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Abstract. We provide an overview of the Adaptive Resolution Simulation method (AdResS) based on
discussing its basic principles and presenting its current numerical and theoretical developments. Examples
of applications to systems of interest to soft matter, chemical physics, and condensed matter illustrate the
method’s advantages and limitations in its practical use and thus settle the challenge for further future
numerical and theoretical developments.

1 Introduction

Computer simulations of physical model systems, mate-
rials or simple molecules date back to the 50s of the
last century. Early pioneers started with the very first
molecular dynamics or Monte Carlo simulations of sim-
ple hard-sphere liquids or lattice models for polymers
(for a historical account, see Ref. [1]). While these
first in silico experiments at the time were genuinely
exploratory, their applicability, of course, was strongly
hampered by the limitations of available soft- and hard-
ware. Since then, dramatic improvements in hardware
and simulation methodology allowed researchers to sys-
tematically study far more complex systems on space
and time scales closer to realistic systems and processes.
Because of this, modern computer simulations play a
central role in many disciplines nowadays. This develop-
ment continues with new numerical approaches, includ-
ing modern machine learning techniques and the advent
of exascale computing on the horizon. It has to be seen
whether there will be another boost by quantum com-
puting in the not far future [2].
Still, despite all that huge progress, we are facing many
real challenges. There is the severe problem of scales,
which can be found in all fields of (materials) model-
ing. In (too) simple terms, one can take two opposing
views. For a physicist, a generic, typically reduced pic-
ture provides understanding and reveals mechanisms,
while for a chemist, all the local details count and result
in a material or a function. Of course, both are true,
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and different views apply depending on the question
under consideration. However, problems at the interface
between these two ways of thinking pose the most inter-
esting scientific questions. Namely, conditions where
local details are decisive, that couple to large scale envi-
ronments where most details average out into a more
simple generic model. These conditions hold for many
complex systems but especially for biological and syn-
thetic soft matter. It is often the case that relatively
small local changes, e.g., molecular structure, can have
significant consequences for global system properties
or function. To deal with that numerically, typically
simulations of models of different levels of resolution
are performed independently, and the results are com-
pared and linked to each other [3]. Especially when
dealing with long time dynamical problems, e.g. poly-
mer melt dynamics, this has been a successful strat-
egy. In such cases all atom dynamics has been suc-
cessfully used to calibrate time scales of simple bead
spring chain models. However, already for liquid crys-
talline systems, this direct approach does not work any-
more [3,4]. In other cases, one would like to study local
properties, which need the contact to a larger reser-
voir for which one not necessarily has to take all the
details permanently into account. Thus it is advanta-
geous to have simulation methods at hand, which deal
locally with chemically specific problems, where the
microscopic central part is in equilibrium with a sim-
plified, coarse-grained (cg or CG) environment. More-
over, particles can freely move without experiencing a
free energy barrier between these regions where differ-
ent descriptions are considered. The adaptive resolution
simulation (AdResS) approach provides such a frame-
work [5–10]. The original test setup for the first simu-
lation is illustrated in Fig. 1.
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Fig. 1 Original AdResS [5,6] setup applied to a test sys-
tem of a liquid of tetrahedral molecules coupled to a single
particle representation of these molecules. As indicated the
system consists of an atomistic region (λ = 1), a coarse
grained region (λ = 0) and the interpolating hybrid region
(0 < λ < 1). Reprinted figure with permission from Ref. [9].
Copyright (2013) by the American Physical Society

The atomistic region (indicated as AA or AT in this
paper) connects to a coarse-grained region through a
transition region (indicated also as hybrid region or as
Δ region in the paper). The change of resolution would
create a discontinuity if the two regions, at different
resolution, were directly interfaced. To avoid a sudden
discontinuity the transition region is placed between the
atomistic and coarse-grained region. This region, whose
dimensions are much smaller than the other regions, is
artificial and allows for a smooth transition from one
resolution to another. In addition it allows to design dif-
ferent schemes, e.g. thermodynamics force/free energy
balance, as it will be reported later, to make the physics
of the atomistic and coarse-grained region consistent
with that of a full atomistic system of reference accord-
ing to basic principles of statistical mechanics. In the
presence of long-range electrostatic interactions, the
reaction field method is used to mimic the absence
of atomistic charges in the coarse-grained region (see
e.g. the case of liquid water [11]). Such a setup can be
helpful in various scenarios. Initial ways of looking at
AdResS simulations are to interpret it as a magnifying
glass applied to coarse-grained simulations. One of the
earlier applications, which demonstrated new options
based on AdResS, was the study of the solvation shell
for a variety of fullerenes of different size [12], where
it was shown that the surface-induced structuring of
the water does not exceed significantly beyond the sec-
ond solvation shell. Next, a smaller but still large solute
would be a solvated organic molecule in different sol-
vents or solvent mixtures. Figure 2 illustrates a few such
cases.

It certainly is beyond the scope of the present work
to review all applications of the AdResS concept. After
a few basic examples we will focus on work, which
points to extensions and new directions. There are sev-
eral reviews available in the literature, which discuss
adaptive resolution methods for coupling different lev-
els of particle based models, path integral quantum and

Fig. 2 Typical scenarios, where AdResS type of simula-
tions can be useful. In a coarse grained simulation of water
is run and the AdResS setup is used to zoom into the liquid
like with a magnification glass allowing for a more detailed
analysis. In b the solvation shell of a huge fullerene in water
is studied. The variation of the thickness of the atomistic
water layer allows to shed light onto the structuring of that
layer by the fullerene on one side and the bulk water on the
other side. Reprinted from Ref. [12], with the permission of
AIP Publishing. c Is from a study of tri-glycine in a water
urea mixture, where for clarity in the atomistic region only
the tri-glycine is shown. Here the larger cg region serves as
a reservoir of water and urea. Figure adapted from Ref. [13]

classical models as well particle continuum simulations
[6,14,15]. Furthermore Ref. [16–18] take a more general
soft matter perspective in terms of general multiscale
simulations, including adaptive resolution approaches.
In the following, the two flavours of AdResS (force
based and Hamiltonian based) are discussed within a
general framework, followed by some recent applica-
tions. For the latter, the focus is on new directions,
such as quantum classical coupling, non-equilibrium
systems or advanced free energy calculations, which
extend the application range of AdResS significantly
and show the conceptual equivalence between the two
flavours of AdResS.

2 Basic idea and new directions

As mentioned before to achieve the equilibrium between
a coarse grained and an atomistic region particles/
molecules have to move freely without experiencing a
barrier between the different regions. This reduces finite
size effects in the atomistic region to a minimum and to
a very good approximation correctly accounts for fluc-
tuations in a small atomistic region [5,11,19]. In the
two different regions particles/molecules interact with
two different potentials, a microscopic/atomistic one,
HAA,

HAA =
N∑

α=1

n∑

i=1

p2αi

2mαi
+ V int +

N∑

α=1

V AA
α

V AA
α ≡ 1

2

N∑

β �=α

n∑

ij

V AA(|rαi − rβj |), (1)
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and a coarse grained one Hcg

Hcg =
N∑

α=1

p2α
2mα

+ V int +
N∑

α=1

V cg
α

V cg
α ≡ 1

2

N∑

β �=α

V cg(|Rα − Rβ |), (2)

respectively. pαi, mαi, and rαi are the momentum,
mass, and position, respectively, of atom i of molecule
α.V int indicates purely intramolecular interactions, for
which we do not need to make any assumption and
which can be ignored for our current line of arguments.
The cg pair potential V cg

αβ ≡ V cg(Rα −Rβ) depends on
the center of mass (CoM) positions R of the molecules
α and β (alternatively e.g. the oxygens in the case of
water could be chosen) ; the total CG potential energy
of molecule α is thus given by V CG

α ≡ ∑
β �=α V CG

αβ /2.
Note that we at this point do not specify any specific
property of the coarse grained interaction up to the
point that the cg coordinates Rα are exactly defined
by the atomistic coordinates rαi. Of course, this also
means that the free energy per molecule in the two
regions needs not to be the same. Actually to construct
a model, where the free energy per molecule considering
cg interactions only is the same as with purely atom-
istic interactions and which satisfies the condition to
have the same density and temperature can be quite
challenging and in most cases is not practical at all. In
the original first setting [5,6] this put severe constraints
on the cg region. The subsequently improved coupling
schemes compensate these differences, once molecules
move through the transition region, as discussed below.

To move from one region to the other the objects pass
through the interpolating transition zone as shown in
Fig. 1, which is described by the transition function
λ(X) (in the one-d case of Fig. 1), determined by the
interaction strength originating from either description,
namely AA or cg, respectively. So far we only require
that λ(X) interpolates between 0 and 1 monotonously
and that the derivatives at the boundaries of the transi-
tion zone are vanishing. Taking X as the cg position of
a particle along the transition region there are two cou-
pling schemes, which have been employed in the past,
a multiplicative force and an additive energy coupling.
The first realizations of AdResS [5] are based on a mul-
tiplicative coupling of forces between particles α and
β:

Fαβ = λ(Xα)λ(Xβ)FAA
αβ + [1 − λ(Xα)λ(Xβ)]Fcg

αβ . (3)

This leads to a scheme with well defined forces every-
where in the system, which perfectly satisfy Newton’s
3rd law, Fαβ = −Fβα, even in the transition zone.
It, however, comes at the price, that we do not have
a well defined Hamiltonian, leading to special delib-
erations concerning thermodynamic ensembles [15,20].
This coupling between the two levels of description,
however, does not yet account for potential free energy

differences between e.g. a cg model of a liquid and the
corresponding all atom model at the same density and
temperature. As a result they typically have rather dif-
ferent pressures. While the temperature can be kept
constant throughout the system via a thermostat, a
potential pressure gradient would level off and create
a density variation. To compensate for this and keep
the density constant everywhere in the system a ther-
modynamic force Fth(X) is introduced in the transition
region, so that the total force acting on particle α reads:

Fα(Xα)

=
∑

β,β �=α

(λ(Xα)λ(Xβ)FAA
αβ + [1 − λ(Xα)λ(Xβ)]Fcg

αβ)

+Fth(Xα). (4)

In practice Fth(X), which is zero outside the transi-
tion zone, is determined iteratively. Requesting a con-
stant density ρ in the whole simulation box, a good ini-
tial choice is Fth0(X) = M

ρ ∇p(X), with M being the
molecular mass. It must be noticed that in the transi-
tion region, due to the presence of the thermodynamic
force, the linear momentum is not conserved anymore
on the atomistic level but is conserved on the fluctu-
ating hydrodynamics level (see footnote 2 on pg.16 of
Ref. [15]); this fact has been numerically confirmed in
Ref. [21] where, through the use of a DPD thermostat,
the conservation of a local linear momentum has been
observed. Several applications of this AdResS scheme,
which include generalizations and extensions are pre-
sented below.

Still, the lack of having a complementary approach,
which is based on a Hamiltonian valid in the whole sim-
ulation box, can bee seen as a disadvantage, as e.g. a
Monte Carlo AdResS is not possible without. Also the
discussion of different ensembles would become simpler
or more direct. As will be seen below, this comes at the
cost that Newton’s 3rd law is not anymore exactly ful-
filled everywhere. The Hamiltonian for an energy based
AdResS, called H-AdResS [9,10,22], is given by

H =
∑

αi

p2αi

2mαi
+

∑

α

{
λαV AA

α + (1 − λα)V CG
α

}
+ V int,

(5)

and contains already some resemblance of the Kirk-
wood thermodynamic integration. Again, since V int

only describes intramolecular contributions, we do not
have to specify this further. This energy function is well
defined in the whole simulation box and leads to the
overall force Fαi on atom i of particle α:

Fαi =
∑

β,β �=α

{
λα + λβ

2

n∑

j=1

FAA
αi|βj +

(
1 − λα + λβ

2

)
FCG

αi|β

}

+Fint
αi −

[
V AA

α − V CG
α

]
∇αiλα. (6)
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Thus forces and energies are well defined in the whole
system. Unlike the force based approach there is an
explicit drift term Fdr = −[V AA

α − V CG
α ]∇αiλα like an

external field, which accounts for the free energy dif-
ferences in the AA and CG regions. This in average
corresponds to the pressure gradient ∇p = ρ < Fdr >,
eventually leading to an equilibrium between the AA
and CG region not necessarily at the anticipated state
point. At the same time this term leads to the above
mentioned small violation of Newton’s 3rd law fluctu-
ating in time, as the pair forces explicitly depend on
the particle positions and not only on their relative dis-
tances. In practice this violation averages out almost
completely, so that the disturbance of the dynamics due
to the small fluctuating violation of momentum conser-
vation usually can be neglected [22]. To compensate for
that in average, a modified Hamiltonian is introduced

HMIX
Δ = H −

∑

α

ΔH(λ(Rα)), (7)

constructed in such a way that

FΔ
αi ≡ ∂ΔH(λ)

∂λ

∣∣∣∣
λα

∇αiλα ≡ 〈[V AA
α − V CG

α

]〉∇αiλα.

(8)

Though not exact, this to a very good approximation
already compensates the drift term. A few iterations
are sufficient to produce e.g. a flat density profile as
needed for the magnification glass concept introduced
before. In turn this drift term can be interpreted as a
position dependent Helmholtz free energy integration
term, leading to the following expression

〈[V AA
α − V CG

α

]〉 � 1
N

〈[
V AA − V CG

]〉
λα

ΔH(λα) =
1
N

∫ λα

0

dλ′ 〈[V AA − V CG
]〉

λ′ =
ΔF (λα)

N
,

(9)

for the case where the pressure, but not necessarily
the density is the same throughout the simulation box,
while

ΔH(λα) ≡ Δμ(λα) =
ΔF (λα)

N
+

Δp(λα)
ρ

, (10)

corresponds to a homogeneous density everywhere, as
e.g. required for the magnification glass setup discussed
in the beginning. Actually taking advantage of that
led to several new approaches to calculate free energy
differences or solvation free energies, as shown below.
Furthermore one also can apply Monte Carlo simula-
tions without any further adjustments. So far AdResS
only has been formulated for two body interactions. For
three-body or higher order interactions, which can be
decomposed in two-body terms (like bond bending) the
extension is straightforward [23]. For more complicated

P

V

Fig. 3 Schematic representation of two EOS for an “ atom-
istic system” (red) and the “coarse grained” system (blue).
The green line indicates the mapping at the same density,
leading typically to different, usually higher pressure. As
indicated by the broken lines in principle, and as discussed
later on, one also could imagine not only a coupling at con-
stant density but to any other point on the EOS of (almost)
any coarse grained system

situations new force/energy distribution schemes have
to be developed.

Thus there are two flavours of AdResS at hand, which
can be applied as needed, adding to the versatility of
adaptive resolution schemes. However, common to both
is the fact that particles freely move throughout the sys-
tem without experiencing any barrier. Focusing on this
aspect rather than on the original simulation ansatz
lead to different views on such methods, which origi-
nally were not that much anticipated.

If one looks at the two coupled systems, atomistic
and coarse grained, from a statistical mechanics point
of view, AdResS and H-AdResS simply couple two dif-
ferent systems. In principle there is no restriction in
the way that the density has to be the same etc. as
long as one is able to construct a thermodynamic force
(AdResS) or a compensation term (H-AdResS) which
assures that there is no remaining barrier (actually in
some cases this barrier can be explicitly used to cal-
culate the chemical potential [24,25] or the solvation
free energy [26]). Thus these two systems might have
quite different equations of state (EOS) as illustrated
in Fig. 3. In turn, this provides huge freedom of choice
of coupling and gives many interesting options.

Considering the magnification glass point of view, not
surprisingly, originally the same density in all regions
was requested. As is immediately obvious form Fig. 3,
coupling two such systems usually leads to rather differ-
ent pressures, and usually also to different compressibil-
ities, unless the slope of the two EOS at the same den-
sity are the same. The construction of the cg model and
the compensation terms in the hybrid region account
for that. Water is an extreme example, where an SPCE
water model at a pressure of 1 bar and a correspond-
ing density of about 1g/cm3 and is coupled to a sin-
gle bead spherical water model. This model, parame-
terised by a standard structure based coarse graining
method, experiences a pressure of about 6000 bar, if
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the same density and compressibility is required. How-
ever both AdResS and H-AdResS robustly can account
for that [9,11]. This original approach, however puts
unnecessary constraints on the cg surrounding. Focus-
ing on the properties of the atomistic or more micro-
scopic region the only requirement is the equilibrium
between the coupled regions. In other words, as long as
we can define an appropriate compensation function in
the transition region, we can couple essentially any two
different particle based systems (extensions to contin-
uum are discussed below).

This basic concept translates into a high technical
flexibility when implementing the coupling code in the
simulation algorithm. In the course of the years several
coupling techniques have been actually experimented,
from an interface pressure corrections [27], to the com-
pensation of the local chemical potential [7], to the
more theoretically involved approaches such as ther-
modynamic force [8], auxiliary Hamiltonian [24] and
H-AdResS with the free energy compensation [9]. They
all turned out to be robust and delivering consistently
satisfactory results. For the systems represented by the
EOSs in Fig. 3 this would mean not only coupling sys-
tems at positions of the EOSs located exactly above
or below each other but to systems at points at rather
different places along the EOS. A particularly inter-
esting point is that there are almost no restrictions
on the different EOSs themselves which can be cou-
pled and this opens completely new possibilities. Exam-
ples, explicitly treated in the next sections, are the
coupling of an atomistic liquid to an ideal gas and to
non-interacting tracers in a mean-field. Especially the
coupling to systems like ideal gas, where everything
is known exactly, had been extensively employed in
recent work for the efficient calculation of free energy-
related quantities [28]. In this context, a clear evidence
of the technical flexibility of the root model of AdResS
is that the switching function in the transition region
can even be removed and as a consequence the force-
based and the Hamiltonian-based approach coincide
[29,30]. In such a case the potential of the thermo-
dynamic force becomes equal to compensation term of
the Hamiltonian-based coupling [31]. A reservoir rep-
resented by an ideal gas or by non-interacting parti-
cles in a mean-field, allows for the implementation of
a grand canonical scheme in a trivial manner. By that
the coarse-grained region can be used as a reservoir of
particles of different types at arbitrary thermodynamic
conditions to study externally driven atomistic/detailed
systems or nonequilibrium situations in cases where the
treatment of standard full atomistic systems becomes
difficult, some examples are discussed in this paper.
Finally, from the formal point of view the treatment of
the AT region as an open system [24,32] led to the con-
struction of general physico-mathematical models that
remove the original conceptual limitations [33] and jus-
tify both (specific) approaches discussed above on a rig-
orous formal basis [34,35]. In this paper, being focused
more on the computational aspects, the mathematical
analysis will not be discussed in detail, nevertheless it
is worth to underline the multidisciplinary character of

AdResS. In fact its numerical results have stimulated
the formalization of new equations for open particle sys-
tems under different conditions [34,36] which in turn,
in perspective, can be automatically embedded in the
equations of fluid dynamics [37].

The following chapters describe relevant applications
of the method and discuss current technical and con-
ceptual developments which put in perspective poten-
tial applications and new directions. While the current
paper is dedicated to the AdResS methodology, other
similar approaches with their merits and limitations or
ways to construct an appropriate coarse grained envi-
ronment can be found in the following references [38–
44].

3 Some selected applications of the
AdResS method

In this chapter a few applications of the original AdResS
setup are presented which go beyond simple homoge-
neous systems, studied on two different levels of reso-
lution. One area of research, which is especially suited
to be studied by AdResS simulations deals with the
behavior of large solutes in solvent or solvent mixtures
as a function of varying (external) constraints. That
can be the change of temperature or composition vari-
ations of solvent mixtures [45], where the response to an
external stimulus is investigated. In another example a
protein, hen egg-white lysozyme, with a binding ligand
has been studied, where the all atom region containing
solvent (water), the active region of the protein and the
ligand are embedded in coarse grained water while the
outer parts of the protein were described by an elastic
network model [46]. By varying the size of the atomisti-
cally described active protein sequence the coupling of
ligand binding to the overall conformation fluctuations
could be investigated. Other studies look at larger con-
formational changes or aggregation phenomena, as will
be shown in more detail below.

3.1 Self-adjusting atomistic region

Computer simulations of large (bio-)molecules, such as
poly-peptides, require simulation boxes whose linear
size is larger than the chain’s radius of gyration. Hence,
even a modest increase in the size of the molecule could
result in a huge simulation box in which only a rela-
tively small subdomain, the polypeptide and its solva-
tion shell, becomes relevant. In this scenario, the use
of the AdResS method might be advantageous, most
notably if the atomistic region adjusts to the confor-
mational changes of the protein (Fig. 4).

Such a version of AdResS with a self-adjusting atom-
istic region has been developed and validated for the
study of folding of polyalanine-9 in aqueous solution
[47]. The atomistic region is defined by overlapping
spheres with centers pinned to atoms in the protein. All
the spheres have radius rat + dhy = 2 nm with rat = 1
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Fig. 4 Simulation snapshots showing the folding process
of polyalanine 9 in aqueous solution. The atomistic region
containing the polypeptide and a layer of water of 1 nm
size adjust following the protein conformation. Reprinted
with permission from Ref. [47]. Copyright (2016) American
Chemical Society

nm. Thus, the polypeptide is always modelled at the
atomistic level, including a solvation shell of atomistic
water of 1 nm thickness. As a matter of fact, it has been
demonstrated that this size of the hybrid region is suffi-
cient to preserve the protein’s solvation properties when
compared to the fully-atomistic, reference case [48].

To ensure consistency between all-atom and AdResS
computations one has to verify that the peptide folds
to the same region of conformational space in both
cases. To this aim, among others, Ramachandran plots
(Fig. 5) showing the probability density distribution
of the backbone dihedral angles φ (about the N-Cα

bond) and ψ (about the Cα-C bond) calculated for
the folded peptide in fully-atomistic (a) and AdResS
(b) simulations have been analysed. It is apparent from
the figure that both calculations give within statisti-
cal error an identical landscape, in which a prominent
formation of α-helix structures (−180◦ < φ < 0◦ and
−100◦ < ψ < 45◦) is observed.

3.2 Aggregation of micelles in water: taking
advantage of locality of interactions

For the above example the diameter of the atomistic
region was chosen to be on the safe side, meaning that
effects of structural details of the surrounding solvent

Fig. 5 Ramachandran plots showing the negative loga-
rithm of the probability density distribution for the a
fully-atomistic and b adaptive resolution simulations of the
folded polypeptide. Reprinted with permission from Ref.
[47]. Copyright (2016) American Chemical Society

beyond this diameter are irrelevant for the solvation
properties of the solute. In turn one can vary the diam-
eter of the atomistic region, testing the range at which
such effects are relevant. This question first has been
addressed in the context of fullerenes (cf. Figure 2) [12]
and a small protein, ubuquitin [48], both in water. Here
this concept is extended to the interaction of micelles
in water as illustrated in Fig. 6. AdResS is used to cal-
culate the free energy/potential of mean force during
the aggregation process of such large solutes in water.
Water molecules surrounding a solute are characterized
by structural and dynamical properties which substan-
tially differ from those of bulk water. In particular, in
the aggregation process of two micelles, as in Fig. 6,
the extension of water-mediated effects in space is rele-
vant. Such water-mediated effects require the explicit
description of the hydrogen bond network which, in
turn, needs to be treated at atomistic level. The AdResS
approach, by construction, can determine the minimum
size of the solvation region around each solute where
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Fig. 6 Free energy of aggregation of micelles in water.
The AdResS simulation agrees very well with the full
atomistic simulation of reference. The study through the
AdResS approach allows for a sizable saving of computa-
tional resources. Figure reproduced from Ref. [49], Copy-
right Wiley-VCH Verlag GmbH and Co. KGaA. Reproduced
with permission

an explicit atomistic resolution is mandatory (see also
Ref. [12]): if all considered physical quantities calcu-
lated in a molecular high resolution spherical domain
around the solute in AdResS agree with the equiva-
lent quantities calculated in a reference full atomistic
simulation, then the atomistic degrees of freedom out-
side the atomistic domain are not required and can be
neglected. As a consequence, one can determine the
minimum size of the atomistically described solvation
region. This means that the water-mediated effects in
the interaction of two micelles only become relevant
when the two minimal solvation shells (of the size deter-
mined by AdResS) get in contact. AdResS in such a
case brings a twofold computational advantage: (1) it
requires a calculation for a single micelle (i.e. a small
system) for determining the size of the solvation shell.
Such a study determines the minimal distance of rel-
evance in the micelle-micelle aggregation process. As
a consequence, in a two-micelles calculation, distances
larger than the minimal one can be excluded a priori
and reduce in a sizable manner the computational costs
of the study; (2) once the minimal distance is defined,
then one has got the usual gain of AdResS for studying
the two-micelles system. The results of AdResS agree
very well with a reference full atomistic simulation and
show the expected significant reduction of computa-
tional costs (see Ref. [49]). Similar situations involving
spatial locality occur for ionic liquids [50,51]. Through
AdResS one can identify a local behavior, and for mod-
eling purposes that lead to computational saving. In
this specific case it is worth to notice that surprisingly
the expected long range effects of the Coulomb interac-
tions can be shown, with AdResS, to not be relevant.
This result confirms the conclusions of other theoretical
studies and of experiments [52]. A further selection of
representative applications of AdResS in the context of
local properties can be found in [53].

Fig. 7 Top-down view on a system of solvated DNA
molecules arranged on a hexagonal lattice. The DNA
molecules are described with the atomistic model whereas
the salt solution is modeled with the atomistic resolution
inside the rhombic region with the DNA molecules and the
coarse-grained representation outside. Figure adapted and
reproduced from Refs. [54,55]

3.3 Equation of state (EoS) of high density DNA
arrays

As examples described in previous sections illustrate,
AdResS can be directly employed for simulation stud-
ies of rather complex biomolecular systems. Dense DNA
in the columnar phase that one encounters in vivo e.g.
in viral capsids or eukaryotic nuclei is another such
example. To properly describe the physical properties
of high density DNA arrays and their EoS simula-
tions should correctly define and maintain the osmotic
isobaric ensemble, equivalent to the solvent grand-
canonical ensemble that allows for the exchange of
ions and water with the environment [54]. To this end,
the whole atomistic DNA array is embedded within
a reservoir of coarse-grained water molecules and ions
[55] as depicted in Fig. 7. The DNA array and reser-
voir are separated by a semi-permeable membrane that
allows the water molecules and ions (but not the DNA
molecules) to freely pass between the two domains.
The osmotic pressure of the DNA array is then deter-
mined by measuring the force exerted by the DNA sub-
phase on the confining membrane. The force is com-
puted via a repulsive interaction between the semiper-
meable membrane and DNA backbone. By varying the
DNA density, local packing symmetry, and counterion
type, the osmotic EoS has been obtained during with
the hexagonal-orthorhombic phase transition, together
with the full structural characterization of the DNA
subphase in terms of its positional and angular orien-
tational fluctuations, counterion distributions, and the
solvent local dielectric response profile [55]. However, to
perform truly open grand-canonical molecular simula-
tions one should resort to the open boundary molecular
dynamics (OBMD) that permits simulations directly
in the grand-canonical ensemble and is discussed in
Sect. 4.3.3.
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3.4 Beyond one to one mapping: supramolecular
coarse-grained models

In water, the most common solvent in biomolecular sys-
tems, the average lifetime of tetrahedral clusters due to
hydrogen bonding is on a picosecond time scale. Thus
it is tempting to use this to construct a coarse grained
water model, which keeps the all atom clusters once
the atomistic region is left. This, however, represents
a major challenge for concurrent coupling of atomistic
and supramolecular water models in biomolecular sim-
ulations. Not only clusters have to be identified but also
water molecules have to be correctly distributed to the
cg sites, without leaving single molecules behind. To
account for this the clustering algorithm SWINGER
[21,56,57] has been developed, which dynamically cre-
ates, breaks and remakes clusters of water molecules.
To do this consistently, the number of molecules in a
cluster has to be exactly equal to the applied atomistic-
to-supramolecular mapping. Furthermore the cluster-
ing should be optimized in terms of minimal distances
of molecules within the clusters. The frequency of the
algorithm’s initialization should be on a picosecond
timescale, and the algorithm should leave the coor-
dinates and velocities of atoms intact. In combina-
tion with AdResS, this then allows to seamlessly cou-
ple atomistic and coarse-grained force fields, in which
one coarse-grained bead represents several atomistic
molecules (four in the case of the MARTINI force field
[58]). In this way, at each given time, it is exactly
known which water molecules belong to the correspond-
ing coarse-grained bead. The algorithm, however, which
essentially is a very efficient sorting method, is not
linked to a specific interaction. It thus can also be used
for coupling MD with a Dissipative Particle Dynamics
(DPD) [59,60] for example. This concurrent coupling
[21], which bridges atomistic and mesoscopic hydro-
dynamics, is schematically depicted in Fig. 8. Other
authors have coupled a particle based MD simulation
within an AdResS setup to a multi particle collision
(MPC) scheme in order to account for a hydrodynamic
coupling [61].

4 Open system statistical mechanics and
applications of different coupling
approaches

As discussed in Sect. 2, the root model of AdResS allows
for different coupling protocols between the AT region
and the coarse-graining region. The interpolation of the
atomistic and coarse-grained potentials in H-AdResS
leads to a free energy compensation scheme which prop-
erly balances the missing free energy contributions of
the AT region due to loss of degrees of freedom in the
coarse-grained region equally for both, MD and MC
simulations. The force interpolation in AdResS leads
to a thermodynamic force which automatically fixes
the thermodynamic state point in the AT region. The

Fig. 8 Concurrent coupling of atomistic and supramolec-
ular DPD water using AdResS augmented by SWINGER.
Figure reproduced with permission from Ref. [21], Copyright
2017, AIP Publishing

two protocols produce, within numerical error bars, the
same results compared to each other and to correspond-
ing full atomistic simulations. In fact they can be seen
as different technical expressions of the same balancing
process: the chemical potential over the whole AdResS
box is uniformed to the value of the chemical potential
of the full atomistic simulation of reference [24,25,28].
The process of balancing the chemical potential so that
the AT region and the CG region have the same value,
suggests that the AT region can be seen as an open sys-
tem, a Grand Canonical-like/Grand Ensemble, in con-
tact with a reservoir of coarse-grained particles through
a coupling region. Actually as we make the AT region
much larger than Δ and the CG region much larger
than the AT region, we should observe more and more
a Grand-Canonical behaviour of the AT region as the
size of the AT region increases. This idea was explored
in the so-called GC-AdResS formulation of the method
[32]; the corresponding detailed discussion is reported
in the next subsection. For the case of coupling to
non-interacting particles, where a truly grand canoni-
cal algorithm easily can be implemented, this even does
not require a large CG region [30,62].

4.1 Models of open system simulations for the AT
region

4.1.1 Role of external potential and density for
H-AdResS

Gaining a computational advantage by replacing the
coarse-grained representation by a reservoir of non-
interacting particles (ideal gas) is somewhat obvious
[62]. More importantly, it highlights the identification
of the compensating function as the excess chemical
potential of the atomistic system compared to a sys-
tem, where everything is known exactly. Indeed, cal-
culating the chemical potential in this way is equiva-
lent to a spatially-resolved thermodynamic integration
(SPARTIAN) [28]. Moreover, the ideal gas can easily be
treated as an open reservoir such that the whole simu-
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lation setup samples a truly grand canonical ensemble
[63]. To sum up, the coupling to an ideal gas allows us to
simulate an inhomogeneous, open system at a constant
chemical potential.

In particular, we can write the H-AdResS Hamilto-
nian (Eq. 5) with the correction term of Eqs. 9, 10 for
a fluid composed by 〈N〉 molecules, in contact with an
infinite ideal gas reservoir, as

H[λ](r, p) = K + V intra +
〈N〉∑

α=1

{λαVα + V ext(λα)},

(11)

(r, p) are positions and momenta and K the total kinetic
energy of the system, respectively. The term V intra

describes intra-molecular interactions. The intermolec-
ular interactions are included in the term Vα. As before,
the switching field determines the molecules’ identity,
with λα ≡ λ(Rα) and Rα the position of the center
of mass of the molecule α. When λ = 0 the Hamilto-
nian describes a homogeneous ideal gas system provided
V ext(0) = constant, which we can set as V ext(0) = 0.
As anticipated, this Hamiltonian describes an open
inhomogeneous system, namely, an interacting system,
under the influence of an external field, embedded in
an infinite reservoir.

This interpretation allows us to use the classical den-
sity functional theory [64–66] (DFT) to investigate the
connection between the external potential and the cor-
responding equilibrium density. Recently, Baptista et
al. [35] have shown that the grand potential Ω[λ], as
obtained from the Hamiltonian in Eq. (11), can be writ-
ten as a functional of the system’s density ρ[λ](r)

Ω[λ][ρ[λ](r)]

= F[λ][ρ[λ](r)] +
∫

dr ρ[λ](r)(V ext(λ(r)) − μ(λ(r))),

(12)

where F[λ] is the Helmholtz free energy and μ the chem-
ical potential of the system. This functional Legendre
transform connects the Helmholtz free energy with the
grand potential that, being a functional of the density,
represents the cost in free energy necessary to fix the
system’s density at ρ[λ](r). We thus find the density
field ρ

[λ]
0 that minimises this cost by evaluating the

functional derivative

δΩ[λ][ρ[λ]]
δρ[λ]

∣∣∣∣∣
ρ[λ]=ρ

[λ]
0

= 0 . (13)

Finally, to ensure thermodynamic consistency in the
adaptive resolution framework, we assume the Helmholtz
free energy being independent of the switching field λ.
This implies that

F[λ][ρ[λ]] = F id[ρ(r)] , (14)

with F id = β−1
∫

drρ(r){ln(λ3
T ρ(r))−1} the Helmholtz

free energy of the ideal gas (the reference state at λ =
0), ρ[0](r) = ρ(r) and λT = (�2β/2πm)1/2 the thermal,
de Broglie, wavelength.

By including this condition into the minimisation
condition (Eq. 13), we arrive at an expression for the
density field in terms of the external potential and the
excess chemical potential μexc

ρ(r) = ρ0 exp (−β{V ext(λ(r)) − μexc(λ(r))}) . (15)

In particular, a constant density profile ρ0 is obtained
when

V ext(λ(r)) = μexc(λ(r)) . (16)

The analogy with DFT guarantees a one-to-one corre-
spondence between the external potential and the cor-
responding equilibrium density. In contrast to standard
DFT, where the external potential is known and the
density is the target quantity, in adaptive resolution
simulations we typically fix the reference density to
evaluate the external potential. As so far discussed in
the context of H-AdREsS these arguments can applied
to both MD and MC simulations. More importantly,
this interpretation of the adaptive resolution method
motivates the investigation of various atomistic/ideal
gas interfaces that have not been systematically inves-
tigated before. In particular, in the context of open sys-
tems, we can modify Eq. (14) to investigate diverse out-
of-equilibrium conditions.

4.1.2 Liouville equation and GC-AdResS

The possibility of treating the AT region of AdResS
as an open system requires a reformulation of some
basic concepts of particle dynamics. In fact a Liouvillian
description, as usually assumed in standard Molecular
Dynamics of closed systems [67], is no more possible
and the existence of a Liouvillian-like operator/time-
propagator for open systems needs to be proven. This
is not a mere formal request without any practical
consequence. In fact a physically valid/first principles
definition of, e.g., time correlation functions implies
the existence of a Liouvillian operator/time-propagator
[15,68]; without that any technical protocol of Molec-
ular Dynamics which calculates time correlation func-
tions for open systems must be considered empirical.
The need of a solid mathematical physics based model
of open systems that can serve as a conceptual refer-
ence of AdResS, led some of us to consider the so-called
Bergmann-Lebowitz model of open systems [69–71] and
to map its guiding principles onto the technical features
of AdResS.

Bergmann and Lebowitz (BL) derived a general-
ization of Liouville’s equation for systems with open
boundaries [69,70]. The interaction between the sys-
tem and the reservoir(s) creates a discontinuous transi-
tion in the former from an initial state with N particles
(X

′
N ) to a new state with M particles (XM ), while the

123



  189 Page 10 of 22 Eur. Phys. J. B          (2021) 94:189 

reservoir is not influenced by the exchange. The contin-
gent probability of transition from one state to another
is expressed by: KNM (X

′
N ,XM )dX

′
dt where the the

kernel KNM (X
′
N ,XM ) is a stochastic function, inde-

pendent of time, which expresses the probability per
unit time that the system, upon interaction with the
reservoir(s), makes a transition from XM to X

′
N .

The term:

∞∑

N=0

∫
dX

′
N [KMN (XM ,X

′
N )ρ(X

′
N , N, t)

−KNM (X
′
N ,XM )ρ(XM ,M, t)],

formalizes the total system-reservoir interaction which
leads to the general equation of time evolution for the
probability in phase space:

∂ρ(XM , M, t)

∂t
= −{ρ(XM , M, t), H(XM )}

+
∞∑

N=0

∫
dX

′
N [KMN (XM , X

′
N )ρ(X

′
N , N, t)

−KNM (X
′
N , XM )ρ(XM , M, t)]. (17)

Here ρ(XN , N) is the probability distribution of the
system in phase space for the realization of N parti-
cles, H(XM ) is the Hamiltonian of the system corre-
sponding to the point XM and {∗, ∗} are the standard
Poisson brackets. The extension to more reservoirs can
be expressed by adding them on the r.h.s of Eq. 17.

In equilibrium, from the condition of flux balance,
that is the integral on the r.h.s of Eq. 17 equal zero,
follows that the stationary solution of Eq. 17 is a
Grand Ensemble corresponding to the Grand Canonical
ensemble with: ρM (XM ,M) = 1

Qe
− 1

kBT HM (XM )+ μ
kBT M

where kB is the Boltzmann constant, T , the tempera-
ture and μ is the chemical potential. This is a necessary
and sufficient condition for stationarity with respect to
the Grand Canonical distribution [70,71].

AdResS can be interpreted as a dynamic-like approx-
imation of the BL stochastic process [72] thus the claim
that its atomistic region follows a grand canonical-like
statistics is rigorously justified. In addition, numerical
simulations have shown that indeed the AdResS pro-
tocol reproduces typical Grand Canonical features for
the atomistic region when compared with the results
of a subsystem of a large full atomistic simulation of
reference [24,32]. For example, in the thermodynamic
limit the isothermal compressibility, κT , in a Grand
Canonical ensemble, is related to the fluctuations of the
particle number by [73]: ρkBTκT = 〈N2〉−〈N〉2

〈N〉 , with ρ

the density of particles. The numerical test performed
with AdResS considered 100,000 water molecules out
of which about 20,000 in the AT region at ambient
conditions. Results show that AdResS reproduces the
expected compressibility. Further tests of the energy
fluctuation and its covariance in the AT region con-
firm the predicted behavior. The AdResS protocol

Fig. 9 Simulation snapshot showing a typical AdResS con-
figuration representing atomistic water embedded into a
reservoir of thermalised, non-interacting particles. A spher-
ical atomistic (AT) region or radius 30 Å is embedded into
a simulation box of linear size of 150 Å. The hybrid (HY)
region is a spherical shell of maximum thickness 25 Å, and
the ideal gas (IG) occupies the remaining free space. Figure
taken from Ref. [35], licensed under a Creative Commons
Attribution (4.0) license

based on these tests is labeled GC-AdResS. The con-
ditions regarding the size of the simulation would sug-
gest that a Grand Canonical interpretation of the AT
region of AdResS is possible only for very large sys-
tems/reservoirs, thus it would have as a price a loss of
numerical efficiency. However, the analogy to the BL
model allows to simplify the AdResS structure further
and reduce it to few essential requirements, thus to
an efficient numerical tool. The problem of the size of
CG region can be avoided by introducing a true grand
canonical ensemble, if the CG interactions allow for an
efficient particle implementation scheme as illustrated
below.

4.2 Employing open system AdResS simulations

4.2.1 AT region as an open system embedded in a
reservoir of non-interacting particles

As discussed above, in the AdResS framework it is pos-
sible to consider the AT system as an open system
embedded in a particle reservoir whose mainly purpose
is to allow the exchange of particles within the system.
In this context, the type of intermolecular potential
used for the particles in the reservoir becomes irrele-
vant. Indeed, this has been applied by treating parti-
cles present in the reservoir at the ideal gas level [62]
(Fig. 9).

In such a case, the most direct approach is to enforce
a constant density profile across the simulation box.
It has been explicitly demonstrated in the context of
AdResS that the integral of the external force applied
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Fig. 10 Excess chemical potential of molecular NaCl
μNaCl
exc (a) and water μH2O

exc (b) as computed for different salt
concentrations. The results obtained with the AdResS and
BAR [74] methods are represented by blue squares and red
circles, respectively. Reprinted with permission from Ref.
[28]. Copyright (2018) American Chemical Society

to ensure a uniform density across the system equals
the difference in chemical potential between the two
resolutions [25]. In the context of H-AdResS this algo-
rithm is dubbed as SPARTIAN method. By coupling
to an ideal gas reservoir, the excess chemical poten-
tial is automatically obtained [28]. We present here an
example of such a calculation for prototypical aqueous
solutions of sodium chloride. Results of this procedure
agree well with existing computations obtained with
particle-insertion based methods (Fig. 10). However,
they cover a larger concentration range of sodium chlo-
ride. In addition to its practical value, this result con-
tains a fundamental idea. A reference density, imposed
throughout the simulation box, allows us to perform
molecular dynamics simulations for an open system at
constant chemical potential. Moreover, as we will see in
Sect. 4.2.2, it is straightforward to implement a particle
insertion protocol in the ideal gas reservoir such that an
infinite reservoir is explicitly taken into account [63].

4.2.2 Particle insertion/deletion protocol

The coupling between atomistic and ideal gas regions
at a constant chemical potential opens the possibility to
sample the grand canonical ensemble. Indeed, at tem-
perature T , volume V and chemical potential μ the

probability that the ideal gas reservoir has exactly N
particles follows a Poisson distribution. This condition
allows us to devise a Metropolis algorithm in which the
target number density ρ increases/decreases by a small
amount ν with probability given by [63]

acc(ρ → ρ ± ν) = min[1, exp(−kμν(ν ± 2(ρ − ρ∗)))] ,

with ρ∗ the target density and kμ a free parameter.
This simple procedure guarantees that the system is
effectively in contact with an infinite particle reservoir.
More importantly, with the appropriate geometry of the
simulation box, different target densities can be simul-
taneously imposed to investigate non-equilibrium con-
ditions.

4.3 Complementary coupling approaches and
applications

4.3.1 AT region as an open system embedded in a
mean-field particle reservoir

The AdResS set up based on the concept of Sect. 4.1.2,
automatically represents a well founded physical model
of open systems. The rather general conditions suggest
any simulation fulfilling them would lead to a proper
physical description of the AT region. Based on this a
first technical step further to simplify the AdResS set
up was the modification of the coupling region with
the removal of the interpolation function λ(x) and the
construction of an abrupt interface between the region
at atomistic and the coarse-grained resolution, respec-
tively. The Δ region now is a region at atomistic reso-
lution where molecules interact with atomistic interac-
tions with the AT and within the Δ region, but inter-
act with coarse-grained interactions with the molecules
located in the coarse-grained region (see panel (b) in
Fig. 11).The thermodynamic force is calculated in Δ
as before. This set up has successfully been tested an
implemented for liquid water, and for the more chal-
lenging case of ionic liquids [29]. Its advantage lies in the
significant simplification of the implementation of the
algorithm, thus making it easily transferable to other
simulation codes. A further aspect, worth a note is
that by introducing an abrupt coupling, the force-based
AdResS and the Hamiltonian-based AdResS become
equivalent, since there is no more an interpolation of
quantities via λ(x). In fact, building on the results of
Refs. [62,75] the coarse-grained region in the abrupt
coupling can be reduced to a system of non-interacting
point-particles (tracers) and the calculation of the ther-
modynamic force is extended to the tracers region as
well. The resulting total interaction potential in this
set up reads:

Utot = UAT
tot +

∑

k∈Δ∪TR

φ(Xk),

where UAT
tot is the total potential energy due to atomistic

force fields in the AT region and the k-sum runs over
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Fig. 11 a Pictorial representation of the original idea of
AdResS; b Abrupt version of AdResS as in Ref. [29] i.e.
in the Δ region a switching function is no more required.
Atomistic molecules interact with coarse-grained molecules
(and vice versa) via a coarse-grained potential acting on the
center of mass of each molecule. c The CG region becomes a
TR region, that is a region of non-interacting point-particles
(tracers), the thermodynamic force is calculated over the
whole Δ ∪ TR region and a capping force avoids clashes
of atoms upon acquisition of atomistic degrees of freedom
by tracers entering in the Δ region at unphysical distances
from each other. Figure reproduced from Ref. [30]

all molecules in Δ and all tracers [30] (see also panel
(c) Fig. 11). Numerical instabilities are avoided by a
force capping in the Δ region, i.e. by truncating each
Cartesian component of the total force vector at a pre-
scribed maximum value. The capping force is applied
to molecules which, upon entering the atomistic region,
are getting too close to each other. It turns out that
the total number of capping events per time step only
affects a small fraction (around 1%) of the total number
of molecule-molecule interactions in the Δ region and
affects the AT region not in a relevant way. It is remark-
able that the combined action of the capping force, the
thermodynamic force and the thermostat is sufficient to
avoid numerical instabilities due to artificially large or
discontinuous forces in the Δ region without producing
any artifact for the atomistic region. Since the action
of the neighborhood on each tracer depends only on
the position of the tracer in space, independent of the
global tracer configuration, each tracer experiences φ(x)
and a thermostat (to fix the temperature in TR) as an
effective mean field. Thus the AT region is embedded
effectively in a mean field particle-based reservoir. A
first application is presented in the following chapter on
membrane solvation. A MC scheme to change coupling
abruptly was put also forward by Abrams [76]. The key

Fig. 12 a Atomistic system of reference. b Atomistic
structure of the DPPC molecule. c AdResS system with
the DPPC bilayer oriented in the z–y plane and hydrated
on top and bottom (along the x -axis). This figure is repro-
duced from Ref. [77]

difference with the current approach is the absence of
a transition region characterized by a thermodynamic
force derived in a systematic manner.

4.3.2 Study of the hydration shell of a membrane with
the open system protocol of AdResS

In Ref. [77] the AdResS approach with tracers has been
applied to the hydration of a DPPC bilayer. The atom-
istic system of reference consists of a bilayer of 180
(90 per leaflet) DPPC molecules, solvated with 52470
water molecules (see Fig. 12). By systematically reduc-
ing the AT region the authors in a quantitative manner,
determined the extension of the region of this fluctu-
ating system, where atomistic degrees of freedom are
mandatory. Beyond that region a generic thermody-
namic bath without atomistic details is sufficient. This
analysis directly addresses the role of hydrogen bonding
of the solvent on the stability of the membrane beyond
a certain distance from the membrane-water interface.
As a result this provides a definition of the size of the
effective hydration shell of the membrane. Usually it
is assumed that the first minimum of the radial distri-
bution function of water as a function of the distance
from the membrane is an optimal criterion to define the
hydration layer [78]. In contrast, several recent stud-
ies have shown that water properties are influenced by
biomolecules for distances beyond those defined by such
a criterion [79]. The AdResS analysis, by identifying the
minimal AT region, of about 0.7nm from the surface of
the membrane, within which the membrane has a direct
effect on the structural properties of water (and vice
versa), reproduces results of a reference full atomistic
simulation and of recent experiments (see the detailed
discussion in Ref. [77]).
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Fig. 13 A triple-scale model of liquid water, which cou-
ples atomistic and continuum hydrodynamics. The parti-
cle region is simulated by MD and contains atomistic and
coarse-grained water molecules. The water dynamics in the
continuum domain is on the other hand governed by compu-
tational fluid dynamics equations. Figure reproduced from
Ref. [91]

4.3.3 Continuum hydrodynamics and open boundary
molecular dynamics (OBMD)

The AdResS concept as open boundary MD (OBMD)
can be used to couple MD with computational fluid
dynamics methods [80–88] resulting in a triple-scale
setup [89,90] as shown in Fig. 13 for liquid water. The
purpose of the triple-scale scheme is twofold. It allows
the coupling of a smaller AT region to a hydrody-
namic continuum and at the same time also offers a way
for insertion of complex molecules into a dense liquid,
which would otherwise be difficult. The molecules can
be easily inserted into the coarse-grained domain owing
to soft effective interactions. As they move toward the
atomistic region they acquire the missing fine-grained
degrees of freedom courtesy of AdResS. The triple-
scheme can the be used to simulate fluids under general
external conditions, either in equilibrium or out of equi-
librium, e.g., for simulation of the Couette and Stokes
flows [89,90]. Hybrid MD/CFD methodologies of this
kind are relevant for instance for simulations of nano-
technological or biomedical problems [92].

The above OBMD ansatz to include hydrodynamic
interactions has been extended systematically [91,93–
95] beyond the grand-canonical ensemble towards non-
equilibrium fluid flow simulations. Flow is introduced
as an external boundary condition while the equations
of motion for the bulk remain unaltered. To demon-
strate its applicability, an example from Ref. [96], where
OBMD was applied to a DNA molecule embedded in a
hybrid explicit/implicit salt solution as shown in Fig. 14
is discussed.

The DNA molecule is modeled at atomistic resolu-
tion with the center of the explicit region coinciding
with the DNA’s center-of-mass (CoM). The solvent’s
level of representation depends on the distance from
the DNA. At short distances, water is modeled with
atomistic water model with ions explicitly present. Dis-

Fig. 14 Cartoon representation of an atomistic DNA
molecule immersed in the hybrid explicit/implicit salt solu-
tion simulated by OBMD. Figure reproduced with permis-
sion from Ref. [96], Copyright 2018, Biophysical Society

tal water is considered implicitly as a dielectric con-
tinuum, while the ions keep the original Lennard-Jones
interaction parameters and charges as in the explicit
region. However, the ion–ion electrostatic interactions
are screened in the implicit region by the dielectric con-
stant of water. In between the explicit and implicit
water domains, there is a buffer region that acts as
a reservoir. There, new water molecules are inserted,
allowing the explicit domain to exchange mass, momen-
tum, and energy through its boundary with the buffer.
Water molecules that exit the buffer region into the
implicit water domain are deleted.

The total force acting on a molecule α has three con-
tributions

Fα = FAdResS
α + Fext

α + FDPD
α . (18)

The adaptive resolution force FAdResS accounts for
the implicit/explicit resolution change, the external
force Fext imposes the desired external pressure tensor,
and FDPD is the force due to the linear-momentum-
conserving dissipative particle dynamics (DPD) ther-
mostat [97,98].

The AdResS contribution on a molecule α is given
by

FAdResS
α =

∑
β �=α λ(|Rα − R|)λ(|Rβ − R|)Fex

αβ

+
∑

β �=α[1 − λ(|Rα − R|)λ(|Rβ − R|)]Fim
αβ

−Fth
α (|Rα − R|)

(19)

where Fex
αβ and Fim

αβ are the forces between molecules α
and β, obtained from the explicit all-atom and implicit
potentials, respectively. The Fex

αβ =
∑

i∈α,j∈β Fex
iαjβ =

−∇rij
U ex(rij), where the sum runs over of all pair

interactions between atom i of the molecule α and
atom j of the molecule β. Note that the Fim

αβ 	= 0 only
for the ion-ion interactions. Here, the hybrid domain
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overlaps with the buffer domain. Rα, Rβ and R are
two-dimensional (x, y) vectors of CoMs of molecules α
and β, and the DNA molecule, respectively. The ther-
modynamic (th) force Fth

α acts on molecules’ CoM in
the hybrid region and enforces a uniform density pro-
file by compensating the chemical potential differences
between the implicit and explicit resolution molecu-
lar models. The thermodynamic force depends on the
molecule type, i.e., two different ones that correspond to
Sodium and Chloride ions are used whereas for water,
Fth

water = 0.
Water molecules are deleted once they leave the outer

boundary of the buffer and new water molecules are
inserted according to the desired average density in
the buffer. The mass balance is controlled by a feed-
back algorithm, ΔNB = (Δt/τr)(κ(〈NB〉−NB)), where
〈NB〉 and NB are the average and the current number
of molecules in the buffer, κ is a user-defined parame-
ter, while τr is the characteristic relaxation time of the
buffer. New water molecules are inserted if ΔNB > 0.
As they are inserted in the buffer that overlaps with
the hybrid domain, the interactions with surrounding
molecules are softer than in the explicit region.

The external boundary conditions are imposed on
water molecules via Fext computed from the momen-
tum flux balance as

Fext = J · nBA +
Pout − Pin

Δt
+

∑

α

Fth
α , (20)

where Pout and Pin represent the total linear momenta
of the water molecules that were removed and inserted
into the simulation in the last time step of integration
Δt. J is the momentum flux tensor that one would
like to impose across the boundary B of surface area
A, nB is the unit vector normal to the buffer inter-
face. The last term is the total thermodynamic force
with index α running over ions in the buffer domain.
The total external force is distributed among the water
molecules in the buffer Fext =

∑
α∈B Fext

α with Fext
α =

mα∑
α∈B mα

Fext. The explicit region acts as an open sys-
tem, which exchanges mass with its surroundings. Inso-
far the grand canonical OBMD described above differs
from the AdResS approach coupling all-atom models to
an ideal gas, presented previously. This allows for effi-
cient molecular simulations of biomolecules solvated in
salty solutions at variable ionic strength, e.g., physio-
logical (0.15 M) ionic conditions. The significant com-
putational speed-up is achieved due to the absence of
explicit water molecules in the implicit region.

5 AdResS beyond equilibrium

Analysing and steering systems out of equilibrium is
of great relevance and a technique like AdResS can be
of major help in simulating regions where the effect of
imposed perturbations is more relevant. In the previous
section, we have already discussed OBMD and its appli-

cations to non-equilibrium situations by coupling a par-
ticle based method to a continuum. In this section we
now report various approaches and applications where
the original (H-)AdResS setup itself can be employed
to study non-equilibrium problems.

5.1 Free energies and nonequilibrium work relations

The standard calculation of solvation free energies
(SFEs), i.e. the difference in free energy between having
a solute molecule in a solvent and in gas phase at a given
temperature and pressure, requires a delicate modula-
tion of physical interactions that heavily depends on
the system under consideration [99–111]. In turn, once
an AdResS setup has been prepared, SFEs of a solute
can be identified with the work necessary to drag the
solute across the simulation box where atomistic and
ideal gas representations of the solvent coexist at con-
stant temperature and chemical potential [26]. For an
infinitely slow pulling speed, the applied work is equal
to the SFE and the procedure is analogous to a ther-
modynamic integration calculation. For a finite pulling
speed, the resulting work allows us to compute the
SFE via nonequilibrium relations (Jarzynski equality
[112–114] and Crooks fluctuation theorem [115]). This
procedure has been used to compute SFEs that well
agree with literature data available for water and urea
molecules and, more importantly, anticipates the sys-
tematic investigation of arbitrarily large and complex
molecules in solution [26].

5.2 Poiseuille flow

The study of diverse non-equilibrium phenomena, includ-
ing gradient-induced liquid flow and crystal nucle-
ation, demands flexible and efficient computational
approaches. Despite the significant effort devoted to
developing such methods, we still face the same obsta-
cle from the past: the simulation setup should con-
sider the system in thermal and chemical equilib-
rium with an infinite reservoir of particles. Within the
AdResS method, it is possible to guarantee this condi-
tion [63]. Furthermore, this approach is completely gen-
eral, enabling the study of gradient-induced phenomena
without using external driving forces and ensuring, on
average, linear momentum conservation.

In practice, the simulation box contains a domain of
interest, in which the description of the system is fully
atomistic, and a reservoir of non-interacting, ideal gas,
particles (Fig. 15). An external potential, applied only
in the interfacial region, balances the excess chemical
potential of the system. To ensure a density imbalance
in the system, we use the particle insertion/deletion
algorithm (Described in Sect. 4.2.2) to impose left ρ∗

L
and right ρ∗

R reference densities.
This simulation setup allows one to sample non-

equilibrium phenomena. In particular, we consider a
prototypical LJ confined liquid under the influence
of an external constant density gradient. The result-
ing pressure-driven flow across the atomistic system
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Fig. 15 Adaptive resolution simulation setup used to
investigate a LJ liquid confined between parallel plates
under the effect of a density imbalance between right- and
left-reservoirs. Reprinted from Ref. [63], with the permission
of AIP Publishing

Fig. 16 Velocity profiles of the pressure driven flow result-
ing from inducing different density gradients ρ∗

R ≥ ρ∗
L = ρeq

with ρeq the reference density at equilibrium. The solid lines
are the parabolic fit to every data set. Reprinted from Ref.
[63], with the permission of AIP Publishing

exhibits a velocity profile consistent with the corre-
sponding solution of the Navier-Stokes equation [63].
The simplicity of the reservoir gives the possibility to
study different out-of-equilibrium conditions for com-
plex molecular systems, which constitutes a significant
improvement over state-of-the-art simulation methods.

5.3 Thermal gradient in open systems

The previous examples, which are based on the appli-
cation of the H-AdResS approach, demonstrate already
opportunities AdResS offers to study non-equilibrium
systems. More formally one can view e.g. Poiseuille
flow simulations or similar situations as two combined
AdResS simulations where the AT region couples to
two different CG regions. This also can be formulated
in terms of the Liouville operator theory shown in
Sect. 4.1.2 as shown in Ref. [34] for embedding the AT
system in different reservoirs [36,72]. In fact both mod-
els imply, in first approximation, the linear sum of the
actions of the different reservoirs in the Liouville equa-
tion for the distribution function of the open system.
The action of each reservoir is expressed as if the sys-
tem is in equilibrium at the system-reservoir coupling
interface, e.g. two different reservoirs at different tem-

Fig. 17 Pictorial illustration of the application of the lin-
ear action of the reservoirs in AdResS for the case of a
thermal gradient. The system is first considered at equi-
librium, at the thermodynamic condition of each reser-
voir, separately. Two separate simulations determine in
AdResS F 1

th(x) and F 2
th(x). The open system is then put

in contact with two different reservoirs; the mathemati-
cal models prescribe the linear action of the reservoirs:
I(1) + I(2). The linear action of the mathematical mod-
els in AdResS corresponds to the action of F

(1)
th (x) and

an external thermostat that keeps the temperature at T1

in the region Δ1 + TR1 and to the action of F
(2)
th (x) and

an external thermostat that keeps the temperature at T2

in Δ2 + TR2, that is: I(1) = F
(1)
th (x) + Thermostat (T1)

and I(2) = F
(2)
th (x) + Thermostat (T2) so that I(1) + I(2) =

F
(1)
th (x) + Thermostat (T1) + F

(2)
th (x) + Thermostat (T2)

perature, T1 and T2 (see also Fig. 17). First two sep-
arate AdResS simulations at equilibrium with the two
different reservoirs are performed. From each of these
simulations one obtains the respective different thermo-
dynamic forces (or the free energy compensating func-
tions). Next, the set up for the AdResS simulation out
of equilibrium is prepared, that is the atomistic region
is placed at the center of the simulation box and the
two tracers regions (reservoirs), kept by a thermostat
at temperature T1 and T2, are placed on the right and
left side, respectively. The atomistic region is coupled to
the reservoir at T1 on the left side via a Δ1 region where
acts the thermodynamic force (or the free energy com-
pensating function) obtained from the calculation at
equilibrium with the reservoir at T1; analogously for the
other reservoir. This set up has been tested for Lennard-
Jones fluids and it has shown to be very robust [72]
even for particularly large temperature gradients [36]
as illustrated in Fig. 18.
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Fig. 18 Density profiles for a liquid of Lennard-Jones par-
ticles in different thermal gradients, simulated with the
setups of nonequilibrium AdResS (solid lines) compared
with equivalent full atomistic simulations (dotted lines)
in Lennard-Jones units. The gradient of temperature ΔT
between the hot (red) and cold (blue) reservoirs increases
from bottom to top. In the atomistic region, i.e. the region of
interest, the agreement with full atomistic results is highly
satisfactory. This figure is taken from Ref. [36]

6 AdResS at the quantum mechanical scale

So far the AdResS methodology has been discussed
for classical systems, without considering any quantum
degrees of freedom. Provided an appropriately adjusted
coupling scheme can be constructed, there is no reason
not to extend AdResS to the coupling between a classi-
cal and a quantum mechanical description. In this sec-
tion some first results will be presented. The method-
ology can be rather straightforwardly extended to the
path integral technique for the quantum description of
light atoms and has been applied to liquid water and
hydrophobic solvation. In parallel, ideas of including
electronic degrees of freedom have been framed and are
under development. Below we report the main ingredi-
ents of the two approaches and draw some future per-
spectives.

6.1 Path integral AdResS

Path integral molecular dynamics (PIMD) is a well
established technique taking advantage of the Feynman
formalism [67]. Each atom, which in classical MD is a
sphere, is delocalized over a polymer ring with N beads,
each bead of the polymer is linked to its next neighbors
along the chain by a harmonic potential. The interac-
tion between atoms of different molecules takes place
as in standard MD, via classical potentials, however
the interaction is now distributed over all the beads
of the quantum particle, typically the nucleus of a light
atom. Moreover, differently from the standard ring–ring
interaction, the ring–ring interaction in PI occurs only
between corresponding beads of each of the interact-
ing rings/atoms, e.g. between the bead i of atom m of
molecule α and the bead i of atom k of molecule β:
ri,m,α and rj,k,β interacts if i = j. The deformation

of the ring of each atom during the simulation mim-
ics the quantum delocalization of the atom in space.
At room temperature such an effect is only relevant for
light atoms like the hydrogen. However, hydrogen bond
networks in water-solvated systems and thus possible
quantum effects of distortion of the network might be
important in many areas of physics, chemistry and biol-
ogy. Representing each quantum particle by N beads,
and N = 32, 64 turn out to be reasonable choices, from
the technical point of view requires at least N times
the calculations of an equivalent classical system. Thus
reducing the QM region, which is embedded in a classi-
cal environment, to a minimum would be a very appro-
priate application of the AdResS concept. As a con-
sequence a PIMD AdResS could drastically reduce the
cost of the simulation and deliver accurate results in the
region of interest, e.g. around a solvated molecule. The
algorithmic structure of AdResS, either with the ther-
modynamic force or with the free energy compensation,
can be extended to the PI technique in a straightfor-
ward manner, since the polymer rings that represent
the atoms are, from the simulation point of view, clas-
sical objects, and thus not different from AdResS sim-
ulation of classical molecules with multiple interaction
sites [116–122]. The results for basic test systems and
for liquid water at room temperature are excellent, as
illustrated in Fig. 19. There for the quantum region
the centroid MD has been used, where the delocaliza-
tion of the nuclei is steered by a hypothetical position
dependent mass μ, while the mass for the advancement
of the water molecules remains unchanged [121,122].
For large μ the nuclei reduce almost to point particles,
while for the physically correct mass in the QM regime
the expected delocalization is observed. The extension
to the solvation environment of a fullerene molecule
in water demonstrates the general applicability. It was
shown that the water structure around the fullerene in a
classical simulations is more ordered and rigid than the
structure found in quantum simulations [123]. The dif-
ferent rigidity of the solvating water might influence the
actual aggregation barrier. The possibility of detecting
such a quantum signature in the aggregation process is
certainly a study where the AdResS technology shows
its power and efficiency. In contrast to the path inte-
gral description, the inclusion of electronic degrees of
freedom is not as straightforward, as shortly discussed
next.

6.2 AdResS for molecules with electrons

For AdResS with electrons a quantum region, treated
with an electronic structure algorithm, is embedded in
a classical environment treated via standard MD tech-
niques. The forces acting on the atoms in the QM
region come from the Hellmann-Feynman forces due
to the electrons. The nuclei–nuclei interactions of the
other atoms of the QM region and the interactions
with the atoms composing the molecules of the clas-
sical environment can remain unaltered. Without any
possible atom exchange between the quantum and the
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Fig. 19 Pictorial illustration of AdResS with the path
integral representation of the molecules in the high reso-
lution region in the upper panel. The insertions show water
molecules with the spatial delocalization of the hydrogens
and the oxygens, respectively, in the different regions. The
lower panel gives the radii of gyration of the polymer rings,
representing the atoms, in the different regimes. The broken
line corresponds to a full path integral quantum simulation
of the whole system, demonstrating the excellent agreement.
Figure adapted form [121,122]

classical region such a setting is known as Quantum
Mechanical/ Molecular Mechanics (QM/MM) method
[124]. Recently Adaptive QM/MM (A-QM/MM) [125]
has been introduced, where the process of exchange of
molecules can be taken into account. The A-QM/MM
methods mimics the variation of number of molecules
in the QM region as described in the following. A buffer
between the QM and the classical region is defined
and at each time-step of the simulation, the molecules
contained in the buffer are partitioned in all possible
combinations of quantum and classical subsets, e.g. all
molecules are labelled quantum, one is labelled quan-
tum and the others classical, two are labelled quantum
and the others classical....all molecules are labelled clas-
sical. For each partitioning the molecules in the subset
labelled quantum are included in the QM region and
treated quantum mechanically in the calculation. The
total potential is defined as a weighted average of the
individual potentials obtained in the simulations corre-
sponding to each partitioning: U(r) =

∑M
i fi(r)Ui(r),

where Ui(r) is the potential energy corresponds to one
of the M partitioning of the system, fi(r) is a smooth-
ing function depending on the coordinates of the sin-
gle molecules. The smoothing function is based on the
empirical idea that the quantum nature of molecules
in the buffer at larger distance from the center of
the region of interest is less relevant than the quan-
tum nature of molecules closer to the active site. A
first technical implementation of AdResS which fol-
lows this scheme has already been made with satis-

Fig. 20 Pictorial representation of the el-QM-AdResS
scheme. The macroscopic chemical potential μQM

macro is
imposed by the thermodynamic force (or equivalently by
the free energy balancing force) in the MM region and the

Δ region as in the classical AdResS scheme. μQM
el = μref

el

indicates the electronic chemical potential of the QM region
that must correspond to the chemical potential of the bulk
in a full quantum calculation. Figure reproduced from Ref.
[129], Copyright Wiley-VCH Verlag GmbH and Co. KGaA.
Reproduced with permission

factory results [126]. However A-QM/MM cannot be
considered truly predictive because its results always
require a case-by-case post-validation with larger QM
calculations [125]. There are in fact several concerns,
which question the applicability of this approach [127–
129], most notably that interpolations of property-
values between electron numbers may not consistent
with a physical ensemble average [128,129]. To over-
come these drawbacks an el-Qm-AdResS with truly
fluctuating electronic degrees of freedom is required.
Such a theoretical model has recently been proposed
[129,130] and is currently under implementation. As in
conventional AdResS and A-QM/MM of Ref. [126] ther-
modynamic equilibrium between the classical and the
quantum region is mandatory, which leads to several
specific requirements, namely

– The QM region is statistically well defined within a
grand canonical ensemble [131] coupled to the clas-
sical environment.

– An appropriate thermodynamic force or free energy
compensation is derived, as in standard AdResS and
applied in the MM region at the interface with the
QM region.

– electronic structure calculations are performed for
the QM region via the grand-canonical energy func-
tional minimization, at constant μel, with the num-
ber of electrons being the variable [132,133]

A pictorial illustration of the scheme is shown in Fig. 20.
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7 Conclusion/outlook

At the beginning of the new millennium the challenge
of linking scales was identified as one of the highest
priority for molecular simulation [134]. Though we are
already 20 years into the first century this has not
changed and demands are ever increasing. In phase
with hard- and soft-ware development the need to cor-
rectly model ever more complex materials and sys-
tems is steadily rising. To meet the societal needs basi-
cally modified or new materials need to be developed.
This demand certainly cannot be met without advanced
computational methods, ranging from modern data
driven methodologies all the way to quantum mechan-
ical calculations. The development of AdResS follows
from such a necessity and offered to the community
an additional tool to tackle the scales interconnection
that characterize complex molecular liquids and simi-
lar substances. The examples of applications reported
here confirm the utility of the method in the context
of molecular simulations. At the same time, besides the
technical role of a useful algorithm, AdResS represents
an ongoing theoretical challenge which requires to move
out of conventional quantum and classical statistical
mechanics and push towards more generic physical and
mathematical models of systems that exchange energy
and matter with the environment. In turn, the theoret-
ical development inspires new numerical algorithms for
the molecular simulation approaches that are becoming
popular in the last years. In the era of machine learn-
ing and data driven models AdResS can certainly play a
complementary role not only in the efficient production
of data but also in their physical analysis. The detection
of the locality of certain interactions or the identifica-
tion of the relevance of some specific degrees of freedom
over others can be achieved by applying AdResS and
validated by the first principles on which the method is
based. Interpreting the open systems aspect to calculate
(solvation) free energies or using it to explicitly intro-
duce non-equilibrium in a controlled manner points into
new directions not anticipated in the very beginning. In
this review we have attempted to give the overview of
such concepts and to point to opportunities connected
to adaptive resolution simulation methods like AdResS.
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