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Coupling different levels of resolution in molecular simulations
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Simulation schemes for liquids or strongly fluctuating systems that allow to change the molecular
representation in a subvolume of the simulation box while preserving the equilibrium with the
surroundings introduce conceptual problems of thermodynamic consistency. In this work we present
a general scheme based on thermodynamic arguments which ensures a thermodynamic equilibrium
among molecules of different representations. The robustness of the algorithm is tested for two
examples, namely, an adaptive resolution simulation, atomistic/coarse grained, for a liquid of
tetrahedral molecules, and an adaptive resolution simulation of a binary mixture of tetrahedral
molecules and spherical solutes. © 2010 American Institute of Physics. [doi:10.1063/1.3357982]

I. INTRODUCTION

Many complex molecular systems are characterized by
properties which are inherently multiscale. In this context
numerical modeling became an indispensable tool, providing
a bridge between experiment and general theoretical consid-
erations. Because of that, a variety of multiscale simulation
techniques, ranging from straightforward hierarchical param-
etrizations, see, e.g., Refs. 1-7, to interfaced layers of differ-
ent resolutions, see, e.g., Refs. 8—13, has been developed.
While most techniques are sequential in a way that at a given
time the whole system is described with the same represen-
tation (level of resolution), in many cases it would be con-
venient to locally adjust on the fly the level of resolution, i.e.,
considering more details, according to the problem of inter-
est, while keeping the larger surroundings on a coarser level.
A typical example is the solvation of a molecule in water
where the interesting physics and chemistry occur within few
solvation shells around the molecule, while outside it is suf-
ficient to treat the water on a rather coarse, simplified level.
To do this one has to interface different molecular models of
water (e.g., flexible, rigid, and coarse grained) and to allow
for free, unhindered exchange in molecules among the re-
gions of different molecular representations. A barrier free
exchange of molecules over the borderlines of molecular res-
olution is required to properly account for fluctuations. This
concept can be generalized in terms of designing an algo-
rithm which interfaces two different force fields describing
the same molecules where the exchange of particles from
one region of representation to another (and vice versa) oc-
curs under equilibrium conditions. If this can be done on the
basis of a rather general framework, it would also allow to
couple rather loosely connected molecular representations, as
will be discussed below.

Such force fields may have the same level of resolution
[i.e., the molecule carries the same number of degrees of
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freedom (DOFs)] or different resolutions (for example, ato-
mistic and coarse grained). To the first class of problems
belong the approaches as the learn on-the-ﬂylo method where
in a certain region of space the force acting on the atoms is
updated on the fly by underlying quantum calculations and is
interfaced with a standard classical force field which de-
scribes the interactions in the larger region outside. The num-
ber of DOFs may remain the same but the force acting on
each atom is different in different regions. To the second
kind of problems belong the approaches as those of adaptive
resolutions'*™"® where the molecular models carry different
numbers of DOFs. Extensions to link such particle based
approaches to continuum have also successfully been
tested.'”**

To perform such simulations requires equilibrium be-
tween the different regimes, which is facilitated by a transi-
tion zone. However, the necessary condition for thermody-
namical equilibrium between two different representations as
well as the transition zone, i.e., the chemical potential, pres-
sure, and temperature equivalence, can in some complex sys-
tems not be assured by a mere derivation of the effective pair
interactions between coarse-grained molecules. Therefore, a
method is highly desirable, which maintains two different
representations with general different chemical potentials in
thermodynamical equilibrium. So far existing algorithms do
not have a physically consistent theoretical framework which
properly describes the change in representation and auto-
matically leads to thermodynamic equilibrium between the
different resolutions. Rather, the equilibrium is observed a
posteriori or obtained by adjustments of the relevant thermo-
dynamic quantities. For practical purposes these approaches
could be sufficient; however they lack of a tool to control in
a systematic way the relevant quantities of the system. In this
work we start from the coupling scheme of adaptive reso-
lution scheme (AdResS), which is a simulation framework to
adaptively couple simulations of liquids with spatially vari-
able resolution,'*™'® based on the space dependent interpola-
tion of forces. We then reformulate the adaptive scheme in
terms of a more general algorithm with a well founded the-
oretical framework which automatically leads to a thermody-
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namic equilibrium. The resulting scheme is a substantial gen-
eralization of the original AdResS." In practice it allows to
go much beyond the systems treatable with the previous
scheme, ranging from the interfacing of two generic force
fields up to truly open systems. Most importantly, the intro-
duction of the concept of thermodynamic force explains the
essential principles of interfacing two (or more) force fields
(as different representation of the same chemical species)
and to automatically obtain the equilibrium.

Il. ADAPTIVE RESOLUTION CONCEPTS

The underlying idea for going from one molecular rep-
resentation to another is to introduce a transition region at
the interface, where the molecules slowly change their rep-
resentation. In this region they are in equilibrium with their
actual surroundings and change continuously until the region
of the new representation is reached. There they “arrive”
fully equilibrated within the surrounding described by the
new representation. At a first glance a natural way to proceed
would be an energy-based approach where a smooth space
dependent function would interpolate between the Hamilto-
nians corresponding to two force fields. This approach has
been shown to lead to unphysical artifacts and
inconsistencies.”' ™ To avoid this, we proposed a force based
simulation approach called AdResS.'® Here we extend this
with a thermodynamically consistent description of the tran-
sition regime, which eventually allows to couple adaptively
rather different systems and provides a first step toward open
systems molecular dynamics (MD) simulations.

The basic idea is to allow the molecules to experience a
smooth transition from one force field to the other and vice
versa without altering the equilibrium of the system. For this
we introduce a transition region, where an interpolation func-
tion is defined in terms of the position of the center of mass
of a molecule. As an example, as applied in the AdResS
scheme, for a pair force between molecules a and S the
formula may be written as

FaB = W(Xa)W(Xﬁ)F/;ﬁ +[1- W(Xa)W(Xﬁ)]F§B7 (1)

where Fﬁﬁ is the force obtained from the potential of repre-
sentation A and Fgﬁ the one obtained from the potential of
representation B; w(X) is the switching function and depends
on the center of mass positions X, and X B the two interact-
ing molecules, as indicated in gray in Fig. 1. While with the
above approach one can perform an MD simulation and con-
trol the MD, the forces as given in Eq. (1) cannot be ex-
pressed as the derivative of a Hamiltonian. This rises the
question of how to assure the thermodynamic equilibrium in
such a force based approach. Indeed our previous studies
displayed density fluctuations in the transition regime, which
in some cases have been repaired by a pressure correction
term.”> The main problem in changing representation in a
continuous way is that the DOFs for which the interaction
becomes different or which is switched on or off in going
from one representation to another are characterized by dif-
ferent energy functions and thus contribute differently to the
global equilibrium of the system. This process is associated
with the acquisition and release of thermal and interaction
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FIG. 1. Pictorial representation of the adaptive box and molecular represen-
tation. The region on the left, indicated by B, is the low resolution (coarse-
grained) region, the central part is the transition (hybrid) region H, where
the switching function w(x) (curve in gray) is defined, and the region on the
right, indicated by A, is the high resolution (atomistic) region. For numerical
convenience, as discussed in the text, in order to calculate the chemical
potential of each resolution, the transition region is divided in N slides
which corresponds to discretized values of the switching function, here in-
dicated with w;.

energies of these DOFs which must be slowly redistributed
as the new representation is acquired. Note that the total
energy of the molecules in the different regimes does not at
all have to be the same—in most cases it actually will not be
the same! These energies related to such a process can be
viewed as some sort of latent heat that takes care of the
equilibration of the molecules with their environment (see,
e.g., Ref. 21). Switching on and off degrees DOFs can be
shown to correspond to fractional DOFs and the related eq-
uipartition theorem, thus allows to define a temperature and
thus the only locally acting thermostat in the transition
regime.ﬂ’22

lll. GENERALIZED COUPLING SCHEME AND
THERMODYNAMIC DRIVING FORCE

The above intuitive ansatz can be formalized and gener-
alized within a thermodynamically consistent framework.
This theoretical framework allows to explicitly define equa-
tions of motion in the transition regime by which both the
dynamics and the thermodynamics can be controlled, despite
the fact that there is not a well defined energy as in standard
simulation schemes. To do this we reformulate the problem
in specific terms of an additional thermodynamic force and
the internal energy of a molecule as follows.

The more detailed region A we want to study as a sub-
system at a given temperature 7 in a fixed volume V with a
well defined average number of particles N and pressure P.
This has to be coupled to a more coarse-grained surround-
ings in a way that the structural and dynamical properties
within the region A are (ideally) not altered at all. This also
requires that there is no kinetic barrier introduced by the
transition regime between A and B. Viewing the different
regimes as different phases, the question of equilibrium be-
tween different regimes generally can be formulated in terms
of the differences in the chemical potential characterizing
each resolution.”* To do this let us consider the difference
d(x)=ps— () between the chemical potential of a mol-
ecule in region A (chemical potential of a system composed
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solely by high resolution molecules; w(x)=1) and in a hybrid
system exclusively composed of hybrid molecules with a
fixed level of resolution 0 =w=w(x)=const=1 correspond-
ing to a fixed bulk value ). Since w in such a hybrid
system is constant within the whole system, we now have a
well defined energy function, which allows to determine
My(x)- By repeating this procedure for each value of x, we can
now approximate an effective, position dependent, chemical
potential of the molecules for the whole system, especially in
the transition regime in the full range of 0=w=1. Since in
the adaptive representation scheme w=w(x), ¢ becomes a
position dependent function in such a simulation.” The
wider the transition regime the better this approximation is
expected to work, since the difference in the interactions in
the direction of growing and shrinking w vanishes. This idea
can now be used to couple within one simulation box two
systems, where the same molecules are described by differ-
ent sets of DOFs. Coupling two systems along Eq. (1) and
running the simulation with a regular Langevin or Dissipa-
tive Particle Dynamics (DPD) thermostat'®%® often leads to
the problem of a nonuniform free energy density throughout
the simulation cell, since the free energy density, which to a
first approximation depends on the DOFs per molecule,
might be different in the different regions. This results then
in unwanted density variations especially in the transition
regime. As we will see below, the thermostat generally only
compensates for a part of this problem. In this context ¢(x)
is nothing else than the quantity which reintroduces, in an
effective way, a formal uniformity.

To calculate ¢(x), we can divide it into two components.
The first part is due to the potential of interaction (called
“excess chemical potential” in the following) between the
DOFs, which are switched on or off. The second corresponds
to the kinetic intramolecular part (internal vibrations and mo-
lecular rotations). The latter part typically can also be taken
care of by the thermostat (see below). The calculation of the
first component can be numerically achieved, as illustrated in
Fig. 1. The simulation box is divided into a region of force
fields A and B and a transition region H in between. The
region B is characterized by the value of the switching func-
tion wy=0. The region A is characterized by the value of the
switching function wy,;=1. In H the value of w in the actual
simulations varies continuously. However here we approxi-
mate this by discretizing w into N steps wy,wo, ..., Wy_1, Wy-
For any fixed value of w the energy function is well defined
and the excess chemical potential then is defined as
p(x;) = uir®, where the u;° is the chemical potential of the
molecules in a bulk system of the specific representation of
w;. To calculate numerically each u*“(w;) one can use stan-
dard particle insertion methods.”’ Repeating this procedure
with all values of w; leads to a position dependent excess
chemical potential u®*“(x). The implicit approximation that
each of the stripes in Fig. 1 can be taken as a bulk system
statistically independent of others will be shown to be of
minor importance for practical applications. The second
component is the ideal gas kinetic contribution to the chemi-
cal potential coming from the internal DOFs. Usually in a
“one-representation” simulation, this contribution to the
chemical potential is ignored being only a trivial constant. In
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our case where the DOFs of interest might continuously
change in going from one representation to another, each
DOF in the transition region contributes differently accord-
ing to the corresponding value of w(x). While such contribu-
tions can be easily calculated for the force fields B and A, the
critical aspect to address is what happens for the hybrid rep-
resentation in the transition region.

For the AdResS scheme we have shown that the inter-
pretation of changing representation as continuous change in
dimensionality (between zero and one and vice versa) of the
associated phase space of a DOF (see, e.g., Refs. 16, 21, and
22) allows for a proper definition of the temperature and thus
of a thermostat. This means that if a DOF remains un-
changed from one representation to another, its dimensional-
ity is one (invariant full contribution to statistical properties
regardless of the representation). If instead a DOF is
switched on/off from one representation to another its dimen-
sionality goes from one to zero or vice versa; that is if a DOF
is explicitly present in force field A and not present in force
field B it would not contribute to the statistical properties in
region B and would gradually contribute in the transition
region up to full contribution in region A. In other words the
dimensionality of the phase space associated with a DOF
reflects the degree of “representation” expressed by w(x) and
it weights, accordingly, its contribution to the average prop-
erties of the system. The formalism of fractional calculus has
been shown to be able to formally describe this process so
that one can calculate the kinetic energy contribution to the
free energy per palrticle.22 This means that one can calculate
the chemical potential for a given representation w analyti-
cally and, since w=w(x), obtain the ideal gas contribution.
For a generic switchable DOF p this is written as

A,=—kT log[ J e_'szde} = " (w), (2)

and thus the total contribution of the entire set of switchable
DOFs (assuming that they decouple) is

) = S ), (3)
DOF

and the component to the latent heat (x)5"= 5"~ wkin(w).
The solution of Eq. (2) can be obtained analytically,

3)

I'iw)’

) = CkT(%)log(T) + kT log 4)
where C is a constant, k is the Boltzmann constant, 7 is the
temperature, and I is the standard I" function. The first term
in Eq. (4) is linear in w and therefore linearly interpolates
between the coarse-grained and all-atom values of ,u,ki“.16
Note that the second nonlinear term is negligible in the tem-
perature regime of interest. At this point we have a numerical
definition of x**°(x) and an analytical definition *"(x). In
general, the idea of continuous interpolation and the calcula-
tion of the latent heat presented here have some formal simi-
larities with the method to calculate entropies or chemical
potentials, which cannot be calculated directly. This is done
by adiabatically coupling via a continuous parameter the real
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potential to one with a potential where the chemical potential
is known and then integrating over that parameter.28 For the
purposes of this work u®¢(x) and u"(x) are all the ingredi-
ents to control the thermodynamic equilibrium of our system
and we can use these quantities within the numerical proce-
dure to couple the different resolutions. u°(x) characterizes
the chemical potential due to the interactions among mol-
ecules according to their representations. Thus the gradient
of u®¢(x) can be interpreted as a thermodynamic force FID
=—0gu°/dx. Subtracted from the standard AdResS forces,
Eq. (1), it should compensate any drift originating from the
different resolutions, making the density profile uniform
throughout the whole simulation box.” Similar expressions
also emerge in interspecies forces in dense binary systems.30
Next, u*" is the “internal” energy of a molecule, indepen-
dent from the direct interaction with its surroundings, and
thus ¢*" is nothing else than the internal heat that is acquired
or removed as the representation changes. Since the tempera-
ture is well defined, this can be supplied by any standard
local thermostat.”® One can check a posteriori that indeed
this internal heat is in average exactly the amount provided
by the thermostat. Note that the thermostat forces do not
enter into the AdResS scheme, as given by Eq. (1). Instead,
they are added separately. We have applied the concept de-
scribed above to two examples, (a) to the adaptive simula-
tion, atomistic/coarse grained, for a liquid of tetrahedral mol-
ecules [see Fig. 1 (top)] and (b) to the adaptive simulation of
a binary mixture with major component tetrahedral mol-
ecules and with spherical solutes (see Fig. 6).

IV. APPLICATIONS TO MODEL SYSTEMS
A. Liquid of tetrahedral molecules

We first test the above idea on the example of simple
tetrahedral molecules, where the molecules can change rep-
resentation from an atomistic to a coarse-grained resolution
and vice versa passing through a series of hybrid representa-
tions (see Ref. 14 and Fig. 1). This model system also has
been used during the first introduction of the AdResS
method. In such a system an atomistic representation is in-
terfaced with its corresponding coarse-grained one. We treat
the system at temperature 7=g/k and a liquid density with
an atom density of p=0.175/03’~1.0/0*2g (0 is the ex-
cluded volume diameter of the coarse-grained molecule).
Here o and ¢ are the standard Lennard-Jones parameters of
length and energy, respectively. For the force field param-
eters and other modeling details, see Refs. 14 and 15. The
system is set up in such a way that the equation of state is the
same in both the coarse-grained and in the all-atom regimes
at the temperature and density of the current simulation. Be-
cause of that u*°(x) has to be the same for w=1 and for w
=0. As was found in earlier applications of the AdResS al-
gorithm, the coarse-grained and the detailed regimes are in
equilibrium with each other and the molecules are free to
move from one regime into the other while simultaneously
changing their molecular representation. A typical problem,
however, as also found in the application of this method to
water, was significant density variation within the hybrid re-
gime. Employing the above derived scheme and introducing
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FIG. 2. Plot of the excess chemical potential. a is the width of the transition
region in reduced units. Because the atomistic and the coarse-grained rep-
resentation describe the same state point they are characterized by the same
chemical potential, while this does not hold anymore for the hybrid.

the corresponding thermodynamic force this problem can be
solved. Figures 2 and 3 show u®*¢ and the resulting thermo-
dynamic force, respectively. The results of the application of
such a force plus the local thermostat for the internal heat are
shown in Fig. 4 in comparison to the case without that cor-
rection.

As one can clearly see, indeed this procedure leads to a
more satisfying density profile which automatically emerges
from the forces applied. Remaining very small deviations
from the ideally flat profile, which are expected due to the
rather approximate way to determine the thermodynamic
force, can easily be eliminated in a short iterative procedure,
which optimizes the force. In order to prove the full consis-
tency of the method we must still show that the molecular
internal heat provided by the thermostat corresponds to that
calculated analytically. To do so, we calculate the work done
by the thermostat as in Ref. 31. By removing the contribu-
tions of the center of mass we indeed have only the energy
corresponding to the internal DOFs.

According to the fractional formalism, the explicit aver-
age kinetic energy of a “switchable” DOF is w(K om).> 2 If
a thermostat provides an amount of heat (W) for the ato-
mistic resolution, it provides an explicit amount of heat
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FIG. 3. Plot of the thermodynamic force resulting from the excess chemical
potential. The plot of the force shows in gray (red) the curve obtained from
the numerical data to which a smoothing process was applied and in black
the curve obtained from a symmetric fit of the data; both give the same
results within the error bar.
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FIG. 4. Plot of the density across the simulation box. In gray (red) is the
case without the thermodynamic force, in black is the case where the ther-
modynamic force is applied. In both cases the system is coupled to a locally
acting thermostat. The thermodynamic force clearly improves the quality of
the results.

W{Wom to the hybrid resolutions.*” Hence the average extra
(latent) heat that the thermostat effectively provides to a mol-
ecule in the transition region, in order to have the same in-
ternal energy as a molecule in the atomistic resolution, is
W giom? = WWoiom?» = (1 =w){Wom?» Which is proportional to
the first term in the analytical expression of ¢*i". This means
that in practice the heat given by the thermostat to the inter-
nal DOFs in the hybrid region is the same as in the atomistic
one, as consistently obtained in our calculations and shown
in Fig. 5, while it counts to the total energy of the system
only according to the value w of the actual local resolution.
At a first glance the conclusion above seems obvious and can
easily be seen for decoupled DOFs. However, the coupling
between the intra- and the intermolecular interactions is dif-
ferent according to the different resolutions across the box.
The equation above provides the first order approximation of
heat that must be given by the thermostat according to the
formalism introduced in order to have equilibrium across the
whole box. In this perspective the numerical calculations in-
deed indicate that the equation above holds. More important,
this proves the robustness of the algorithm regarding the hy-
pothesis of separation between intra- and intermolecular
DOFs; thus it validates the whole theoretical framework
from which the equations governing the switching are ob-

0.03 ' ' ' Explicit —
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0.026 |
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0.022 | 1

=00 NI N OSALATON N 0]
0.018 | 1
0.016 |
0.014 |
0.012 + HYB EX
0.01

12 14 16 18 20 22 24 26 28 30
X*
FIG. 5. Heat profile provided by the thermostat across the box. The heat is

calculated as the work done by the thermostat by removing the contributions
of the center of mass. This is the energy corresponding to the internal DOFs.
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FIG. 6. Pictorial representation of the system. On the right are the atomistic
tetrahedral molecules solvating a spherical solute, in the middle is a hybrid
representation, and on the left the coarse-grained one. Notice that the solute,
although in all cases is one sited, is characterized by different effective
interactions and excluded volume in the different regions since it has to be
consistent with the different resolutions of the solvent.

tained. So far, this example shows the validity of the idea of
thermodynamic force for a one component system only.
However, to apply such an approach to more interesting
problems from biophysics or physical chemistry and material
science, an extension to the case of multicomponent systems
such as mixtures is needed.

B. Adaptive resolution simulation of a mixture

We now apply the above developed concept to an “ato-
mistic” liquid of tetrahedral molecules which solvate another
species of spherical molecules (see the pictorial representa-
tion of the system, Fig. 6). From the atomistic simulation a
coarse-grained model of both solvent and solute is derived
and then the hybrid atomistic/coarse grained adaptive
scheme is applied.33 Doing this in the conventional Way16
leads to significant density variations throughout the system.
As for the one component system, we first calculate the
chemical potential for each species (solvent and solute) ac-
cording to the scheme previously shown. However, this is
slightly more complex than before, because we have two
different molecules each with its intrinsic chemical potential
to which the contribution originated by the mixing, both as-
pects then according to the spatial resolution, must be added.
With ¢; being the concentration of component i we can write
for the chemical potential of the solvent

4 0 .
:u“;gtl:a = lu’tetra + kT log[ctetra] +fir:11:X(ctetra’ Cso]ute) ’ (5)
and equivalently for the solute
4 0 A
M;I(lwll)l(ne = lu“snlute + kT log[csolute] + gﬁil;x(ctetra’ Csolute) ’ (6)

where 1 is the chemical potential of the pure component at
the same density. kT log[c;] is the part coming from the en-
tropy of mixing for the ideal noninteracting case for the sol-
vent and solute, respectively. f*(CieqarCootue) 15 the part
originating from the molecular interactions for the solvent
and equivalently g for the solute. The functions f and g are
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unknown and empirical expressions are given in literature
(see, e.g., Refs. 34 and 35). However, here we have chosen
to take a more practical path to determine f and g which can
be easily implemented numerically and yet provides the in-
ternal consistency the whole algorithm of simulation. For
this we expand f and g as

. (}’f
iX _
int (cteLra?Csolule) = |:(9 : Actetra’ (7)
clelra cO N
tetra” solute
mix _
8int (clelra’csolute) = |:é’ : ACsolute~ (8)
Csolute 40 ,co
tetra’” solute

P{)ere Actetra=ctetra_6?etra and Acsolute=csolute_cgolute’ where
Cietra» Csolute Ar€ some equilibrium concentrations, which, as
will be shown, are not needed to be known a priori. While
all the other quantities entering the chemical potentials are
known, the question is how to obtain [Jf/ (9C[e[ra]c?e 0 and
[&g/c?csolme]ci)e[ravcwm, as this is needed to obtain the overall
thermodynamic force to be applied to each component. To
provide a practical approach we first run an adaptive simu-
lation of our system with a thermodynamic force without the
terms corresponding to the mixing. Because in the thermo-
dynamic force the terms of the mixing, at this stage, are
neglected this simulation will produce a nonuniform density
profile (or concentration profile) in the transition region.
Since we know from Egs. (5) and (6) and Egs. (7) and (8)
that the terms coming from the mixing are functions of the
density (concentration), we take the density profile obtained
to determine the terms of mixing, tuning the unknown coef-
ficients of f and g so that the corresponding (complete) ther-
modynamic force provides a flat profile. By that, we numeri-
cally define the unknown part of the chemical potential. As a
test of consistency we show that once these constants are
fixed, the corresponding thermodynamic force applied to dif-
ferent initial conditions keeps the profile flat and produces a
stationary bidirectional flux of particles as for the one com-
ponent system in Ref. 14 (see Figs. 7 and 8). This is a prac-
tical way to determine in general the chemical potential pro-
file of a mixture and it represents a proof of principle for the
thermodynamic force for a binary mixture within the adap-
tive scheme.

V. CONCLUSION/OUTLOOK

Our simulation results show how to set up a consistent
framework for an adaptive resolution simulation of solutions
and mixtures. By the introduction of the concept of a ther-
modynamic force, based on a locally variable chemical po-
tential, typical artifacts of such concurrent simulations with
variable resolution can be avoided. The method allows for a
free exchange of molecules between different regimes and
the molecules adapt their very representation according to
the region they are in. The approach easily can be extended
to more complicated situations, such as systems of even
more components. For practical implementations one actu-
ally does not have to resort explicitly to the formal derivation
via the chemical potential. As illustrated for the case of a
mixture, the density profiles in the transition regime can be

J. Chem. Phys. 132, 114101 (2010)

2
15 30 —
=100 =sn 250 o
18 5 E 5 A
| Z150
1612 B | 100
. AT T 50 et
S 14} o= 1520253035 o 1000 2000 3
* X t
a
12
1
08 A H B

0 5 10 15 20 25 30 35

FIG. 7. Density profile of the solute across the box. The total number of
molecules for the solute is 311, while that of the solvent is 2174, corre-
sponding to a solute concentration of 0.14. Inset, right panel, the total num-
ber of molecules in the three regions as a function of time: A atomistic, H
hybrid, B coarse grained. Inset, left panel, diffusion profiles as a function of
time of atomistic and coarse-grained molecule across the box. The figure
displays a proper diffusion, assuring that there are no barriers across the
system. The three plots show that the system is in a stationary (equilibrium)
state. Note that the transition region is larger than the atomistic and the
coarse grained. This was made on purpose because the properties in this
region are conceptually of major interest for the development of the current
model with the thermodynamic force.

flattened by a thermodynamic force obtained by a simple
numerical tuning. Of course a more formal way to determine
the force would end up with the same result. The present
approach, however, is even more general than discussed so
far. Usually one deals with a well defined system which one
wants to study in different regions of space by different reso-
lutions. This allows to zoom in within a molecular simulation
and to study regions of special interest in more detail. The
present ansatz, on the other hand, can be extended to a much
wider class of problems. There is absolutely no reason to
restrict the method to the case of w=0 in the pure atomistic
and coarse-grained region. In principle one can, by such a
method, couple systems with (almost) arbitrary differences
and keep them in equilibrium with each other. Although this
might look a bit unexpected, this allows, for instance, to
introduce concepts of open systems or grand canonical MD
simulations. This will also be of special interest when it
comes to nonequilibrium situations like the change in con-
centrations of one species in the surroundings, etc.

All the simulations were performed in a modified ver-
sion of the ESPRESSO package36 with the exception of the
chen;;cal potential calculations obtained using GROMACS
V4.0.
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FIG. 8. As for Fig. 7, now for the solvent.
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