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Abstract

Domain decomposition methods (DDM), which originate from the Schwarz
alternating method to solve elliptic partial different equations, are largely
extended and prove to have increasing influences on multiscale modeling of
materials. We discuss some of the important extensions of the DDM in the fields
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of multiscale modeling for soft materials such as simple and complex fluids. To
this end, we typically model the fluids in two or more levels of detail, which
exploits the computational efficiency of the coarse model and physical accuracy
of the fine description. For simple fluids, we take a continuum perspective to
couple the molecular dynamics (MD) and Navier-Stokes equations by matching
the state variables and/or fluxes across the hybrid interface. For complex fluids,
we take a discrete perspective to encompass the complex structure of the
molecules and couple the MD with coarse-grained MD by interpolating the
forces between the two levels of descriptions.

1 Introduction

Domain decomposition methods (DDM) may represent a generic concept of solving
a problem defined on a global domain by first dividing the domain into a set of
overlapping/non-overlapping subdomains. Given that the set of the subdomains
covers the original domain and a local problem is solved in each subdomain, the
solution for the original global problem is available. Therefore, in a nutshell, it is
a methodology of “divide and conquer.” However, such a generic concept may be
interpreted quite differently in various disciplines.

The name of DDM is mostly referred in applied mathematics, where it represents
the decomposition of partial differential equation (PDE) or its approximation on the
whole domain into a set of coupled problems on interconnecting subdomains. This
dates back to the classical Schwarz alternating method proposed in 1870 (Smith
et al. 1996), where the solution of an elliptic boundary value problem is obtained by
alternatively solving two same elliptic boundary value problems defined in the two
overlapping subdomains. For a general classification of DDM, the decomposition of
domain may enter (Toselli and Widlund 2005):

1. At the continuum level, where different PDE models are appropriate for different
regions. For example, in the applications of fluid-structure interactions, the
fluid and solid regions are described by PDEs of fluid and solid mechanics,
respectively. Another example is the aerodynamic boundary layer proposed by
Ludwig Prandtl in 1904 (Landau and Lifshitz 1987); in the vicinity of bounding
surface, viscous effects of the fluid are significant, while far away from the
surface, a description of inviscid flow is sufficient.

2. At the discretization level, where different approximation schemes are employed
in different regions. For example, a finite difference method is adopted in one
region, while a finite element method is preferred in the other region.

3. At the algebraic level, where a large linear (sparse) system of equations results
from the discretization of the PDE. A global iterative method may be inefficient
so that a strategy from DDM may choose to solve each block of the linear
system individually by employing a direct or iterative method. In this context, the
DDM is considered as a preconditioner in combination with other acceleration
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techniques such as Krylov space methods. The numerical analysis of DDM as
a preconditioner is very developed, which may be found in excellent mono-
graphs (Smith et al. 1996; Quarteroni and Valli 1999; Toselli and Widlund 2005).

In practice of numerical modeling, the decomposition at these three levels men-
tioned above may be interconnected.

Utilizing the idea of DDM for multiscale modeling with heterogeneous math-
ematical/physical descriptions is also not a new concept. In computational chem-
istry, one of the earliest examples is the QM/MM (quantum mechanics/molecular
mechanics) (Warshel and Karplus 1972; Warshel and Levitt 1976), where chemical
reactions involving large molecules are handled by quantum mechanics and regions
at elsewhere by classical models. Typically, the degrees of freedom for the two
descriptions are fixed during the course of the simulation.

A sudden increase of attention in applying DDM for multiscale modeling of
fluids started with the paper of O’Connell and Thompson (1995), where one
subdomain is simulated by molecular dynamics (MD) with Lennard-Jones potential,
while the other subdomain is solved by a finite difference method discretization of
the Navier-Stokes (NS) equations. The overlapping region of the two subdomains
implements the “handshaking” of the physical models at two scales. Since the
inception of this work, many further important contributions emerge, especially
on the constraint dynamics of MD’s artificial boundary such as the Maxwell
buffer (Hadjiconstantinou and Patera 1997; Hadjiconstantinou 1999), flux-exchange
method (Flekkøy et al. 2000; Delgado-Buscalioni and Coveney 2003a; Flekkøy
et al. 2005; De Fabritiis et al. 2006), least constraint dynamics (Nie et al. 2004;
Werder et al. 2005), adaptive forcing (Pivkin and Karniadakis 2006; Fedosov
and Karniadakis 2009), and so on. These methodologies are from a continuum
perspective of fluid mechanics, and the coupling of two distinct scales is mainly
for modeling simple liquids. There exist a few excellent review articles on this
topic (Wijesinghe and Hadjiconstantinou 2004; Mohamed and Mohamad 2010;
Delgado-Buscalioni 2012).

Another important research line on DDM for multiscale modeling of structured
or complex fluids is represented by the adaptive resolution scheme or AdResS from
computational physics/chemistry. In one subdomain, a detailed MD model with
atomic details is employed, while in the other subdomain, a coarse-grained (CG)
model is adopted. The CG model is usually constructed off-line and, if required,
is able to reproduce quantities of interest from MD faithfully. A complex molecule
may diffuse across the interface between the two subdomains and change degrees
of freedom gradually. In the overlapping region of the two subdomains, either force
or energy is interpolated smoothly between the two distinct descriptions. Previous
excellent technical reviews on this research line are also available (Praprotnik et al.
2008; Delle Site and Praprotnik 2017). Another interesting hybrid approach has
been proposed recently in Scukins et al. (2015), where the hybrid MD/continuum
hydrodynamics system of liquid water is considered as two completely miscible
liquids using two-phase modeling, where one phase corresponding to the MD and
the other to fluctuating continuum hydrodynamics.
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For modeling biological functions and diseases, especially those being localized
such as the endothelial glycocalyx layer (Weinbaum et al. 2007; Deng et al. 2012)
and blood clot formation (Fogelson and Neeves 2015), the DDM appear to be very
promising because one can treat different subdomains of the system using different
models and methods. In this chapter, we discuss some of the important extensions of
the DDM in the fields of multiscale modeling for simple and complex fluids. In the
following, we shall first describe the DDM for simple fluids, which include some
introduction materials on MD and NS equations. Furthermore, in the same section,
we illustrate a few effective algorithms to couple the MD and NS descriptions, with
a focus on constraining the artificial boundary of MD. Subsequently, we revisit
the concepts of DDM for complex fluids or AdResS. Along the discussions of
fundamental algorithms, we illustrate a few selected applications. We summarize
this chapter in the end with some perspectives.

2 Domain Decomposition Methods for Simple Fluids

2.1 Molecular Dynamics

We consider a system of N identical, spherical, and structureless particles; they
have the same mass m and are enclosed in a volume V . The Hamiltonian H of the
system is defined as

H (rN, pN) =
N∑

i=1

[ |pi |2
2m

+ ui(rN)

]
, (1)

where the first and second terms on the right-hand side are the kinetic and potential
energies, respectively. The value of (rN, pN) defines a phase point, where rN =
(r1, r2, . . . , rN) are 3N -dimensional coordinates and pN = (p1, p2, . . . , pN) are
3N -dimensional momenta. In addition, velocity is defined as vi = pi/m. The
trajectory of a phase point is determined by Hamilton’s equations:

ṙi = ∂H

∂pi

, ṗi = −∂H

∂ri

. (2)

More specifically, we consider an argon-like liquid described by a shifted
Lennard-Jones (LJ) potential truncated at rij = rc

u(r) =
⎧
⎨

⎩
4ε

[(
σ
r

)12 − (
σ
r

)6 −
(

σ
rc

)12 +
(

σ
rc

)6
]

, r ≤ rc

0, r > rc

(3)

where ε and σ set the characteristic energy and length scales, respectively. Relative
distance between particles is rij = |rij | and eij = rij /rij . The potential is pairwise,
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and therefore, the potential energy of particle i is ui(rN) = 1/2
∑Nneigh

j u(rij ),
where Nneigh is the number of neighboring particles within a spherical region of
radius rc around particle i. Hence, a pairwise force between particles i and j reads

Fij = −∂u(rij )

∂rij
eij . (4)

The MD trajectories evolve by a time integrator, such as the Verlet velocity
algorithm (Allen and Tildesley 1989; Tuckerman 2010) with time step δt .

2.2 Navier-Stokes Equations

We consider an isothermal description of the fluids, where the energy or entropy
change of the fluids is ignored. We have the conservations of mass and momentum
densities as (Landau and Lifshitz 1987)

∂ρ

∂t
+ ∇ · (ρV) = 0, (5)

∂ρV
∂t

+ ∇ · Π = 0, (6)

where ρ, V, and Π are density, velocity, and stress fields, respectively. Here velocity
is capitalized to differentiate with the MD particle’s velocity v. For a compressible
Newtonian fluid, the stress reads

Π = ρVV − pI − η
(
∇V + ∇VT

)
+ I

(
2

3
η − ζ

)
∇ · V, (7)

with I being the identity tensor and η and ζ the dynamic and bulk viscosities,
respectively. The equation of state p = p(ρ) and viscosities are usually obtained
from MD simulations in the context of DDM for multiscale modeling. For an
incompressible fluid, the term ∇ · V = 0 is dropped.

The Navier-Stokes equations are typically solved by mesh-based methods, such
as finite difference, finite volume, and finite element, or other Lagrangian mesh-free
particle methods.

2.3 Concurrent Coupling Between Particle Dynamics and
Continuum Description

For illustrative purpose, we consider a specific hybrid simulation between MD and
NS equations solved by a finite difference method (FDM). To demonstrate the
concept, we take an example of unidirectional flow such as the Couette flow and
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Fig. 1 (Color online) Sketch of a domain decomposition method and time stepping for coupling
discrete particle dynamics with finite difference scheme. Subdomain Ω1 is described by a
molecular dynamics (MD) simulation, while subdomain Ω2 is described by a finite difference
method (FDM). The whole domain is bounded by two walls ∂Ω1 and ∂Ω2, at y = y0 and y1,
respectively. An artificial boundary Γ1 : [yb, ya] applies to the MD, and an artificial boundary
Γ2 : y = ye applies to the FDM. A hybrid reference line is defined at y = yr , at which the
global solution is pieced together by combining results from MD below yr and results from FDM
above yr . FDM runs with time step Δt , and DPD runs with time step δt , where Δt = Nsδt and
Ns � 1 is a positive integer. Time integrations of FDM and MD are staggered to synchronize. The
communication time step between the two simulations is Δtcomm = Δt . The arrows between two
time axes indicate information passing. (Modified from Bian et al. (2016))

couple the two descriptions along the y direction. This is best sketched in Fig. 1. The
hybrid reference line is defined at yr , and the global solution combines the solution
of the MD below yr and the solution of the FDM above yr . The subdomain of MD
is a three-dimensional box spanning [0, LMD] × [0, LMD] in x and z direction. In
y direction, it ranges from y0 = 0 to ya . In the case of a wall-bounded domain,
there are solid particles below y0, and specific molecular interactions at fluid-
solid interfaces that are different from fluid-fluid interactions must be taken into
account. The FDM domain ranges from ye to y1 in y direction. No-slip or partial
slip condition may apply at y1 for the continuum description.

The time integrations of the two simulations are staggered to synchronize the
average time progression. To minimize the lag time of information exchange (Bian
et al. 2015b), we take communication time step Δtcomm = Δt = Nsδt . A typical
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choice of Ns is an integer number so large (Ns � 1) that individual particle’s
velocity decorrelates after Nsδt MD steps. This signifies the timescale separation of
the two distinct descriptions of fluids; over each Δt the FDM follows a description
of continuum mechanics, meanwhile the relevant molecular process reaches a quasi-
stationary state. Therefore, given the intrinsic δt of MD and stability constraint on
Δt , scale separation parameter Ns demands a low threshold for the grid size of
FDM.

To couple the two scale descriptions, we have to pay more attention to the two
artificial boundary regions Γ1: C → P (continuum to particles) and Γ2: P → C

(particles to continuum). More specifically, on the communication between the two
solvers, the particle simulation integrates with time step δt from t = t − 3Δt/2 to
t = t − Δt/2. To impose the artificial boundary Γ2 for the continuum (P → C) at
t−Δt , it is straightforward to perform simple spatial averaging on particle velocities
between yd ≤ y < yc and thereafter temporal averaging over t − 3Δt/2 < t ≤
t − Δt/2 as, for example, for the velocity state variable,

Ve = 1

Ns

Ns∑

j=1

1

Ncd

Ncd∑

i=1

vi . (8)

Here, Ncd is the instantaneous number of particles located in cell P → C.
Furthermore, the region P → C is centered at y = ye with a thickness of rc.
Similarly, we may alternatively come up easily with the averaging procedures to
impose mass and momentum fluxes at interface ye of the FDM for compressible
fluids as (Flekkøy et al. 2000)

ρV · ey = 1

vc

∑

i

mvi · ey, (9)

Π · ey = 1

vc

∑

i

⎛

⎝mvivi + 1

2

∑

j �=i

Fij rij

⎞

⎠ , (10)

where ey is the unit vector pointing outward at y = ye from FDM and vc is the
local cell volume centered at y = ye for spatial averaging. Furthermore, Eqs. (9)
and (10) need temporal averaging over t − 3Δt/2 < t ≤ t − Δt/2 as is done
for Eq. (8). For non-isothermal case, energy flux can be imposed as well at the
continuum interface (Delgado-Buscalioni and Coveney 2003a).

For more complex flow scenarios, a simple local-time-and-space averaging of
particle quantities may not provide sufficiently smooth boundary conditions for
the continuum description and may result in instability of the continuum solutions.
Therefore, novel algorithms for noise reduction (Li et al. 1998; Grinberg 2012) are
called for. Another alternative is to couple one continuum solver with multi-instance
MD simulations, so the concept of ensemble averaging may be exploited (Neumann
and Bian 2017).
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Once Ve or the fluxes are updated at t − Δt , the FDM integrates one step from
t − Δt to t . Its new state variable solutions Va and Vb at ya and yb or fluxes at ya

are passed to the particle simulation and are further utilized in various constraint
dynamics (as explained in the next four subsections) to set the artificial boundary
Γ1 : yb ≤ y < ya of the particle simulation from t −Δt/2 to t +Δt/2. Meanwhile,
the MD simulation integrates with time step δt from t−Δt/2 to t+Δt/2. Afterward,
again Eq. (8) or Eqs. (9) and (10) are applied to impose state or flux boundary
conditions of Γ2 at t . The alternation of imposing artificial boundaries and the
staggered integrations of the two simulations repeat until the end of the hybrid
simulation.

Due to the truncation of the subdomain for the MD simulation, an average
pressure force FP (y) must be imposed at the truncation line y = ya inward. The
best way to devise FP (y) so far is to make use of the radial distribution function
of particles and MD interacting forces to reflect the average effects outside ya

in the continuum limit. FP is position-dependent and applies to each particle i

within ya − yi < rc distance from ya in the interior, that is, particles in Γ1.
This approach proves to induce negligible density oscillations near the artificial
boundary (Werder et al. 2005; Lei et al. 2011). However, the imposed averaged force
does not completely prevent particles from leaving outside. Therefore, a specular
reflection or particle deletion is implemented at ya . The former approach is more
suitable to deal with an incompressible fluid, while the latter approach together with
a particle insertion procedure (Delgado-Buscalioni and Coveney 2003b) is more
physical to describe a compressible fluid by a grand-canonical ensemble so that the
total number of particle in the MD subdomain fluctuates (Flekkøy et al. 2005).

The tricky part is to impose the artificial boundary in Γ1(C → P) for MD
particles from t − Δt/2 to t + Δt/2. There is no unique way to achieve this, as
many extra degrees of freedom on particles are under-determined. For coupling state
variable, the usual strategy is to perform a constraint dynamics on each particle i in
Γ1 in such a way that

1

NΓ1

NΓ1∑

i=1

vi = VΓ1 , (11)

is satisfied at every δt or on average over Nsδt and thermal fluctuations are affected
as little as possible. Here, NΓ1 is the instantaneous number of particles in Γ1, and
VΓ1 is the average velocity of the continuum solutions in the same region. In this
case, VΓ1 = (Va +Vb)/2 at time t . For coupling the fluxes, it is similar that we need
to spread fluxes (few degrees of freedom) obtained from the continuum solution to
the particles within the artificial boundary Γ1.

In the following, we shall focus on four popular algorithms of constraint
dynamics in Γ1. Since we deal primarily with a unidirectional flow for illustrative
purpose, we use scalar variables instead of vector ones. The constraint of the particle
dynamics is always performed in x direction of the flow, and therefore the index
for x is omitted. Velocities in y and z directions are not altered by the constraint
dynamics.
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2.4 Relaxation Dynamics

A relaxation dynamics method was proposed in the first paper of hybrid simulations
on liquid flow (O’Connell and Thompson 1995). Effectively it reads as

v̇i = Fi

m
+ ε

δt

⎛

⎝V Γ1 − 1

NΓ1

NΓ1∑

j=1

vj

⎞

⎠ , (12)

where Fi is the usual total particle force on particle i. The rest of the terms on the
right-hand side act as a relaxing force, which drives each particle i in Γ1 toward the
average velocity V Γ1 over δt/ε time period. In O’Connell and Thompson (1995),
the continuum has the same time step as that of the particle simulation, that is,
Δt = δt . Moreover, the relaxation parameter is chosen as ε = 0.01 for the particular
properties of the fluid simulated, where the authors argue that a smaller value of ε

provides inadequate coupling, while a larger value may lead to excessive damping
of thermal fluctuations.

2.5 Maxwell Buffer

The Maxwell buffer was first proposed in Hadjiconstantinou and Patera (1997) as

vi = Vi + δvi, (13)

Vi = Vb + (Va − Vb)(yi − yb)/Δy, (14)

where a deterministic component Vi is obtained by a linear interpolation between
the values on the two nearest grid points Va and Vb. Under the assumption of a
local equilibrium for MD, the stochastic component δvi is drawn from the Maxwell-
Boltzmann distribution at a given temperature kBT ,

p(δvi) =
√

m

2πkBT
exp

[−m(δvi)
2

2kBT

]
. (15)

It is simple to see that Eqs. (13) and (14) satisfy directly the constraint posed in
Eq. (11).

2.6 Least Constraint Dynamics

By taking the extremum of the time integral of the Lagrangian for the particles in
Γ1, which is subject to the non-holonomic constraint in Eq. (11), the equation of
motion (EoM) for each particle i in Γ1 is according to (Nie et al. 2004)
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v̇i = Fi

m
− 1

NΓ1

NΓ1∑

j=1

Fj

m
+ 1

δt

⎛

⎝V Γ1 − 1

NΓ1

NΓ1∑

j=1

vj

⎞

⎠ . (16)

Instead of repeating the derivation for Eq. (16) as in Nie et al. (2004), we may
arrive at the same expression from another perspective. To satisfy the constraint in
Eq. (11), an extra body force Fb

Γ1
is introduced dynamically at every time step δt

such that (Werder et al. 2005)

v′
Γ1

= vΓ1 + δt

NΓ1m
(FΓ1 + Fb

Γ1
), (17)

where vΓ1 is the average velocity and FΓ1 is the total force in Γ1 due to particle
interactions,

vΓ1 = 1

NΓ1

NΓ1∑

j=1

vj , FΓ1 =
NΓ1∑

i=1

Fj . (18)

To satisfy Eq. (11), we set v′
Γ1

= V Γ1 , and therefore, we obtain an expression for

the body force Fb
Γ1

as

Fb
Γ1

= NΓ1m

δt
(V Γ1 − vΓ1)− FΓ1=

NΓ1m

δt

⎛

⎝V Γ1−
1

NΓ1

NΓ1∑

j=1

vj

⎞

⎠ −
NΓ1∑

j=1

Fj . (19)

The value of Fb
Γ1

is dynamic and may vary at every δt . If we spread the body force

Fb
Γ1

from Eq. (19) evenly on NΓ1 particles in Γ1, it gives exactly the same EoM as
in Eq. (16) for each particle i.

2.7 Flux-Exchange Coupling

The exchange of flux for dense fluids was first proposed in Flekkøy et al. (2000) and
extended in Delgado-Buscalioni and Coveney (2003a). Rather than constraining the
state variables directly, as done in the previous three methods, this method imposes
flux at the truncation line ya of the subdomain of particle simulation. Therefore, the
EoM of particles in Γ1 reads

v̇i = Fi

m
+ Fx(yi), F x(yi) = τ

xy
a Aλ(yi), (20)

where A = Lx × Lz is the surface area of the truncation and τ
xy
a is the shear stress

at ya from the continuum. The distribution function λ(yi) of the shear force on each
particle must be normalized
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λ(yi) = g(yi)/

NΓ1∑

j=1

g(yj ), (21)

where g(y) is an arbitrary function so that λ(y) diverges at y = ya and decays to
zero as y approaches yb from ya .

If we assume that there is a locally linear shear flow within Γ1, which is a
reasonable assumption for many flow problems, then the distribution function λ(y)

may be defined better than an arbitrary one (Ren 2007). By assuming a locally linear
shear flow, we can work out the continuum limit of the shear forces on line ya from
particles within Γ1. By setting the shear force on ya from particles equal to the
continuum solution of FDM at ya , we have an identity as follows:

Aτ
xy
a =

∫ rc

0
Adγ D(h)hγ̇ dh, (22)

where h is the distance of particle i from ya (h = ya − yi) and γ̇ is an arbitrary
shear rate, while given the particle interaction potential, γ D(h) can be numerically
evaluated (Bian et al. 2016). Equation (22) holds for an arbitrary shear rate γ̇ .
Therefore, given a shear stress τxy from the continuum solution of FDM, the
distribution of shear force on each particle i is independent of γ̇ as

Fx(yi) = B0τ
xy
a γ D(h)h, (23)

where B0 is a normalization constant for the particular particle simulation
parameters.

2.8 Some Comments on Different Coupling Strategies

In order to bridge the concepts of state and flux coupling, Walther et al. (2012)
applied the gradient of velocities averaged from MD simulations to impose the flux
boundary condition on the lattice Boltzmann continuum solver. For conservation
and stability purposes, we may have also a mixture of coupling state variables and
fluxes; we refer to Flekkøy et al. (2005), Ren (2007), Bian et al. (2015b, 2016) and
references therein for further discussions.

On the accuracy of the coupling schemes, the quantity of interest has been
often the mean field variables, such as velocity, density, and stresses, which are
sufficient from the continuum perspective. There has not been a consensus as to
which of the four methods is most effective, as all the methods introduce above are
actually capable of generating accurate mean profiles. For practical convenience, the
relaxation dynamics involves an empirical parameter ε, which requires more trial-
and-tune simulations. Therefore, the least constraint dynamics is preferred over the
relaxation dynamics. The Maxwell buffer and flux exchange have the same easiness
as the least constraint dynamics.
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However, if we take a microscopic perspective and take the continuum descrip-
tion as a bath to supplement the truncated particle simulation, we may evaluate
more closely certain quantities of interest in the particle region. For example, by
calculating the fluctuation correlations between field variables of MD, we may
compare the performance of the coupling schemes mentioned above (Bian et al.
2015a, 2016, 2018). It turns out that we have two sources of errors in the particle
region; one is due to the truncation of the particle domain, and the other is due to
the constraint dynamics performed on the particles in the artificial boundary. The
first source of error is universal for different coupling strategies, and it may be
almost completely removed by implementing an appropriate particle removal and
insertion algorithm to mimic the grand-canonical ensemble of the an open particle
system (Delgado-Buscalioni and Coveney 2003b; Delle Site and Praprotnik 2017).
On the second source of error, the Maxwell buffer completely ignores any intrinsic
thermal velocity correlations between particles and simply constrains individual
particle’s velocity as identical independent Gaussian distribution in the artificial
boundary, therefore introducing the most artifacts, whereas the other constraint
algorithms are relatively mild and commit much smaller error on this aspect (Bian
et al. 2016).

Furthermore, if the overlapping region between particle and continuum sub-
domain increases, that is, if we can afford to perform extra volume of particle
simulation, the contaminations of all the constraint dynamics on the thermal
fluctuation correlations have very similar behavior, and the negative effects decrease
linearly as the size of the overlap increases (Bian et al. 2016).

Thus far, there has been quite a few applications which were enabled by the
DDM for multiscale modeling, bridging the atomistic and continuum descriptions.
One of the most apparent classes of application is to model local or singular effects
accurately with MD and capture bulk macroscopic flow behavior elsewhere with NS
equations. This type of problem includes the fluid-solid boundary conditions with
flow slip or epitaxial growth taking place (Thompson and Robbins 1990; O’Connell
and Thompson 1995), contact line problem with contact angle as a dynamic
variable (Hadjiconstantinou 1999), lid-driven cavity flow with singular stress at the
corner (Nie et al. 2006), sound propagation through lipid monolayer (De Fabritiis
et al. 2006), platelet deposition on the wall of a brain aneurysm (Grinberg
et al. 2013), and so on. In the next section, however, we will describe a triple-
scale approach that couples atomistic and continuum hydrodynamics through an
intermediate CG description.

3 Domain Decomposition Methods for Complex Fluids:
Adaptive Resolution Scheme

Another branch of DDM is related to coupling fine and CG descriptions of soft
matter and molecular liquids within a particle-based framework. Similarly to other
domain decomposition approaches, the aim of such adaptive resolution simulations
is to model the interesting part of the system with the detailed atomistic (AT)
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resolution, which is coupled with a CG representation of the remaining part of
the system. Among the most advanced multiscale methods for conducting this kind
of molecular simulations is the adaptive resolution scheme (AdResS) (Praprotnik
et al. 2005, 2008, 2011). The method can successfully couple two or more levels
of resolution concurrently present in the system. AdResS enables the particles to
change their resolution on the fly, during the course of an MD simulation. The
method is suitable for molecular systems where the AT resolution is required only
in a spatially localized region, whereas a lower CG level of detail is sufficient for
the rest of the system. Such cases are typically found in simulations of biological
macromolecules, e.g., DNA. There, the AT resolution is required only for the
macromolecule and the solvent in its vicinity, whereas the solvent farther away is
adequately treated on a simplified CG level.

AdResS allows molecules to freely move across different regions and change
their resolution on the fly according to their position in the system. When a CG
molecule leaves the CG domain, it is remapped into the atomistically resolved
molecule with a random orientation. To avoid any overlaps of its atoms with
the atoms of the neighboring molecules, it is required that introduction of the
atomistic degrees of freedom is continuous and not instantaneous. To this end, an
interface layer between the AT and CG regions is introduced that allows an atomistic
molecule to gradually find an energetically permissible orientation with respect to
its neighboring molecules. This transition region, also called a hybrid (HY) region,
contains hybrid molecules where both representations are superimposed.

Two levels of resolution are coupled via a force interpolation scheme. The
intermolecular force between given molecules α and β is defined as

FAdResS
αβ = w(Xα)w(Xβ)FAT

αβ + [1 − w(Xα)w(Xβ)]FCG
αβ , (24)

where Xα and Xβ are the centers-of-mass positions of the molecules α and β,
respectively, and w is a weighting function that governs the transition between
different resolution regions and therefore needs to be smooth. This function depends
on the position of the mapping point of the molecule and is defined in the following
way: w = 1 corresponds to the AT region and w = 0 to the CG region, whereas the
values 0 < w < 1 correspond to the HY region.

Original variant of the AdResS based on the force coupling above does not
allow for a definition of a Hamiltonian and consequently has to be employed in
conjunction with a thermostat. A recent Hamiltonian version of the method, i.e.,
H-AdResS (Potestio et al. 2013b; Everaers, R. 2016; Español et al. 2015), on the
other hand, allows for the definition of a global Hamiltonian. This enables one
to perform adaptive resolution Monte Carlo simulations (Potestio et al. 2013a).
However, as the translation invariance is broken due to the resolution change,
this implies that the total linear momentum cannot be conserved by H-AdResS.
Since the linear momentum conservation is crucial for hydrodynamics, the original
AdResS, which is not Hamiltonian, can therefore preserve linear momentum despite
broken translational symmetry and is thus more convenient for coupling with
the continuum hydrodynamics, as described below. Recent extensions of AdResS
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also involve coupling to a quantum level of description (Poma and Delle Site
2010, 2011; Agarwal and Delle Site 2015, 2016; Delle Site 2018) as well as to
open systems that exchange mass, momentum, and energy with their surroundings
(Delgado-Buscalioni et al. 2015; Sablić et al. 2016; Wang et al. 2013; Agarwal
et al. 2014, 2015; Delle Site 2016; Mukherji and Kremer 2013; Kreis et al. 2015).
This allows for conducting MD simulations either in the grand-canonical statistical
ensemble or under non-equilibrium conditions (Delgado-Buscalioni et al. 2015;
Sablić et al. 2016, 2017b; Delle Site 2018). AdResS has been successfully applied to
biomolecular systems (Zavadlav et al. 2017) such as proteins (Zavadlav et al. 2014;
Fogarty et al. 2015) and DNA molecules (Zavadlav et al. 2015a,b, 2016b) solvated
in multiscale solvents (Bevc et al. 2013; Nagarajan et al. 2013; Zavadlav et al. 2014,
2015b). In connection to hydrodynamics phenomena, AdResS has also been used to
couple MD to the dissipative particle dynamics (DPD) method (Hoogerbrugge and
Koelman 1992; Español and Warren 1995, 2017; Groot and Warren 1997; Español
1995), the multiparticle collision dynamics (MPC) (Malevanets and Kapral 1999),
and smoothed dissipative particle dynamics (SDPD) (Español and Revenga 2003;
Vázquez-Quesada et al. 2009). In the DPD, groups of atoms/molecules are lumped
to form soft beads that interact via explicit soft conservative, random, and dissipative
forces to simulate fluids on a mesoscopic scale with correct hydrodynamics
interactions. In the SDPD, the Navier-Stokes equations are numerically solved with
a formalism that is reminiscent of MD, whereas in the MPC the system is modeled
by particles with continuous positions and velocities and stochastic interparticle
interactions. Thus, using AdResS Petsev et al. (2015, 2017) coupled the MD to
SDPD, whereas Alekseeva et al. (2016) linked the MD with MPC. The robustness
of both hybrid approaches was demonstrated on a Lennard-Jones fluid. AdResS has
been also applied to couple MD with DPD water (Zavadlav and Praprotnik 2017). In
this chapter, however, we will focus on coupling with the continuum hydrodynamics
(Delgado-Buscalioni et al. 2008, 2009, 2015).

One can combine AdResS with the flux-exchange coupling (Flekkøy et al. 2000;
Delgado-Buscalioni and Coveney 2003a, 2004; Delgado-Buscalioni et al. 2005;
Flekkøy et al. 2005; De Fabritiis et al. 2006; Delgado-Buscalioni and De Fabritiis
2007), described in Sect. 2.7, to link an MD with a continuum hydrodynamic
domain, resulting in a triple-scale setup (Delgado-Buscalioni et al. 2008, 2009),
as depicted in Fig. 2. In this triple-scale approach, the particle-based domain is
simulated by MD simulation. The dynamics of molecules is thus governed by
Newton’s equations of motion, as explained in Sect. 2.1. On the other hand,
continuum description enables the study of macroscopic fluid flows. The fluid is
described by Navier-Stokes equations (see Sect. 2.2). The Navier-Stokes equations
can be numerically solved in different ways (Koumoutsakos 2005), e.g., the finite
volume method, where the continuum region is divided into small cells of volume
(De Fabritiis et al. 2006; Delgado-Buscalioni et al. 2008). In such a way, discretized
Navier-Stokes equations are then integrated in time using an explicit Euler scheme
(Delgado-Buscalioni and De Fabritiis 2007).

The MD and continuum domains share an interface, as shown in Fig. 2. The
otherwise independent MD and continuum domains exchange information after
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Fig. 2 Domain decomposition of triple-scale liquid water system: coupling of atomistic and con-
tinuum hydrodynamics. The MD domain contains atomistic and coarse-grained water molecules,
whereas the continuum domain is solved by computational fluid dynamics approach. (Reprinted
from Delgado-Buscalioni et al. 2015)

every fixed time interval Δt (Delgado-Buscalioni et al. 2008). Flux balance implies
the conservation of mass and momentum across the interface, i.e., both domains
should receive equally large but oppositely signed mass and momentum transfer
across the interface over each Δt . The momentum flux across the interface is then
used to update the flow variables at the continuum boundary cells. In turn, the same
(but oppositely signed) flux needs to be imposed into the particle system across the
interface (see Sect. 2.3).

The triple-scale method has been applied to simple liquids, i.e., liquid of tetra-
hedral molecules and water (Delgado-Buscalioni et al. 2008, 2009). Equilibrium
structural properties, i.e., the radial distribution function and density profile, in MD
domain of the triple-scale system have been validated against reference all-atom
MD simulations. Furthermore, the mass fluctuations of the open MD domain were
demonstrated to agree with the theoretical grand-canonical predictions (Delgado-
Buscalioni et al. 2009). The fluids were also exposed to the Couette and Stokes
flows (Delgado-Buscalioni et al. 2008, 2009), and the resulting velocity profiles
agreed with continuum hydrodynamics.

Of course, the underlying idea of this triple-scale scheme is that AdResS plays
the role of the inserting facility for complex molecules such as star polymers
(Delgado-Buscalioni et al. 2015; Sablić et al. 2016, 2017a,b). In the CG domain,
a given star polymer, consisting of several tens of monomers, is represented with
only one very soft CG bead. We face the problem of inserting new molecules into
a dense liquid. Thus, the idea behind the resolution change is that AdResS allows
the insertion of molecules of arbitrary size into the system. The CG domains act as
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a mass reservoir where large molecules can be easily inserted due to soft effective
interactions among CG beads (Delgado-Buscalioni and Coveney 2003a; De Fabritiis
et al. 2004; Borg et al. 2014). Then, as the molecules move toward the AT domain,
they gain the fine-grained details employing AdResS.

4 Summary and Perspectives

We have presented the DDM for multiscale modeling of simple and complex
fluids. For simple fluids we employ a perspective of continuum mechanics, where
state field variables and fluxes are fundamental quantities. Therefore, it is natural
to couple state variables and/or fluxes between a particle simulation (e.g., MD)
simulation with a NS solver. Within this perspective, the MD resolves local effects
and provides macroscopic averages as a closure for the NS equations. Other physical
quantities in MD that are not needed for NS are considered as unwanted, ignored,
or filtered out. Consequently, various constraint dynamics on state variable or fluxes
of MD are all effective and do not have apparent difference on the hybrid coupled
simulations. If we are interested not only in the macroscopic behavior but also in
certain mesoscopic or microscopic physics of the particle simulation in the course
of hybrid simulation, the conclusion is different. For example, thermal fluctuations
are hallmarks, and one of the driving mechanisms for physical processes at micro-
/mesoscopic scales. If we evaluate the correlations of the thermal fluctuations in the
particle simulations in the context of a hybrid simulation, we find that the constraint
algorithm of Maxwell buffer ignores the local correlations completely, while other
three constraint dynamics are relatively better at preserving the natural properties of
the particle simulations.

We have also briefly presented the particle-based multiscale linear-momentum-
preserving AdResS for coupling fine and CG molecular representations. AdResS is
suitable to simulate fluids on the micro-/mesoscopic scale, where hydrodynamics
plays an important role. In this spirit, AdResS has been recently applied to link
MD and DPD methods for simulation of water at ambient conditions (Zavadlav and
Praprotnik 2017). As the DPD water model corresponds to several water molecules,
the supramolecular coupling is enabled by a recently developed clustering algorithm
SWINGER that assembles, disassembles, and reassembles clusters as needed during
the course of the simulation (Zavadlav et al. 2016a). This allows for a seamless
coupling between standard atomistic MD and DPD models. In the future, this frame-
work could be applied to important problems such as abnormal rheological and
biomechanical properties of red blood cells encountered in disease states (Chang
et al. 2016; Altenhoff et al. 2007; Rossinelli et al. 2015; Fedosov et al. 2010, 2011).

In this chapter, we focus on the DDM for fluids, and for readers interested
in DDM for solid materials, there are quite a few excellent technical reviews,
e.g., Miller and Tadmor (2009). There are other multiscale modeling methods
tightly related to DDM, such as CONFFESSIT (Laso and Öttinger 1993) and
heterogeneous multiscale method (Ren and Weinan 2005; Weinan et al. 2007; Borg
et al. 2013; Yasuda and Yamamoto 2010), where a macroscopic model is selected for
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the whole domain and a microscopic solver is utilized to provide fine details such as
boundary conditions or constitutive relations wherever needed. Along the research
line of adaptive mesh refinement, Garcia et al. also develop the algorithm refinement
technique at the finest scale of the mesh to switch on microscopic description such
as the direction simulation of Monte Carlo (Garcia et al. 1999). Kevrekidis and
colleagues propose space-selective microscopic descriptions without a macroscopic
equation (therefore, named as equation-free) (Kevrekidis and Samaey 2009). By
employing novel gap-tooth interpolation in space and projection in time, the
equation-free framework is able to perform system-level tasks and predictions.

There are also a few high-performance software packages free for usage (Tang
et al. 2015; Neumann and Bian 2017; Halverson et al. 2013). Together with the
algorithm developments, they will foster further applications of DDM for multiscale
modeling.
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