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Molecular dynamics integration and molecular vibrational theory.
ll. Simulation of nonlinear molecules
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(Received 17 November 2004; accepted 11 February 2005; published online 29 Apjil 2005

A series of molecular dynami¢MD) simulations of nonlinear molecules has been performed to test
the efficiency of newly introduced semianalytical second-order symplectic time-reversible MD
integrators that combine MD and the standard theory of molecular vibrations. The simulation results
indicate that for the same level of accuracy, the new algorithms allow significantly longer
integration time steps than the standard second-order symplectic leap-frog Verlet method. Since the
computation cost per integration step using new MD integrators with longer time steps is
approximately the same as for the standard method, a significant speed-up in MD simulation is
achieved. €2005 American Institute of PhysidDOI: 10.1063/1.1884608

I. INTRODUCTION dy R
. . . — ={pH}=Lyn, (1)
In the preceding papérnew semianalytical second- dt

order symplectic integrators are presented, developed by . i . )
combining the molecular dynamig®ID) integratior? and WhereLy is the Lie operatof,} is the Poisson brackét and

the standard theory of molecular vibratioh& The unique  7=(d,P) is & vector of the coordinates and their conjugate
feature of the new integrators is in that the standard theory difomenta of all the particles. o _
molecular vibrations, which is a very efficient tool to analyze ~ 1he formal solution of the Hamiltonian syste®) is
the dynamics of the studied system from computed _ r
trajectgries7,‘12is used not to analyzg, but to compute trgjec— Mhrae = XHALLY) 7, @
tories of molecular systems. Information about the energwnd it represents the exact time evolution of a trajectory in
distribution of normal modes and the energy transfer bephase space composed of coordinates and momenta of all the
tween them is thus obtained without additional computaparticles fromt, to t,+At, whereAt is the integration time
tions. step®®

The key property of a good MD integrator is the conser-
vation of the system’s total energy over a long time interval.
Backward error analysﬁ% has indicated that symplectic nu-
merical integration methods approximately conserve the total  |n developing new MD integration methbue first de-
energy of a system over time periods that are exponentiallgompose the HamiltoniaH of a system into two parts
long in the size of the integration time step. Long-time con-

. . . H=Hy+H,, (3)
servation of the total energy by new integrators using long
integration time steps is achieved by the analytical treatmenihereH, is the pure harmonic part of the Hamiltonian and
of high-frequency molecular vibrations within the frame- H, is the remaining paﬂt’f
work of the symplectic decomposition schent&g® Next, a second-order approximation for Eg), known

In this paper the new integration methods are employeas the generalized leap-frog schelfi&®is used
to perform MD simulations of systems of nonlinear mol- At- A Atn
ecules with one equilibrium configuration and no internal 7l :eXF<—|—H )exp(AtLH )eXP<—|-H ) 7l
rotation. The new integrators are superior to the standard Kt 2 ' 2 o) T
leap-frog Verlet(LFV) method’ because they allow longer +O(AB), (4)
integration time steps to be used for the same computational
accuracy with nearly the same computational cost per intewhich defines the split integration symplectic method
gration step. (SISM).“**?2The propagation by exfAt/2)Ly, ) is solved
analytically using the normal modes of an isolated
molecule? while the propagation by emtI:Hr) is solved
The Hamilton equations, which are solved for each atormumerically in the same way as in the standard LFV
of the system in MD integration, can be written in terms of method'’ The SISM differs from other decomposition MD
Lie operators &3 integration methods in that it uses the standard theory of
molecular vibrations, in particular, the concept of the Eckart
Author to whom correspondence should be addressed. Electronic maiff@mMe, to define the translating and rotating internal coordi-
dusa@cmm.ki.si nate system of a molecule for the time propagation. The

A. Split integration symplectic method (SISM)

IIl. METHODS
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method is described in full detail in the preceding péper. D. Leap-frog Verlet (LFV and LFV-EQ)

To demonstrate the effectiveness of the new methods, we
compared the computational performances for the same level

B. Multiple time stepping SISM  (SISM-MTS) of accuracy with the standard second-order symplectic LFV

First, we split the Hamiltoniai of the system ds algorithm'” in which the Hamiltonian is split into the kinetic
H=H,+H,, (5) and potential energy,

H=T+V, (12
Fo= Vi, © using second-order generalized leap-frog scHéffe
Hy=Hg+ Van, (7)

At~ ~ At~
M, = exr(—LT> exp(AtLV)exp<—LT> ly + O(A).
whereH, is the pure harmonic part of the Hamiltoniav,, 2 2

is the sum of the Coulomb and Lennard-Jones potential, and (13)
Vg, is the anharmonic vibrational potential of higher terms
(cubic, quartic, etg.defined in terms of the displacements of
atoms from their equilibrium positiorfs.

The propagator exptI:H) is then approximated as

- At~
expAtLy) = exr< > Lan)

Equation(13) is explicitly written as

, ~ At
Q=0+ M 1'pkE:

N,
Pre1= Pk~ Ata(qk),

a e 20 )|
X | ex > Lh, exp(étLVar)ex > L, , . At
Oke1= Qe t M7 Pie1 ™ (14)
At~
p— 3
><exp< 2 Lan> +O(AD), ®) whereM e R¥3 is a diagonal mass matrix. The diagonal
i . . . i . elements areM 11~ ml, M22: ml, M33: m1, e ,M3n_2’31_2
which is used to der|\_/e the_multlplg t|m_e stepping SISM:mm Man-1 av-1= M, Man 3=, wherem is the mass of the
(SISM-MTS). Here At is the integration time step anét ith atom.
=At/nis the smaller integration time step that corresponds t0  \y/hen the numerical scheme of the LEV defined by Eq.
the time scale' of high-frequency interactions deflnem (13) is used to propagate the coordinates and momenta of the
The propagation by expst/2)Ly ) is performed analytically atoms, and the potential of the long-range electrostatic and
in the same way as in the SISM. van der Waals potential is calculated with the equilibrium
positions of the atoms in each molecule in the same way as
o for the SISM-EQ and SISM-MTS-E@then this gives rise to
C. Equilibrium SISM  (SISM-EQ) the equilibrium LFV(LFV-EQ) method.

In the equilibrium SISM (SISM-EQ, the numerical

scheme of the SISM given by E(}) is useq to propaga_lte the Il COMPUTATIONAL DETAILS
coordinates and momenta of the atoms; the potential of the

slow nonbonded forces is computed with the equilibrium po-  The applicability of the SISM for MD integration is, at
sitions of atomb present, limited to systems of molecules with one equilib-

Vip(@) — Vil d(Q)] 9)  rium configuration and no internal rotation, and in which the
3 A displacements of atoms from their equilibrium positions are
Fro(@) — T - Fold(@)], (10) sufficiently small that we can use the dynamical molecular

modef to describe molecular vibrations. A four-atom mol-
where V,, is the sum of the Coulomb and van der Waalsecule, the hydrogen peroxidél,O,), schematically shown
potentials, F,,=-dV,p/dq is the corresponding force, in Fig. 1, has been chosen as an example of a nonlinear and
al oq=(al IXq1,91 1,01 9Zy, ... ,01 0Ky, 01 Yy, dl IZ,), q nonplanar molecule.
=gy -+ 5030 = (X1, Y1, 24, ... . X4, Yn Zy) are the Cartesian
coordinates of all atoms in the system anig the number of
atoms in the system, ar{q) € R®" are the equilibrium po- A. Model potential development
sitions of atoms in all molecules of the system, given by the

0o 1356

standard theory of molecular vibratioh$: , ate model potential to be used in MD simulations of liquid

. When the scheme of the SISM'MTS’ defined by &), H,O, by the SISM. The HO, molecule, which has no center

IS used_to _propa}gate the coor_d_mgtes and momenta of th(?f symmetry, is one of the simplest molecules with a hin-

?/'I{'(I)'gslé It gives ”?e tq the equilibrium SISM'MT(SISM'_ dered internal rotation of the hydrogen atoms around the
. Q) method. This method conserves the following bond between the oxygen atoms. It has two equivalent stable

quantity: equilibrium configurationgat +¢,) and two transition states,
H=T(p) + V,in(q) + Vo[ d(a)]. (11)  cis (¢o=0°) and trans(¢,=180°).2"% The experimental

For this class of molecules we first develop an appropri-
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FIG. 2. (a) The torsional potential defined by E(L5) with ¢,=112.46°,

~ Vo=2V,/(1-cos¢g)?, and V,=7.28 kcal/mol corresponding to isolated
f molecule.(b) The torsional potential defined by E@.5) with ¢,=90.2° and

) V=140 kcal/mol defining a molecule with one equilibrium configuration
and no internal rotation.

(b)
FIG. 1. Description of the positions of atoms in the equilibrium configura- . . . . .
tion of hydrogen peroxid€a) Definition of angles(b) View along the bond testlng the .efflcllency of d'ﬁetrem numerical integrators _for
between atoms 2 and 3. MD simulation, is therefore different from the corresponding
value in the gas staf8.Because, at present state of develop-

value of ¢ is 119.8° +3° for the gas phaéeThe value for ~ment, the SISM is efficiently applicable only to systems of
¢o determined fromab initio calculations of an isolated molecules with one equilibrium configuration and with no
H,O, molecule is 112.46%’ The torsional potential, also de- internal rotation, we have taken the experimentally deter-
termined fromab initio calculations’’ can be fitted with the mined structure in the solid stafewith ¢,=90.2° for the
function of the harmonic cosine form equilibrium configuration of the kO, molecule instead of
V() = %VO(COS¢— cOS¢hy)?, (15) the corres_ponding strut_:ture iq the qugid state and we hgye
set the height of potential barriers, which surround the mini-
with Vo=2Vp/(1-c0s¢p)?, V,=7.28 keal/mol,¢o=112.46,  mum at ¢,=90.2°, artificially high atV,=140 kcal/mol to
and minima ensure that the displacements of the hydrogens atoms are
bmin = 2NTT % by (16)  sufficiently small so that they can be considered as torsional
_ ) o ) vibrations. The corresponding torsional potentiHh) is de-
From the torsional potential, shown in Figag it can be  icteq in Fig. 2b) from which it can be observed that the
observed that there are two potential barriers surrounding thI‘?eights of the potential barrier for the trans and cis transition

minimum at 112.46°, which corresponds to the equmbnumStates are equal. An@, molecule with the equilibrium con-

configuration. The high 7.28 kcal/mol potential barrier cor—f. ration determined by th rameter n therefore b
responds to the cis transition state whereas the lowguration dete ed by these parameters can theretore be

1.08 kcal/mol potential barrier corresponds to the trans tranconsidered as a molecule with one equilibrium configuration
sition state. and no internal rotation. Hence, we have used it as an ex-

The equilibrium configuration of the J@, molecule in ample of the class of nonlinear and nonplanar molecules in
the gas state, however, does not correspond to the corr®D simulation by the SISM.
sponding structure in the liquid state. The valuefgfin the The model Hamiltonian, which we have developed for
liquid state, which is the most interesting physical system foMD simulation of the liquid HO,, is
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TABLE I. Parameters of the Hamiltonian defined by Ej7) for the H,0, TABLE II. Experimental vibration frequencig®efs. 34—3§of liquid H,O,
molecule. The quantitg, is the elementary charge. and normal mode frequencies of the®} molecule determined by normal
mode analysis using the parameters from Table I.

Parameter Value
1/\ (cm) 1/x (e
bo;0:b10b: bs, 222?2 Normal mode (experimenf® (theory®
00, = P2 .
o, 102.7° Antisymmetric O—H stretch 3360 3358
322 102.7° Symmetric O—H stretch 3360 3357
&0 90.2° Symmetric angle bending 1421 1410
o= ho—90 0.2° Antisymmetric angle bending 1350 1386
Koy =Ko, =Kn, 900.0 kcal/mol/& O-O stretch 878 880
Koo o=k, 580.0 kcal/mol/R Torsional oscillation 635 1965
Ko, 140.0 kcal/mol/rad!a% 3 xperimental vibration frequencies.
Kg, 140.0 keal/mol/radiah ®Normal mode frequencies.
Vo 140.0 kcal/mol
ey 0.350 52, o _ .
e -0.350 52, B. V|b_rat|0nal potential energy and internal
T 0.40A coordinate system
700 3-150k7A” | The vibrational potential energy is the sum of the vibra-
EHH 0.045 98 keal/mo tional potential energies of all of the molecules in the system,
£00 0.152 073 kcal/mol

m
1 1
Vvib = E Vvibl< = 5 2 kb(b - bO)z + E 2 k‘g(e_ 00)2
k=1

bonds angles

2
pi 1 2, 1 2
H=> —+= 2 kyb=-by)*+ = ko(0— 6 1
2 2m, 2b§ds (b = bo) 2anzgles o0~ 0o) += D Vy(cose - cosdy)?, (18)
torsions
1 5 ee . . . .
+2 D) Vy(Cosp—Ccosdp)? + >, —1—4 wherevvibk is the vibrational potential energy of tléh mol-
torsions i>j €0l ecule in the system and is the number of molecules in the
oy oy 6 system. X
+ z 4eij < r ) B r ' (17) In the SISM, the propagation by e(>(y).t/2)LH0) is inte-

grated analytically using the normal coordinates to describe
the vibrational, rotational, and translational degrees of free-
dom of each molecule in the system. For the transformation
of Cartesian coordinates and momenta into the normal coor-
dinates, the relative Cartesian displacement coordinates are

. ) ) er‘é’quired. To determine the vibrational frequencies and nor-
tively, k, andk, are the corresponding force constamis 5| modes of vibration of thith molecule in the system, the
the reference yalue .for the torsional anglg, is the corre- mass-weighted Hessiavl ~¥2.H,-M -2 ¢ R33N has to be
sponding barrier heighte; denotes the charge on théh  giagonalized. The matriki, is a symmetric matrix with the
atom, € is the dielectric constant in vacuum); is the dis-  glements
tance between thih andjth atoms, and:; and oy; are the P
corresponding constants of the Lennard-Jones potential, and H =H :( Vharm, ) (19
the Lorentz—Berthelot mixing rules are used@ihe van der ki Tk dAQidAQ; /o
Waals and Coulomb interactions between hydrogen atoms of . . L
gy . and M is a diagonal mass matrix with the elemeis
the same molecule are explicitly taken into account. For the _ _ _
; =My, Mgp=my, Mgz=my, ... Man-2 av-2=Mn, Man-g av-1
reference values of the bonds, angles, and torsional angles _ :
we have taken the experimental values from Ref. 30. For the Man an=my, whereN is the number of all of the atoms
tants of the L 4-3 tential h ' t K t|n the kth molecule. The harmonic vibrational potential en-
constants of the Lennard-Jones potential we have taken n?efgyVharw for the kth molecule is defined as

corresponding values of flexible TIP3P water m34éf and

wherei andj run over all atomsm; is the mass of théth
atom, p; is the linear momentum of thigh atom,b, and 6,

the partial charges of the atoms were calculated fromathe 1 3N &ZVUibk

initio calculated dipole mometit and the corresponding Vharrrk:zz m AgiAg;
structure of an isolated 40, molecule?” The force constants R LA

for bond stretching and angle bending were determined by 1 N &thamk

fitting the normal mode frequencies calculated by normal ZEijzl M OAOIiAQj

mode analysisto the experimental frequencies in the IR and

Raman spectrum of liquid 5@2.34‘36The parameters of the N 1

Hamiltonian (17) are reported in Table I. The experimental = EiZ_lHkiquiqu = EAQ ‘Hy-Adg, (20)
and calculated normal mode frequencies for th@®Hmol- =

ecule using these parameters are reported in Table II. where Aq=(Ax,,Ay,,Az;, ... ,AXy, Ayy,Azy) is a vector of
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the relative Cartesian displacement coordinat&be Hes- atoms 2 and 3 are oxygen atoms, and atom 4 is the second
sianH, as well as the functional form o:ham are equal for  hydrogen atom, respectively. The definitions of the angles
every molecule in the system and therefore the inkeg 61, 05, andyy are evident from Fig. (), and the distances

omitted. are b; =b; =bgy_ and b, =bgg . The unit vector pointing
The harmonic potentia¥,,, is then expressed as o0 9 0 0 _
am from atom 2 to atom 1 is then (cosé,,
Vharm= Vstretcht Voend™ Viorsion (21 =sin g sin 6’10, COSg Sin 010), the unit vector pointing from

WhereVecn Voeng @NdVioion are the bond stretching, angle atom 2 to atom 3 ig1, 0 0, and the unit vector pointing
bending, and torsional potentials, respectively, expressed ad@M atom 3 to atom 4 i$-cos6j,sin 6;),0). The expres-
quadratic forms in terms of relative Cartesian displacemen$ion for Vgyetenin terms of the relative Cartesian coordinates
coordinates. is obtained by projecting the difference of the displacements

The equilibrium configuration of the @, molecule is  of the atoms onto the unit vectors, which point along the
shown in Fig. 1 where atom 1 is the first hydrogen atombonds between atomié Then

Vstretch™ %kbl[(Axl — AXp,Ay; — Ay, Az — AZ,) - (COS B, ,— Sinyy Sin 6y ,COSi Sin ‘910)T]2 + %kbz[(AX3 = AXp,Ays
~ Ay, 025~ A2)) - (1,0,071 + 3k [(AXs = Axa, Ay, = Ays, A2y = AZg) - (= COSBy,SiN 6,00
= %kbl[(Axl - AXZ)COS 010 - (Ayl - Ayz)sin 1//0 Sil’] 010 + (AZ]_ - AZz)COSl/fO Sil’] 010]2 + %kbz(AX3 - AX2)2
+ gko[~ (A%, = Axg)cOS by, + (Ay, — Ays)sin 6, 1%, (22

where - denotes the dot product of two vectdgs=k, =ky_ . andky, =k .
Similarly, the expression fov,enqin terms of the relative Cartesian coordinates are obtained by taking the components of
the difference of the displacements of the atoms perpendicular to the bonds between th¥ Ftvensfore

1 1 1
Viend= Ekell b—(Ax1 = Axp,Ay; — Ayy, Az — Azp) - (= sin 6y, = sinyyp COS 6y ,COSYy COS 010)T + b—(Ax3 = AXy,Ay;
1o 20
: 211 .
- Ayz,AZ3 - AZZ) . (0, Sin l//o, - COSI,//()) + Ekgz b_(AXZ - AX3,Ay2 - Ayg,A22 - AZg) ' (0, - 1, Q
20

1 2
+ b—(Ax4 = Axg, Ay, — Ays, Az, — AZy) - (sin 6, ,€086,,0)"

30

1 1
= Ekgl[ b—[— (Axg = Axp)sin 6y = (Ay; = Ay,)sin g cos by + (Az; — Azy)cosyy COS O, |
1o

1 2
+ g[(Ays —Ayy)sinyy - (Azz - Azz)COSl//o]:|

0

1 1 1 2
+ —Kp | = —(Ay, — Ayg) + —[(Axs — Axg)sin 6, + (Ay, — Ay;)cosb, || , (23
2 2 b20 b30 0 0
T
where kﬁl: kt92: k‘900H' Azg=— (_ bSO COSHZO + AX4 - AX3, b30 sin 920 + Ay4
To express the torsional angiein terms of the relative
Cartesian coordinates we define —Ay3,Az, - Azy), (26)

where aaﬁ:aa+pa_(aﬁ+pﬁ)1 pa:(AXaiAyaiAza)v LY,,B

a.12: - (_ blO C05010 + AXz - AXl,blo Sin lpo Sin 010 =1 T ,41 and
+ Ay, = Ayy, = by cosypsin by + Az - Azy), (24) ay = (by, cosb; ,— by sinyysin 6y by cosypsinby ),
(27)
3=~ (b20 + AX3 - AXZ,Ay3 - AXZ,AZ3 - AZZ) , (25) a,= (0’ O,q, (28)
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a;=(b,,0,0), (29) The matrix 7 2, which is required to determine the
° unit vectors of the internal coordinate system of a molecule
in the SISM, is calculated as

az= (b2 - b3 COS&Z ,b3 sin 02 ,0) (30)
0 0 00 0 Fl/2: P. D—l/2 . PT (35)

cos¢ is then obtained as

(812 X Apg) - (Ax3 X Agy)
lagy X @pg|ags X agy

where D2 is a diagonal matrix with the elemeni;*

=1/y\; and\; are the eigenvalues of the symmetric positive
definite Gram matrixF. The columns of the transition ma-
trix P are the eigenvectors oF andP' is the transpose d?.

cos¢= (31

where|:| denotes the vector norm. In E(®1) we only keep
the linear and quadratic terms in relative Cartesian displace- _. .
ment coordinates. C. Simulation protocol
Then We have carried out MD simulation of a system of 256
H,O, molecules with the density=1.4425g/cm at T
Viorsion= }Vo - ;(Ayz - Ay;) =298 K corresponding to the liquid stateThe correspond-
2 by, sin 6y ing size of the simulation box waa=21.6A. Periodic
1 boundary conditions were imposed to overcome the problem
+ [~ 2 sinyp(Axg — Ax;) — (cot by of surface effects; the minimum image convention was
20 used® The Coulomb interactions were truncated using the
force-shifted potenti&! with a cutoff distance ,;=8.5 A**

+ sin i cot 6, )(Ay; — Ay,) + cos
Yo 20)( Y3~ AY2) Yo The Lennard-Jones interactions were shifted by adding the

X cot 020(A23— Azy)] term Cijrﬁ+Dij to the potential, wher€;; andD;; were cho-
1 sen such that the potential and force are zeroija:troff.32
+ ————[cosuy(Az, — Azs) The initial positions and velocities of the atoms were chosen
b30 sin 6, at random. The system was then equilibrated for 50 ps where
5 the velocities were scaled every 500 integration time steps,
= sinyo(Ay,— Aya)] | . (32 followed by an additional 50 ps of equilibration at constant

energy of the system to ensure that the velocities assume the
Maxwell distribution atT=298 K. To obtain physically and

The elements of the Hessiath are determined by Eqg. : I .
(19. The dimension of the mass-weighted Hessiannumencally relevant initial conditions to perform the MD

ML2.H.M"12 s 12x 12 in the case of the }O, molecule simulation of a system of flexible molecules, the equilibra-
The N-6=6 vibrational normal mode frequezncies for ihe tion was also monitored using the Vieillard—Baron rotational

42
H,0O, molecule are given in Table Il. The mass—weightedOrder paramet&rz.
HessianM ~2.H -M 12 was diagonalized using subroutines
TRED2 and TQLI taken from Ref. 38. These subroutines werelV. RESULTS AND DISCUSSION
also used to diagonalize the symmetric positive definite

Gram matrlx]-'.l_ _ . _numerical experiments we compared the computational per-

_The translatlng and rotating m_ternal Coo_rdlnate syst_em Jormances for the same level of accuracy with the standard
defined by the nght-han(_jed trlad_ (.)f _un|t vectofs | second-order LFV algorithm using an integration time step
=1,2,3, wheref; fi=dj, with the origin in the center of ¢, enough to accurately describe the high-frequency mo-
mass of a molecule. The co,nstant eq“"'b”“”.‘ dlstancles %Yecular vibrations. In this way it is assured that the physical
the atoms from the molecule’s center of magsi=1,2,3. properties of the system determined from the trajectories

Wh'tCth]are rfr?uwecli)tfqr %e?mng of tthe Intfrlnal Cc;forg'n‘"‘tecomputed by new integrators using long integration time
systeni are then obtained from vectocs, @=1,...,4, de- steps are reliable.

To demonstrate the effectiveness of the SISM, in all our

termined as For that purpose the error in total enerdyf/E defined
3 as
c,=a,—R=2, c'fi=(cf,c5,c3), 33
o El (cf,c5,¢5) (33 ﬁ;% Eo-E -
E M, Z E '
whereR is k=1 0
whereEy is the initial energyE, is the total energy of the
_ >, ma, ~ 1 system at the integration st&pandM is the total number of
R= S m m1+m2+mg+m4[m1b10 Cos6), integration steps, was monitored for all methods and was
a ¢ used as a measure of the efficiency and accuracy of numeri-

cal integrators for MD simulation.

+ mgb, +my(b, —bs cosé, ),
Mabzo + Ma(Pz, = bs, 2 The speed-up of the new methods due to a prolongation

- mlblo sin ¢y sin 61, + m4b3o sin b2, of the integration time step can be determined from the error
b , in total energy, which is depicted in Fig(e8 for the system
My b, COSYo SiNn ‘910]' (34) of 256 H,0, molecules for the LFV, SISM, and SISM-MTS.
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! ' ' ' ' (12). Since the vibrational potenti&l,;, taken into account in
] the LFV-EQ is the same as in the LFV, the estimated value of
the maximal acceptable time step for the LFV-EQ is 0.5 fs.
. From Fig. 3b) we can determine that the error in total
energy for the LFV-EQ with a 0.5 fs integration time step
corresponds to the error in the case of the SISM-EQ using a
1.5 fs integration time step or 2.0 fs in the case of the SISM-
, MTS-EQ. The SISM-EQ therefore allows the use of a three
tets S LBV ] times longer integration time step than the LFV-EQ for the
. SISM-MTS e same level of accuracy, whereas the SISM-MTS-EQ allows
1 2 A [fs]3 4 5 the use of even up to a four times longer time step as the
LFV-EQ. We can also conclude that the SISM becomes un-
(a) stable for integration time steps longer than 3.75 fs whereas
no drift occurs in total energy using the SISM-MTS-EQ with
integration time steps shorter than 5.0 fs. Using longer time
steps results in a drift in the total energy, which is consistent
with the conclusions in Ref. 25 where a linear numerical
instability is predicted for the integration time step size cor-
responding to around half of the period of the fastest normal
mode.
The prolongation of the maximal acceptable integration
time step by the SISM-EQ and SISM-MTS-EQ in compari-
son to the LFV-EQ comes from the fact that the maximal
SISM-MTS-EQ %~ . L . T
0o > s A 5 acceptable integration time step is limited by the atoms’ mo-
At [fs] tion generated by the intermolecular forces in the case of the
(b) SISM-EQ and SISM-MTS-E@Z. The maximal integration
time step allowed by the LFV-EQ method, however, is lim-

FIG. 3. (@ The error in the total energy of the system of 256 molecules  ited by the intramolecular high-frequency vibrations that are
with p=1.4425g/cm at T=298 K using the LFV, SISM, and SISM-MTS on the considerably smaller time scale.

for M=1000.(b) The error in the total energy of the system of 256k Wi | . in th .
molecules withp=1.4425 g/criat T=298 K using the LFV-EQ, SISM-EQ, e can also report resonances occurring in the error in

and SISM-MTS-EQ foM =1000. total energy when the size of the integration time step corre-
sponds to a multiple of the period of the fastest normal mode
] ) _ ) of a molecule(not shown in Figs. @) and 3b) where only
The period for the antisymmetric stretching of the bond beysically meaningful integration time step sizes are consid-
tween the oxygen and the hydrogen atom in th©HMOl-  greq as in the case of the Verlet-lIi-rRESPA metf8d3 The
ecule is 9.9 fTable Il). We estimate that the maximal ac- | ennard-Jones and electrostatic interactions represent the ex-
ceptable size of the integration time step for the LFV t0 beerna| driving forces on the internal motion of the molecules
0.5 fs. From results in Flg..(a) we f:onc.lude that _the errorin and resonance always occurs if the frequency of the driving
total energy for a 1.25 fs integration time step in the case ofyrce corresponds to a multiple of the oscillator frequency,
the SISM corresponds to the error in the total energy using fegardless of whether the high-frequency molecular vibra-
0.5 fs integration time step in the case of the LFV. Thistjons are integrated numerically, as in the case of the Verlet-
means that the SISM allows the use of an up to a two and gr-RESPA method, or analytically, as in the case of the SISM
half times longer time step than the LFV for the same levelan its derivatives, which are also not stable in these reso-
of accuracy. nances. Since the period of the fastest motion is 9.9 fs, we
For the system of kD, molecules, a high amount of can draw the conclusion that the size of the maximal integra-
anharmonic forces derived froMy, is expected due to the tion time step of the new methods is also limited in this case
strong anharmonic potential describing the interactions in thgy the nonlinear instabilities at a third or fourth of the period
system. Surprisingly enough the SISM-MTS, which employsof the fastest motion and by linear instabilities at half of the
at=0.5 fs for the integration of motions generated by high-period of the fastest motion, as found for the Verlet-I/r-
frequency anharmonic interactions is less accurate than ttRESPA method>**
SISM [Fig. 3(@]. This can be explained by the fact that the The actual speed-up of the new methods is confirmed by
large amount of anharmonic forces stems from the strongneasuring the CPU time spent by the methods per integra-
electrostatic and van der Waals interactions and not from théon step. The CPU times for the three methdtie SISM,
high-frequency anharmonic interactions defined\iy. Due  SISM-MTS, and LFV for 1000 MD steps measured on an
to strong intermolecular forces we expect good performanc&MD Athlon XP 1600+ processor for different system sizes
of the SISM-EQ and SISM-MTS-EQ integrators. This is (m) and equal time stepd fs) are given in Table Il
confirmed by the results in Fig.(® in which the error in The results indicate that the computation cost per inte-
total energy for the LFV-EQ, SISM-EQ, and SISM-MTS-EQ gration step is slightly larger for the SISM and SISM-MTS
is shown. The total energy in this case equals expressiothan for the LFV. However, for larger systems consisting of

01}
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TABLE Ill. CPU time (s) for SISM and LFV for 1000 MD steps measured on an AMD Athlon XP 1600+
processor for different system sizém) and equal integration time stefk fs).

LFV SISM SISM-MTS (SISW (SISMMTS
t t -

mo R SIsM (e K S Ry )

64 14.21 16.39 18.72 115 1.32

128 49.57 54.51 58.51 1.10 118

256 170.52 182.65 188.64 1.07 111
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