppose that the MD
Hamiltonian H is split into two parts as

H = H0 + Hr. (4)

The following approximation for (3) can be used

exp(�tL̂H) ≈ exp
(

�t
2

L̂H0

)
exp(�tL̂Hr)

× exp
(

�t
2

L̂H0

)
. (5)

Using the Baker–Campbell–Hausdorff formula for
combining the exponents of two Lie group ele-
ments [8], it follows that the approximation in
Eq. (5) is quadratic. Inserting Eq. (5) into Eq. (3)
gives

x|t0+�t ≈ exp
(

�t
2

L̂H0

)
exp

(
�tL̂Hr

)
× exp

(
�t
2

L̂H0

)
x|t0 , (6)

which prescribes how to propagate from one point
in phase space to another. First, the system is prop-
agated a half step evolution with H0, then a whole
step with Hr, and finally another half step with H0.
This scheme is called the generalized leapfrog [7, 19]
and was widely used as a basis for development
of multiple time-step MD integration algorithms
[18, 19]. This integration scheme was used in the
development of SISM, a second-order symplectic in-
tegration algorithm for MD integration.

This algorithm is quite distinct from other ap-
proaches using the fractional-step methods [18, 19]
owing to the analytical treatment of high-fre-
quency motions. Knowing the pure harmonic Ha-
miltonian H0, which represents the main contri-
bution of the strong chemical bonds and angles,
we can treat the cumbersome high-frequency terms
analytically, i.e., independent of the step size of
integration. The whole integrating step combines
analytical evolution of the harmonic part of the

Hamiltonian with a correction arising from the re-
maining part.

In this integration scheme the partitioned part of
the MD Hamiltonian H0 describes the vibrational
motion of the system. It represents the dynamically
leading contribution whose potential depends only
on constant parameters of the simulation. This sep-
aration allows us to calculate normal modes only
once, at the beginning of the calculation. In this
term are included all bonding and angle bending in-
teractions within the harmonic approximation. The
motion governed by H0 is resolved by means of nor-
mal coordinates that rotate in phase space with the
corresponding vibrational frequencies which are ob-
tained by solving the secular equation at the outset
of the calculation [9].

For a chosen model MD Hamiltonian

H =
∑

i

p2
i

2mi
+

∑
bonds

kb(b − b0)2 +
∑

angles

kφ(φ − φ0)2

+
∑
i>j

eiej

rij
+

∑
i>j

4εij

[(
σij

rij

)12

−
(

σij

rij

)6]
, (7)

where i and j run over all atoms, ei denotes the
charge on the ith atom, and rij is the distance be-
tween atoms i and j. We can define

H0 = Hharm(mi, b0, φ0, kb, kφ), (8)
Hr = H − H0, (9)

where Hharm denotes the harmonic approximation;
mi is the mass of the ith atom, b0 and φ0 are
reference values for bond lengths and angles, re-
spectively, and kb and kφ are corresponding force
constants.

Following the procedure defined by Eq. (6), the
SISM for MD integration is written explicitly as fol-
lows:

Step 0: Perform normal mode calculation for the
harmonic part (H0) of the Hamiltonian to get fre-
quencies and normal modes of vibration. Normal
modes are represented by normal coordinates, here-
after denoted P and Q, obtained by means of the
transformational matrix A. The columns of matrix A
are the normal mode vectors.

Step 1: Propagate by H0 for the time �t/2. This
corresponds to the rotation of normal coordinates,
P0

i and Q0
i , in the phase space by the corresponding

vibrational frequency ωi:[
P′

i

Q′
i

]
=

[
cos(ωi

�t
2 ) −ωi sin(ωi

�t
2 )

( 1
ωi

) sin(ωi
�t
2 ) cos(ωi

�t
2 )

][
P0

i

Q0
i

]
.

(10)
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For ωi 
= 0 in Eq. (10) vibrations are taken into ac-
count, and for ωi = 0 translations and rotations.
Since limx→0 sin x/x = 1 for ωi = 0 from Eq. (10),
follow the equations that describe translations and
rotations in normal coordinates:

P′
i = P0

i , (11)

Q′
i = P0

i
�t
2

+ Q0
i . (12)

Step 2: Intermediate step in preparation for
step 3. Transformation from normal coordinates P′

k
and Q′

k to Cartesian displacement coordinates p′
i

and q′
i:

p′
i =

√
mi

∑
k

AikP′
k,

q′
i = 1√

mi

∑
k

AikQ′
k.

(13)

Step 3: Evolve with Hr by means of numerical
integration:

p′′
i = p′

i − �t
(

∂Hr

∂qi

)
qi = q′

i

,

q′′
i = q′

i + �t
(

∂Hr

∂pi

)
pi = p′

i

.
(14)

Since Hr = Hr(q),[(
∂Hr

∂pi

)
pi = p′

i

= 0
]

,

only the momentum changes at this step.
Step 4: Intermediate step in the preparation for

step 5. Back transformation from Cartesian displace-
ment coordinates p′′

k and q′′
k to normal coordinates P′′

i
and Q′′

i :

P′′
i =

∑
k

1√
mk

AT
ikp′′

k ,

Q′′
i =

∑
k

√
mk AT

ikq′′
k .

(15)

Step 5: Again the rotation of normal coordinates
in the phase space:[

Pi

Qi

]
=

[
cos(ωi

�t
2 ) −ωi sin(ωi

�t
2 )

( 1
ωi

) sin(ωi
�t
2 ) cos(ωi

�t
2 )

][
P′′

i

Q′′
i

]
.

(16)
This concludes one whole integration step. At

this point, the transformation from normal coordi-
nates to Cartesian displacement coordinates has to
be performed whether the physical properties of the
system, e.g., energy and displacements, are to be de-
rived.

Step 6: Return to step 1 (Pi → P0
i , Qi → Q0

i ) and
continue for the desired number of time steps.

This treatment of high-frequency terms in
the Hamiltonian permits the SISM proposed in
Eqs. (10)–(16) to use a much larger integration step
size �t than the standard methods [12 – 14].

Leapfrog-Verlet Algorithm

The simplest of the numerical techniques for the
integration of equations of motion is the leapfrog-
Verlet (LFV) algorithm, which is known to be sym-
plectic and of second order. The name leapfrog
steams from the fact that coordinates and velocities
are calculated at different times.

The MD Hamiltonian H of the system is the sum
of kinetic and potential energy:

H = T + U, (17)

T =
∑

i

p2
i

2mi
, (18)

U =
∑

bonds

kb(b − b0)2 +
∑

angles

kφ(φ − φ0)2 +
∑
i>j

eiej

rij

+
∑
i>j

4εij

[(
σij

rij

)12

−
(

σij

rij

)6]
, (19)

where mi is the mass of the ith atom, b0 and φ0 are
reference values for bond lengths and angles, re-
spectively, and kb and kφ are corresponding force
constants; i and j run over all atoms, ei denotes the
charge on the ith atom and rij is the distance be-
tween atoms i and j, εij and σij are the corresponding
constants of Lennard-Jones potential.

Using the approximation

exp
(
�tL̂H

) ≈ exp
(

�t
2

L̂T

)
exp

(
�tL̂U

)
× exp

(
�t
2

L̂T

)
, (20)

the LFV integration method propagates coordinates
and momenta on the basis of the equation of mo-
tion (1) by the following relations:

q′
i = qi + pi

m
�t
2

, (21)

pi+1 = pi − �t
(

∂U
∂q

)
q = q′

i

, (22)

qi+1 = q′
i + pi+1

m
�t
2

, (23)
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where qi is the coordinate, pi is the momentum,
dim(pi, qi) = d, d is the number of degrees of free-
dom, �t is the time step, and m is the mass of the
corresponding atom.

Numerical Experiment

The SISM described above was evaluated on
the model system composed of 20 linear butadiyne
molecules, a six-atom molecule, of the form H—
(—C≡C—)2—H.

Atom positions in molecules were described in
the Cartesian coordinate system. Relative displace-
ments from equilibrium atom positions in mole-
cules were described in the internal coordinate sys-
tem, which is defined by three orthogonal unit
vectors. A molecule with zero displacements was
chosen as an equilibrium position for each mole-
cule in a system. In accordance with the theory of
small oscillations, that the atom displacements at
the equilibrium are small, the molecule is not de-
formed. For this reason we have defined the unit
vector e3,j, which defines the z direction of the inter-
nal coordinate system of the jth molecule directing
along the molecule at the time when the molecule is
still linear, as

e3,j =
q0

N,j − rTj

|q0
N,j − rTj|

, (24)

where | · | denotes the norm of the vector, q0
N,j is the

radius vector to the equilibrium position of the last
atom in the jth molecule in the Cartesian coordinate
system, and rTj is the radius vector to the center of
mass of the jth molecule:

rTj =
∑

i miqi,j∑
i mi

, (25)

where mi is the mass of the ith atom in the jth
molecule, and qi,j is the radius vector; i runs over
all atoms in the jth molecule, and j runs over all
molecules. The remaining two unit vectors e1,j and
e2,j were defined to be orthogonal to each other
and to e3,j. The internal coordinate system of the
jth molecule is by e1,j, e2,j, and e3,j fully defined. It
changes at each step in correspondence with normal
modes with zero frequency, which does not deform
the molecule.

Let a0
i,j be the equilibrium distance of the ith atom

in the jth molecule from the center of mass of the jth
molecule. Then the radius vector to the equilibrium

position of the ith atom in the jth molecule in the
Cartesian coordinate system is given by

q0
i,j = rTj + a0

i,je3,j. (26)

Displacement vector of the ith atom in the jth mole-
cule from the equilibrium position in the Cartesian
coordinate system is

�qi,j = qi,j − q0
i,j, (27)

where qi,j is the radius vector to the ith atom.
In Figure 1 the displacements of the jth molecule

in the internal and the Cartesian coordinate systems
are shown.

Relative displacement coordinates of atoms in the
jth molecule are obtained by projecting �qi,j onto
the unit vectors e1,j, e2,j, and e3,j as

�qi,j = (�xi,j, �yi,j, �zi,j)

= (�qi,j · e1,j, �qi,j · e2,j, �qi,j · e3,j). (28)

Back transformation from relative displacement co-
ordinates to the Cartesian coordinates is given by

�qi,j = �xi,je1,j + �yi,je2,j + �zi,je3,j, (29)

qi,j = �qi,j + q0
i,j. (30)

The harmonic part of the potential energy for the jth
molecule can be written as

U0 = 1
2

N−1∑
i = 1

kbi�r2
i,j + 1

2

N−1∑
i = 2

kφiφ
2
i,j, (31)

where

�ri,j =
√

(qi+1,j − qi,j)2 −
√

(q0
i+1,j − q0

i,j)
2 , (32)

and N is the number of atoms in the molecule. The
first term in Eq. (31) describes the stretching of the
molecule. Because of small relative displacements in
a transversal direction �ri,j can be approximated as

�ri,j ≈ �zi+1,j − �zi,j. (33)

The second term in Eq. (31) describes the bending
of the molecule. The reference angle φ0

i,j is 0 because
the molecule is linear. Using relative displacement
coordinates φi,j can be expressed as a scalar product
of the unit vector pointing from the (i − 1)th atom to
the ith atom, ui−1,j, and the unit vector pointing from
the ith atom to the (i + 1)th atom, ui,j. The distance
between two sequential atoms, di,j, is approximately
constant:

di,j ≈ di,j0 = di0 , (34)
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FIGURE 1. Displacements of the jth molecule in the internal and the Cartesian coordinate system.

where di,j0 is the equilibrium distance between
(i + 1)th and the ith atom in the jth molecule. Since
the equilibrium distances among atoms in the mole-
cule are equal for all molecules, the index j in
Eq. (34) can be omitted. Therefore

cos φi,j = ui−1,j · ui,j, (35)

where

ui−1,j = 1√
1 + (�xi,j−�xi−1,j

di−10

)2 + (�yi,j−�yi−1,j
di−10

)2

×




�xi,j−�xi−1,j
di−10

�yi,j−�yi−1,j
di−10

1


 , (36)

ui,j = 1√
1 + (�xi+1,j−�xi,j

di0

)2 + (�yi+1,j−�yi,j
di0

)2

×




�xi+1,j−�xi,j
di0

�yi+1,j−�yi,j
di0

1


 . (37)

Because the first two components of vectors ui−1,j

and ui,j are much smaller than 1, the square root can
be expanded by the formula 1/

√
1 + x = 1 − x/2

where x � 1. Because φi,j is almost 0, after expand-
ing cos φi,j = 1 − φ2

i,j/2, we get

1 −
φ2

i,j

2
=

[
1 − 1

2

((
�xi,j − �xi−1,j

di−10

)2

+
(

�yi,j − �yi−1,j

di−10

)2)]

×
[

1 − 1
2

((
�xi+1,j − �xi,j

di0

)2

+
(

�yi+1,j − �yi,j

di0

)2)]

×




�xi,j−�xi−1,j
di−10

�yi,j−�yi−1,j
di−10

1




T 


�xi+1,j−�xi,j
di0

�yi+1,j−�yi,j
di0

1


 . (38)

Due to harmonic approximation all higher than
second-order terms in the Eq. (38) are neglected.
Using relative displacement coordinates φi,j can be
expressed as

φ2
i,j

2
= 1

2

[(
�xi,j − �xi−1,j

di−10

)2

+
(

�xi+1,j − �xi,j

di0

)2

+
(

�yi,j − �yi−1,j

di−10

)2

+
(

�yi+1,j − �yi,j

di0

)2]
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− (�xi,j − �xi−1,j)(�xi+1,j − �xi,j)
di−10 di0

− (�yi,j − �yi−1,j)(�yi+1,i − �yi,j)
di−10 di0

. (39)

Displacements in x and y directions in the Eq. (39)
are equivalent because of the symmetry around the
z axis.

The matrix T−1/2VT−1/2, where V = ∇2U0

and U0 is the harmonic part of the potential energy
and T = diag (mi) a diagonal mass matrix, is sym-
metric with positive eigenvalues. In the example of
the six-atom molecule, it is a 18 × 18 matrix.

Because relative displacements in the x, y, and z
directions are uncoupled, the matrix is composed of
three 6 × 6 block diagonal matrices only, and due
to z axis symmetry the first two block matrices are
equal. Then the matrix T−1/2VT−1/2 can be written
as 


X 0 0
0 X 0
0 0 Z


 . (40)

Diagonal elements of the matrix X are

X1,1 = 1
m1

kφ2

d2
10

,

X2,2 = 1
m2

(
2kφ2

d10d20

+ kφ2

d2
10

+ kφ2

d2
20

+ kφ3

d2
20

)
,

X6,6 = 1
m6

kφ5

d2
50

,

X5,5 = 1
m5

(
2kφ5

d40d50

+ kφ5

d2
40

+ kφ5

d2
50

+ kφ4

d2
40

)
,

(41)

Xi,i = 1
mi

(
2kφi

di−10di0
+ kφi

d2
i−10

+ kφi

d2
i0

+ kφi−1

d2
i−10

+ kφi+1

d2
i0

)
,

3 ≤ i ≤ 4. (42)

Off-diagonal elements are

X1,2 = X2,1 = − 1√
m1m2

(
kφ2

d10d20

+ kφ2

d2
10

)
, (43)

X5,6 = X6,5 = − 1√
m5m6

(
kφ5

d40d50

+ kφ5

d2
50

)
, (44)

Xi−1,i = Xi,i−1 = − 1√
mi−1mi

(
kφi

di−10di0
+ kφi

d2
i−10

+ kφi−1

di−20 di−10

+ kφi−1

d2
i−10

)
,

3 ≤ i ≤ 5, (45)

Xi+1,i−1 = Xi−1,i+1 = 1√
mi−1mi+1

kφi

di−10di0
,

2 ≤ i ≤ 5. (46)

Diagonal elements of matrix Z are

Z1,1 = 1
m1

kb1 , Z6,6 = 1
m6

kb5 , (47)

Zi,i = 1
mi

(kbi + kbi−1 ), 2 ≤ i ≤ 5. (48)

Off-diagonal elements are

Zi+1,i = Zi,i+1 = − 1√
mimi+1

kbi , 1 ≤ i ≤ 5. (49)

Solving the eigenvalue problem for a matrix
T−1/2VT−1/2, we obtain 18 normal frequencies out
of which five equal 0. One zero frequency describes
the translation of the molecule in the z direction
of the internal coordinate system and is determined
by the matrix Z. The remaining four are double de-
generated and are determined by matrix X. Two fre-
quencies describe translation of the molecule along
the x and y direction of the internal coordinate sys-
tem, and the other two describe the rotation of the
molecule; 13 vibrational frequencies are nonzero.
Five of them are singlets and represent the stretch-
ing motion of the molecule. They are determined by
the matrix Z. The remaining eight are double de-
generated. They describe the bending motion of the
molecule. Degeneration occurs because of the sym-
metry around the z axis.

In the remaining part of the Hamiltonian, Hr in
Eq. (7), also unharmonic contributions due to the
difference between the true quadratic potential and
the harmonic approximation are included. The true
distance �ri,j is calculated by means of Eq. (32). The
true angle φi,j is calculated as

φi,j = arccos
(

(qi,j − qi−1,j) · (qi+1,j − qi,j)
|qi,j − qi−1,j||qi+1,j − qi,j|

)
. (50)

The initial atomic positions for these molecules
were taken at the equilibrium, and the initial ve-
locities were distributed according to the Maxwell
distribution at 300 K, and the periodic bound-
ary conditions were imposed. Potential parameters
were taken the same as in Ref. [12].

In order to test the importance of including bend-
ing term

∑
angles kφ(φ − φ0)2 for the linear molecule

into the potential function, we first performed the
MD simulation of the linear molecule with no bend-
ing term included in Eq. (7). In Figure 2 the bu-
tadiyne molecule after 100 steps of MD simulation
using SISM with time step of 1 fs is presented. At
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FIGURE 2. Butadiyne molecule after 100 steps of MD
simulation using SISM with time step of 1 fs with no
bending term included in the potential function.

the beginning of the simulation the molecule was
linear and during the simulation it has deformed.
Therefore the term

∑
angles kφ(φ − φ0)2 has to be in-

cluded in the Hamiltonian to prevent the molecule
from deformation.

Figure 3 presents a butadiyne molecule after
100 steps of MD simulation using SISM with time
step of 1 fs with bending term included in the po-
tential function. It can be observed that the molecule
remains close to linear.

The primary metric used to quantify the accu-
racy of the results of simulation is conservation of
total energy. The long-term stability for a variety of
time steps is evident from results shown in Figure 4,
which depicts the time evolution of the total energy

FIGURE 3. Butadiyne molecule after 100 steps of MD
simulation using SISM with time step of 1 fs with bending
term included in the potential function.

for the system of 20 butadiyne molecules for var-
ious time steps using SISM for a trajectory length
of 9 ps. The density of the system was chosen to be
	 = 0.1 g/cm3. The results presented in Figure 5
show the LFV method for the same model system
for time steps of 1, 2, and 3 fs. The total energy
oscillates around its initial value without exhibit-
ing growth, while for a time step of 3 fs the excise
growth is seen. In comparison with SISM, which
conserves the total energy for time steps of 1, 2, 3,
4, and also 4.5 fs.

To test the accuracy and the efficiency of SISM
with the LFV algorithm, we compared computa-
tional performances for the same level of accuracy.
The relative error in energy, δE, defined as

δE = |E0 − Ei|
E0

, (51)

FIGURE 4. Time history of the total energy for the
system of 20 butadiyne molecules for time steps of 1, 2,
3, 4, and 4.5 fs using SISM for a trajectory of length
of 9 ps.
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FIGURE 5. Time history of the total energy for the
system of 20 butadiyne molecules for time steps of 1, 2,
and 3 fs using LFV for a trajectory of length of 9 ps.

where E0 is the initial energy, and Ei is the energy
at time step i that was monitored for both meth-
ods.

The results of the relative error in the total energy
for test molecules, a system of 20 butadiyne mole-
cules, for different time steps using two different
methods (SISM and LFV) are presented in Figures 6
and 7. It can be observed that the value δE using the
LFV algorithm is in all examples presented larger
than the value obtained by SISM. The results show
that LFV is giving the acceptable relative error in
total energy only for a time step up to 1 fs in com-
parison with SISM, which gives a similar error for
a time step of 4.5 fs. It is obvious that for the same
level of accuracy, the SISM allows to use up to five
times larger then time step the LFV method. Fur-
thermore, the LFV method is numerically stable for
only short time steps.

The CPU time required by the two methods
(SISM and LFV) for 100 MD steps computed on the
PII/200 MHz processor for different system sizes n
and equal time step 1 fs are compared in Table I.
The computation cost per integration step is approx-
imately the same for both methods so that the speed
up of SISM over LFV is determined mainly by the
difference in time step, which is significant.

Symplectic integration methods, which are also
symmetric, are time reversible. Since SISM is sym-
plectic and symmetric, it must be time reversible.
To test this fact we calculated the trajectories for the
model system of 20 butadiyne molecules for nega-

FIGURE 6. Relative error in total energy for the SISM.
Results are plotted for time steps of 1, 2, 3, 4, and 4.5 fs
for a system of 20 butadiyne molecules for a trajectory
of length of 9 ps.

tive time also. In Table II the total energy for our
model system using SISM, for two different time
steps (1 and 2 fs) and different integration times. Re-
sults demonstrate the time reversibility of the SISM.

Conclusions

The present work presents a design and analysis
of a split integration symplectic method (SISM) for
MD simulation, which uses normal mode analysis
for an analytical treatment of high-frequency mo-
tions within a second-order generalized leapfrog
Verlet (LFV) scheme.

Even if the complexity of the SISM seems to be
high compared to that of the LFV method, it is not so
since the most demanding part of the SISM, i.e., the
calculation of nonbonding forces and energy, is the
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FIGURE 7. Relative error in total energy for the
LFV algorithm. Results are plotted for time steps of 1, 2,
and 3 fs for a system of 20 butadiyne molecules for
a trajectory of length of 9 ps.

same as that of LFV. All the extra work (coordinate
transformations) is thus prevailed by nonbonding
force and energy calculation. It was demonstrated
that for the model system of 20 linear butadiyne
molecules SISM allows use of a step size up to five
times larger then standard LFV method, and the
computational cost per step is approximately the
same for the two methods. This is in agreement with
our previous work [12 – 14] where no bending term
was included in the potential energy function.

Further improvements in efficiency were
achieved by implementing the methods on com-
puters with highly parallel architecture. It was
shown that SISM offers better performances in
comparison with LFV for both sequential and
parallel implementation. SISM performs in parallel

TABLE I
CPU time (s) for SISM and LFV for 100 MD steps
of the system of butadiyne molecules for different
system sizes n for equal time steps of 1 fs on the
PII/200 MHz.

n t(SISM) (s) t(LFV) (s)

10 13.46 12.91
20 52.11 51.51
30 115.73 115.82
40 204.58 205.96
50 318.60 321.51

TABLE II
Total energy of the system in kcal/mol at different
times of integration and time steps �t.

�t (ps)

t (ps) 0.001 0.002

0.000 372.4295391 372.4295391
0.050 372.4342472 372.4319225
0.100 372.4251498 372.4202091
0.150 372.4243393 372.4352490
0.200 372.4196697 372.4295630
0.250 372.4299782 372.4267537
0.300 372.4463068 372.4519875
0.350 372.4327027 372.4373704
0.400 372.4477789 372.4657149
0.450 372.4510523 372.4557296
0.450 372.4510523 372.4557296
0.400 372.4477789 372.4657149
0.350 372.4327027 372.4373704
0.300 372.4463068 372.4519875
0.250 372.4299782 372.4267537
0.200 372.4196697 372.4295630
0.150 372.4243393 372.4352490
0.100 372.4251498 372.4202091
0.050 372.4342472 372.4319225
0.000 372.4295391 372.4295391

as LFV which means the speed up is gained due
to a longer time step, which can be used by SISM
[20 – 22].

Much work remains to be done in the develop-
ment of this approach to explore the advantages and
limitations of the method. The method will be ex-
tended to force fields that include torsional terms in
the MD potential.
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tum Chem, to appear.

12 VOL. 84, NO. 1


	Introduction
	Split Integration Symplectic Method for MD Integration
	Leapfrog-Verlet Algorithm
	Numerical Experiment
	FIGURE 1.
	FIGURE 2.
	FIGURE 3.
	FIGURE 4.
	FIGURE 5.
	FIGURE 6.

	Conclusions
	FIGURE 7.
	TABLE I
	TABLE II

	References

